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ON LEFT BIPOTENT NEAR-RINGS
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0. Introduction

A near-ring TV is defined to be left bipotent if Na = Na2 for each a in TV. Many
properties of such near-rings are proved in Section 1, and results of Chandran (4) are
generalised. Most of the results are different from, and contrary to, the ring case.
Necessary and sufficient conditions have also been obtained under which such near-rings
become regular. Section 2 deals with left bipotent near-rings without zero divisors. Some
structure theorems for direct sum decompositions and /(TV) = (0) are proved and it is
shown that for a left bipotent 5-near-ring, the singular 'set' S(N) = 0. Necessary
examples and counter examples are supplied.

For completeness, the standard definitions are summarised. A near-ring TV is a system
(N,+,.) such that (TV, +) is a group (not necessarily abelian), (TV,.) is a semigroup, the right
distributive law holds, i.e. (x + y) z = xz + yz for each x, y, z in TV; and x • 0 = 0 for every
x in TV. We will take TV to be a near-ring containing at least two elements. An element a in
TV is said to be distributive, if a (b + c) = ab + ac for all b and c in TV; TV is called
distributively generated (d.g.) (8), if the additive group of TV is generated by the
multiplicative semigroup of distributive elements of TV.

An additive group A of TV is called a left N-subgroup (right N-subgroup) if NA C A
(AN C A) where NA = {ra | r G JV, a G A). A is a left ideal of N if it is a normal left
JV-subgroup with the condition r{(r2+ a)- r,r2E. A for each a in A, ru r2 in N. A is an
ideal of JV if it is left ideal and AN C A.

A proper ideal is called strictly maximal if it is maximal as a left TV-subgroup. A
near-ring N is called irreducible (simple) if it contains only the trivial left TV-subgroups
(ideals) (0) and N itself. TV is called a near-field if it contains an identity and each nonzero
element has a multiplicative inverse.

1.

Definition 1.1. A near-ring TV is said to be left bipotent if Na = TVa2 for every a in TV.

Examples 1.2. Let TV, = {0,1,2,3}, TV2 = {0,1,2, 3,4} and TV3 = {0,1, 2, 3,4,5,6} with
additions defined as addition modulo 4, modulo 5, and modulo 7 respectively and
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multiplications by the following tables:
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Then AT,, 7V2,JV3 are near-rings (7). It can be seen that they are left bipotent near-rings.

Definition 1.3. A near-ring N is an S-near-ring if a G Na for each a G TV.
This condition is clearly satisfied if TV contains a left identity, but there exist

near-rings (e.g. TV3 in 1.2) which are S-near-rings with no left identity. Also the near rings
Ni and N2 in 1.2 are left bipotent but not S-near-rings and in 1.8 we present a near-ring
which is an S-near-ring but not left bipotent.

Proposition 1.4. A left bipotent S-near-ring contains no non zero nilpotent elements.

Proof. Let TV be a left bipotent S-near-ring and b G JV be nilpotent, for some n,
bn = 0. Then b G Nb = Nb2 = . . . . = Nb" and b = 0.

The condition that TV be an S-near-ring is necessary as is seen from the near-rings N\
and JV2 in 1.2.

In the ring case every nilpotent element of a left bipotent ring is in the Jacobson
radical (4). But this type of result is not true in near-rings. For example, in the near-ring JV2

of 1.2, 1 and 4 are nonzero nilpotent elements, whereas /0(JV2) = D(JV2) =/|(JV2) =
•̂ 2(̂ 2) = (0). (Corresponding to the Jacobson radical J(R) in the ring case, we have four
radicals J0(N), £>(JV), J,(TV), J2(N) in a near ring JV. For these see (14)).

We recall that a near-ring JV is regular (1,10) if for each a in TV, there exists x in JV
such that a — axa.

Theorem 1.5. Let N be an S-near ring, then N is regular iff for each a( ^ 0)inN, there
exists an idempotent e(i.e. e2 = e) such that Na = Ne.

