OSCILLATING PROPERTIES OF THE SOLUTIONS OF A CLASS OF NEUTRAL TYPE FUNCTIONAL DIFFERENTIAL EQUATIONS

A.I. ZAHARIEV AND D.D. BAINOV

The present paper deals with some oscillating and asymptotic properties of the functional differential equations of the form

 $x''(t) + \lambda x''(t-\tau) + F(t, x(t-\tau), x'(t-\tau)) = 0$

where λ is an arbitrary positive constant and $\tau > 0$ is a constant delay.

The present paper deals with some oscillating and asymptotic properties of some functional differential equations of the form

(1)
$$x''(t) + \lambda x''(t-\tau) + F(t, x(t-\tau), x'(t-\tau)) = 0$$

where λ is an arbitrary positive constant, and $\tau > 0$ is a constant delay. We should point out that the oscillating properties of second order functional differential equations when $\lambda = 0$ have been studied in many papers. Shevelo's monograph [2] contains a detailed bibliography on that subject.

We introduce some definitions.

DEFINITION 1. We shall consider as a solution of equation (1) every function

Received 29 April 1980.

for every $t \ge t_0$, $t_0 \in \mathbb{R}^1$, where $x^0(t) \in C^1([t_0-\tau, t_0], \mathbb{R}^1)$, $\tilde{x}(t) \in C^2([t_0, +\infty), \mathbb{R}^1)$ and by $x'(t_0)$ we shall denote a right derivative.

By W we shall denote the set of solutions of equation (1), satisfying the condition $x(t) \ddagger 0$ in every interval $[\overline{t}, +\infty)$, $\overline{t} \ge t_0$, and we shall assume that $W \neq \emptyset$.

DEFINITION 2. The solution $x(t) \in W$ will be called oscillating if it changes its sign in every interval $[\overline{t}, +\infty)$, $\overline{t} \geq t_0$.

THEOREM 1. Let the conditions (A) be satisfied:

Al. the function $F(t, u, v) : \mathbb{D} \to \mathbb{R}^1$ $(\mathbb{D} = [t_0, +\infty) \times \mathbb{R}^2)$ is continuous, $F(t, 0, 0) \equiv 0$ for $t \geq t_0$ and it satisfies the inequality

F(t, u, v) sign $u \ge p(t)f(u)$

for all points $(t, u, v) \in D$;

- A2. the function $f(u) : \mathbb{R}^{1} \to \mathbb{R}^{1}$ is continuous, uf(u) > 0 for $u \neq 0$ and $\inf |f(u)| > 0$ for $|u| \ge \varepsilon > 0$;
- A3. the function $p(t) : [t_0, +\infty) \rightarrow [0, +\infty)$ is continuous and for every closed set E whose intersection with every segment of the form $[t, t+2\tau]$ $(t_0 \le t < +\infty)$ has a measure not smaller that τ , the equality

(2)
$$\int_E p(t)dt = +\infty$$

holds.

Then every solution $x(t) \in W$ will be an oscillating one.

In order to prove Theorem 1 we need the following

LEMMA 1. Let $t_0 \in \mathbb{R}^1$ be an arbitrary fixed point, $\lambda > 0$ be an arbitrary constant and $\tau > 0$ be a constant delay. We shall assume that the conditions (B) are satisfied:

- B1. the function $\varphi(t) : [t_0, +\infty) \neq [0, +\infty)$ is continuous in the interval $[t_0, +\infty)$;
- B2. for every $t \ge t_0$ the function $\varphi(t) + \lambda \varphi(t-\tau)$ is monotone increasing and $\varphi(t) + \lambda \varphi(t-\tau) \ge C$, C > 0.

Then for every $t_1 \in [t_0, +\infty)$ there exists a set

$$A = \{t \mid t_1 \leq t \leq t_1 + 2\tau, \lambda \varphi(t-\tau) \geq \beta\}$$

whose measure is not smaller than τ . Here $\beta = \min(C/2, \lambda C/2)$.

Proof of Lemma 1. Let $t_1 \in [t_0, +\infty)$ be an arbitrary fixed point and let us consider the set $P = \{t \mid t \in [t_1, t_1+\tau], \varphi(t) > C/2\}$. If we assume that $P = \emptyset$, then from B2 it follows that the inequality $\lambda\varphi(t-\tau) \ge C/2$ will hold for every $t \in [t_1, t_1+\tau]$ and therefore we could set $A = [t_1, t_1+\tau]$.

Let $P \neq \emptyset$ and let us denote by α , $0 < \alpha \leq \tau$, its measure. If we denote by \overline{P} the closure of P, then from Bl it follows that the inequality $\varphi(t) \geq C/2$ will be satisfied for every $t \in \overline{P}$. Let us consider the set $\overline{P} + \tau = \{t \mid t - \tau \in \overline{P}\}$. From B2 it follows that the inequality $\lambda\varphi(t-\tau) \geq \lambda C/2$ will hold for every $t \in \overline{P} + \tau$. Let us set $A = ([t_1, t_1+\tau] \setminus P) \cup (\overline{P}+\tau)$. Since the measure of $[t_1, t_1+\tau] \setminus P$ is $\tau - \alpha$, and the measure of the set $\overline{P} + \tau$ is equal to that of P, then the set A will have a measure τ . From the definition of the sets P and $\overline{P} + \tau$ it follows that the inequality $\lambda\varphi(t-\tau) \geq \beta$ holds for every $t \in A$. Thus Lemma 1 has been proved.