Proof. If TV is a regular near-ring, then for every a in TV, there exists x in JV such that
a = axa. Let xa = e, then e is clearly an idempotent and Na = Ne (for Na = Naxa C
Nxa = Ne C Na). Conversely, let TV be an S-near-ring satisfying the given condition. For
any d G N, there exists an idempotent b such that d E. Nd = Nb. This gives d = ub for
some u in N. Also b e Nb = Nd gives b = yd for some y in N. Therefore, dyd = ubyd =
ub2 = ub = d. Hence JV is a regular near ring.

Corollary 1.6. (Beidleman (1) and Ligh (10)). Let Nbea near-ring with identity. Then
N is regular iff for each a (^ 0) in N, there exists an idempotent e such that Na = Ne.
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Since there exist near-rings which are S-near-rings and contain no identity, (e.g. N3 in
1.2), Theorem 1.5 generalises Theorem 2 of (1) and Theorem 4.2 of (10).

In general, left bipotence neither implies nor is implied by the regularity of the
near-rings. The near-ring JV, of 1.2 is left bipotent but not regular. We now present a
near-ring which is regular but not left bipotent.

Example 1.7. Let R be the ring of all n x n matrices (n s= 2) over a division ring. It
can be seen that it is regular but not strongly regular (see Szasz (15), R is said to be
strongly regular if for each a GR,a = ya2 for some y in R). Take N = Rx M, where M is
an l?-module. Define addition + and multiplication * on N as follows:

(au nti) + (a2, m2) = (aia2, m, + m2);
(a,, m,) * (a2, m2) = (ata2, atm2+ mt).

Then (N, +, *) is a near-ring with identity (1,0) (see Clay (6)). We assert that this is regular
but not left bipotent. Let (a, m) £ N. Since R is regular, there exists b in R such that
a = aba. Then clearly (a, m) * (b, -bm) * (a, m) = (aba, m) = (a, m) shows that N is
regular. Also, since R is not strongly regular, for some x in R, x^ yx2 for any y in R.
Taking this x £ R and any m in M, then clearly (x, m) # (y, m') * (x, m )2 for any y e R (as
XT* yx2) and any m' in M. This shows that N is not left bipotent (since N contains an
identity).

Now we give the conditions under which left bipotency implies regularity and vice
versa.

Definition 1.8. A near-ring N is said to be strictly duo (duo), if each left N-subgroup
(left ideal) of N is also a right iV-subgroup (right ideal).

Clearly each strictly duo near-ring is duo. The converse is true in rings, but not in
near-rings. The near-ring
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is duo but not strictly duo, since the left N-subgroup {0, c} is not a right JV-subgroup.
Since this near-ring contains the identity a, it is an 5-near-ring. Moreover it is not left
bipotent, as Nb* Nb2.

Theorem 1.9. A regular near-ring N is left bipotent if either of the following
conditions is satisfied:

(i) N is a strictly duo near-ring,
(ii) Each idempotent in N is central.

Proof, (i) Let N be a regular near ring and let a £ N. Then there exists x in N such
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that a = axa. This gives a = (ax) axa = (ax)2a. Since N is strictly duo and Na is a left
TV-subgroup of N we have NaN C Na. Therefore, (ax) a • x = ba for some b in N, which
with a = (axfa gives a = ba2. This implies Na = Na2 and so N is left bipotent.

(ii) N is regular, so far a in N, there exists x in N such that a = axa. Clearly xa is an
idempotent, and a = axa — xa • a (since idempotents are central). Hence Na = Na2 and
N is left bipotent.

Theorem 1.10. A left bipotent near-ring N is regular iff N is an S-near-ring.

Proof. Clearly every regular near-ring is an 5-near-ring. Conversely, let N be a left
bipotent 5-near-ring. Then for each a in N a £ Na = Na2 = Na3 = Na4 and so a2 = za4

for some z inN. This gives ( a 2 - a2za2)a2 = 0 and ( a 2 - a2za2)a2za2 = 0. Also by 1.4, N
contains no nonzero nilpotent elements. This implies a2(a2- a2za2) - 0 and a2za\a2-
a2za2) = 0 and therefore, ( a 2 - a2za2)2 = 0. Again applying 1.4, we get a2 = a2za2. Then
clearly za2 = e is an idempotent and Na = Na2 = Na2za2C. Nza2 = Ne C Na2= Na.
Hence, by Theorem 1.5, N is regular.

For any subset A of a near-ring N, we define VA = {x £ N | x" £ A for some n}.

Theorem 1.11. / / N is a left bipotent S-near-ring, then A = VA for every left
N-subgroup A of N.

Proof. Clearly A C VA. Now let a £ VA, then a" £ A for some n. Also we have
Na = Na2 = — - = Na" in a left bipotent near-ring. Since N is an 5-near-ring,
a £ Na = Na". This gives a = fca" for some b in N. Thus a £ A, (since a" £ A and A is a
left N-subgroup of N). Hence V/4 C A.

The condition that N be an S-near-ring in this theorem is necessary, since in the
near-ring N2 of 1.2 (0) ^ V(0). We have seen earlier that an 5-near-ring need not be left
bipotent, however we do have:

Theorem 1.12. An S-near-ring is left bipotent iff A = VA for every left N-subgroup
AofN.

Proof. In view of Theorem 1.11 we have to prove that if N is an S-near-ring with the
condition A = VA for every left N-subgroup A of N then N is left bipotent. For a £ N,
a3 £ Na2 and a E VNa2 = Na2. Then Na C Na2 C Na and N is left bipotent.

2.

Theorem 2.1. A left bipotent near ring is an S-near ring iff it has no nonzero
nilpotent elements.

Proof. A left bipotent S-near-ring has no nonzero nilpotent elements by 1.4.
Conversely let N be left bipotent with no nonzero nilpotent elements. If a, b, c £ N with
abc = 0 then acb = 0 (as abc = 0 => babe = 0 => cbab = 0 => acfeafc = 0 => fcacfea =
0 => bacbac = 0 >̂ (acb)2 = 0 => acb = 0). Now for any x in N, Nx = Nx2 so x2 = yx2 for
some y in N. Then (x - yx) (x - yx) = x(x - yx) - yx(x - yx). Since (x - yx)x = 0 we get
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x(x - yx) = 0. Also, y(x - yx)x = 0 so yx(x - yx) = 0. Hence (x — yx)2 = 0 and x = yx as
required.

The near-rings N\ and N2 in 1.2 show that a left bipotent near-ring with nilpotent
elements need not be an S-near-ring.

This theorem, with Theorem 1.10, immediately gives:

Corollary 2.2. A left bipotent near-ring is regular iff it has no nonzero nilpotent
elements.

Proposition 2.3. A left bipotent near-ring with no (proper) zero divisors is irreducible.

Proof. Let A be a nonzero left N-subgroup of a left bipotent near-ring N. Take any
nonzero element a in A, then Na = Na2. If r E JV then ra = 5a2 for some 5 in N.
Therefore ( r - sa) a =0 and r=sa (as N is without proper divisors of zero). Clearly
r = sa 6 A and so A = N. Thus N is irreducible.

Theorem 2.4. Let N be a left bipotent near-ring with no zero divisors. If N has a
nonzero distributive element, then N is a near-field.

Proof. By Corollary 2.2, N is regular (as no zero divisors implies no nilpotent
elements). Let d be a nonzero distributive element in N, then there exists x in N such that
d = dxd. Clearly xd (= e say) is an idempotent. If r is any element in N, then
(d = dxd)r = 0 or (d - de)r = 0 and so d(r - er) = 0 (since d is a distributive element).
This gives r = er, i.e. e is a left identity in N. If a G M with a # 0 then Na = Na2.
Therefore, ea = ya2 for some y in N. This gives (e - ya)a = 0 and soe = ya, i.e. y is a left
inverse of a. Hence N is a near-field.

In the above theorem, the existence of a nonzero distributive element is essential, as
thenear-ring N3 in 1.2 is left bipotent without nonzero divisors of zero, but it is not anear-
field because the element 3 does not have an inverse.

Corollary 2.5. Let Nbe a left bipotent distributively generated (d.g.) near-ring with no
zero divisors, then N is a division ring.

Proof. From Theorem 2.4, N is a near-field and so (iV, +) is abelian, (see (8)).
Moreover, a d.g. near-ring with (N, +) abelian is a ring (12). Therefore, N is a division
ring.

Proposition 2.6. A left identity of a left bipotent near-ring is also a right identity.

Proof. Since N contains a left identity (say e), it is an S-near-ring. If r G N, then
r = er. T h i s g i v e s ( r - r e ) r = 0 a n d ( r - re)re = 0 . T h e n { r ( r - r e ) } 2 = r ( r - re) r ( r - re) =
0, and therefore, by 1.4, r(r-re) = 0. Similarly re(r — re) = 0. These give (r-re)2 =
r(r - re) - re(r — re) = 0 and hence r = re (by 1.4), i.e. e is also a right identity.

Each of the near-rings Nt, N2, N3 in 1.2 shows that a right identity of a left bipotent
near-ring need not be a left identity.
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For the next structure theorem we need the following result of Heatherly (9). We state
it (as a lemma) for (fight) near-rings.

Lemma 2.7. / / TV is a simple near-ring without nilpotent elements and satisfies the
d.c.c. on left TV-subgroups, then (a) every nonzero idempotent of N is a right identity and
Nhas at least one such idempotent; (b) N is regular; (c) if N has a nonzero distributive
element, then TV is a near-field; (d) if TV is d.g., then TV is a division ring.

Theorem 2.8. Let N be a left bipotent S-near-ring satisfying the d.c.c. on its left
N-subgroups, then

(I) TV is a direct sum of regular near-rings with right identities.
(II) / / TV has a nonzero distributive element, then TV is a direct sum of near-fields.

(Ill) / / TV is d.g., then TV is a direct sum of division rings.

Proof. Since TV is a left bipotent S-near-ring, it contains no nonzero nilpotent
elements (by 1.4) and so no nonzero nilpotent left TV-subgroups. Since TV also satisfies the
d.c.c. on its left JV-subgroups, by Blackett's (3) decomposition theorem, AT is a direct sum
of ideals TV = TV| 0 TV2 © . . . . © Nk, where each TV,-, as a near-ring, is simple with the
d.c.c. on its left TV;-subgroups. Clearly each TV,- contains no nonzero nilpotent elements.
This means each TV,- satisfies the conditions of Lemma 2.7 and therefore each TV,- is regular
with a right identity. This proves (/).

If TV has a nonzero distributive element d, then d = d\ + d2 +•. • • + dk, where d, £ TV,-
(1 =£ i =s k). Then it is easy to see that for each i ( l « i « k), the element d, is distributive in
the corresponding near-ring TV; in the above direct sum decomposition of TV. Therefore,
by Lemma 2.7 (c), each TV,- is a near-field and so TV is a direct sum of near-fields. This
proves (II).

If TV is a distributively generated (d.g.) near-ring then so is the each direct summand
TV, in the direct sum decomposition of TV. Therefore, by Lemma 2.7(d), each TV,- is a
division ring. This proves (III).

Theorem 2.9. / / TV is a left bipotent near-ring with a left identity and satisfying the
d.c.c. on its left N-subgroups, then /(TV) = (0), where (/(TV) is the radical of N (see (2),
(5)).

Proof. Since TV has a left identity, it is an S-near-ring and so it contains no nonzero
nilpotent left TV-subgroups (by 1.4). Also TV satisfies the d.c.c. on its left TV-subgroups
and so TV is semi-simple in the sense of Blackett (3). The left identity of a left bipotent
near-ring is also a right identity (by 2.6). Now apply Theorem 3.1 of (5), which states that
for a near-ring TV with right identity, semisimplicity in the sense of Blackett is equivalent
to the condition that TV satisfies the d.c.c. on left ideals and /(TV) = (0).

In this theorem a 'left identity' is necessary, as the near-ring TV, in 1.2 is left bipotent
and finite; but /(TV) = {0, 2}.

Definition 2.10. (13) An ideal P (?* TV) is called strictly prime (prime) if for any
two left N-subgroups (ideals) A and B of TV such that ABQP, then AC.P or
BC P.
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Accordingly a near-ring is said to be strictly prime (prime), if the zero ideal is a strictly
prime (prime) ideal.

Proposition 2.11. A strictly prime left bipotent S-near-ring is irreducible.

Proof. In view of Proposition 2.3, it is sufficient to show that N has no nonzero
divisors of zero. Let ab = 0 for a, b in N. Then for any x in N, (bxaf — 0, which gives
bxa = 0 (by Proposition 1.4). So NbNa = (0). Since N is strictly prime and Nb, Na are
left JV-subgroups we have that Nb = (0) or Na = (0). Hence, since N is an S-near-ring
either b = 0 or a = 0.

Theorem 2.12. Let A be an ideal of the near-ring N. If N is a left bipotent or an
S-near-ring so also is N/A.

The proof is straight forward.

Theorem 2.13. Every strictly prime ideal of a left bipotent S-near-ring is strictly
maximal.

Proof. Let P be a strictly prime ideal of a left bipotent S-near-ring N. Then NlP is
also a strictly prime left bipotent S-near-ring (by 2.12) and hence NIP is irreducible (by
2.11) which gives that P is strictly maximal.

Definition 2.14. (11). A left ideal B of a near-ring N is called strictly essential
(essential), if B D K¥- (0), for every nonzero left Af-subgroup (left ideal) K of N.

Definition 2.15. (11). An element x G N is said to be singular, if there exists a
nonzero strictly essential left ideal A in N such that Ax = (0).

Let S(N) denote the set of all singular elements of N and l(x) = {r GN\rx = 0}. It
can be seen that l(x) is a left ideal of N.

Lemma 2.16. Let N be a near-ring. Then

S(N) = {xGN\ l(x)

is a nonzero strictly essential left ideal in N}.

Proof. Let x G S(N). Then there exists a nonzero strictly essential left ideal A in N
such that Ax = (0). Therefore, A C l(x) and so l(x) is a nonzero strictly essential left ideal
in N. Thus S(N)C {x G N\l(x) is a nonzero strictly essential left ideal in N}. The
inclusion the other way is direct since l(x)x = (0).

Chandran (4) has shown that for a left bipotent ring R, S(R) = /( /?) , the Jacobson
radical. But this need not be true in near-rings. For example, for the left bipotent near-ring
N2 in 1.2, all the radicals corresponding to the Jacobson radical are zero, whereas
S(N) = {0,1,4}. This also shows that, contrary to the ring theory case, S(N) need not be
an ideal.

https://doi.org/10.1017/S0013091500016217 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016217


106 J. L. JAT AND S. C. CHOUDHARY

We use the following result of Maxson (11);

Lemma 2.17. For a near-ring N, NS(N) C 5(N) .

Theorem 2.18. Let N be a left bipotent near-ring, then
(i) every nilpotent element of N is in S(N),

(ii) // N has no nonzero nilpotent elements, then S(N) = 0.

Proof, (i) Let x be a nonzero nilpotent element of a left bipotent near-ring N. Then
x" = 0 for some n, and so Nx = Nx2 = ... = Nx" = (0). This gives l{x) = N. Thus, l(x) is a
nonzero strictly essential left ideal in N. Therefore, by Lemma 2.16, x G S(N).

(ii) Let b be a nonzero element in S(N), then ATi> = Nb2 = Nb3Nb4, and so there
exists z in N such that b2 = zb\ This gives (b2-b2zb2)b2 = 0 and (b2- b2zb2)b2zb2 = 0.
Since N contains no nonzero nilpotent elements, we get b\b2- b2zb2) = 0 and
b2zb\b2 - b2zb2) = 0. This implies (b2 = b2zb2)2 = 0 and hence b2 = b2zb2. Also zb2 is an
idempotent (say, e)and e = zb2 = zb • b G 5(N)(by Lemma 2.17). Therefore, by Lemma
2.16, l(e) must be a nonzero strictly essential left ideal in N. But for the left JV-subgroup
Ne, we have l(e) n Ne = (0). This is a contradiction, as e G S(N). Hence b = 0 and so
S(A0 = 0.

This theorem, with Proposition 1.4, gives the following.

Corollary 2.19. For a left bipotent S-near-ring N, S(N) = 0.

Acknowledgement. The authors wish to express their gratitude to the referee for
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