Proof of Theorem 1. Let us assume that there exists a non-oscillating solution x(t) of equation (1) belonging to the set W. Without loss of generality we consider that there exists a point $\overline{t} \ge t_0$ such that

x(t) > 0 and $x(t-\tau) \ge 0$ for every $t \ge \overline{t}$. (The case when there exists a point \overline{t} such that $x(\overline{t}) < 0$ and $x(t-\tau) < 0$ for $t \ge \overline{t}$ follows similarly.)

Let us rewrite equation (1) in the form

(3)
$$[x'(t)+\lambda x'(t-\tau)]' = -F(t, x(t-\tau), x'(t-\tau)) .$$

From (3) it follows that the function $x'(t) + \lambda x'(t-\tau)$ is a monotone decreasing one for $t \ge \overline{t}$. If we assume that there exists a point $t_2 \ge \overline{t}$ such that

$$x'(t_2) + \lambda x'(t_2 - \tau) = -C_1 < 0$$

then for every point $t \ge t_2$ the inequality

$$x'(t) + \lambda x'(t-\tau) \leq -C_{1}$$

is satisfied.

368

Integrating the latter inequality from t_2 to $t > t_2$, we obtain

(4)
$$x(t) + \lambda x(t-\tau) \le x(t_2) + \lambda x(t_2-\tau) - C_1(t-t_2)$$

After a limit transition $t \to +\infty$ in inequality (4) we come to a contradiction with the assumption that the function x(t) is non-negative for $t \ge \overline{t}$. Therefore for every point $t \ge \overline{t}$ the following inequality

(5)
$$x'(t) + \lambda x'(t-\tau) \ge 0$$

holds. From (3) and (5) it follows that

(6)
$$\lim_{t \to +\infty} \int_{\overline{t}}^{t} F(s, x(s-\tau), x'(x-\tau)) ds = [x'(\overline{t}) + \lambda x'(\overline{t}-\tau)]' - \lim_{t \to +\infty} [x'(t) + \lambda x'(t-\tau)] < +\infty.$$

Furthermore from (5) it follows that $x(t) + \lambda x(t-\tau) \ge C_2 > 0$ for $t \ge \overline{t}$. Then according to Lemma 1 the intersection of the set $E = \{t \mid \overline{t} \le t < +\infty, \lambda x(t-\tau) \ge \beta_1\}$, $\beta_1 = \min\{C_2/2, \lambda C_2/2\}$ with the segment $[s, s+2\tau]$, $s \in [\overline{t}, +\infty)$, will have a measure not smaller than τ and therefore from conditions (A) we shall have

$$\int_{E} F(t, x(t-\tau), x'(t-\tau)) dt \geq \inf_{u \geq \beta, \lambda^{-1}} f(u) \int_{E} p(t) dt = +\infty,$$

which contradicts inequality (6). Thus Theorem 1 has been proved.

DEFINITION 3. The solution $x(t) \in W$ will be called k_x -oscillating [1] if there exists a number $k_x \in \mathbb{R}^1$ such that the function $x(t) - k_x$ changes its sign in every interval $[\overline{t}, +\infty)$, $\overline{t} \geq t_0$.

THEOREM 2. Let the conditions A1 and A2 of Theorem 1 be satisfied and let the function $p(t) : [t_0, +\infty) \rightarrow [0, +\infty)$ satisfy

(7)
$$\int_{t_0}^{+\infty} p(t)dt = +\infty .$$

Then every solution $x(t) \in W$ will be k_x -oscillating.

In order to prove Theorem 2 we need the following

LEMMA 2. Let the conditions of Theorem 2 be satisfied. Then all non-oscillating solutions of equation (1) belonging to W will have the property $\liminf_{t \to +\infty} |x(t)| = 0$.

Proof of Lemma 2. Let us assume that there exists a point. $\overline{t} \ge t_0$ such that $x(t) \ge 0$ for $t \ge \overline{t}$. The case when $x(t) \le 0$ for $t \ge \overline{t}$ is similar. In the proof of Theorem 1 it has been established that if there exists a point $\overline{t} \ge t_0$ such that $x(t) \ge 0$ for $t \ge \overline{t}$, the following inequality will hold:

(8)
$$\int_{\overline{t}}^{+\infty} F(t, x(t-\tau), x'(t-\tau))dt < +\infty$$

If we assume that $\liminf_{t\to+\infty} x(t) \ge C_3 > 0$ then there exists a point $t_{\downarrow} \ge \overline{t}$ such that $x(t-\tau) \ge C_3/2$ for $t \ge t_{\downarrow}$. From (8) it follows that

$$\inf_{u \ge C_3/2} f(u) \int_{t_4}^{+\infty} p(t)dt \le \int_{t_4}^{+\infty} F\{t, x(t-\tau), x'(t-\tau)\}dt < +\infty$$

370 A.I. Zahariev and D.D. Bainov

which contradicts equality (7). Thus Lemma 2 has been proved.

Proof of Theorem 2. In the proof of Theorem 1 it has been established that if there exists a point $\overline{t} \ge t_0$ such that for $t \ge \overline{t}$, $x(\overline{t}) > 0$ and $x(t-\tau) \ge 0$, then

(9)
$$x'(t) + \lambda x'(t-\tau) \geq 0$$

holds for every $t \geq \overline{t}$.

From (9) it follows that the function $x(t) + \lambda x(t-\tau)$ is a monotone increasing one and that is why two cases are possible:

- (a) $\lim_{t \to +\infty} [x(t) + \lambda x(t-\tau)] = +\infty$;
- (b) $\lim_{t \to +\infty} [x(t) + \lambda x(t-\tau)] = C_{l_4} < +\infty$;

(the constant C_{1} can not be zero because $x(t) \in W$).

First let us consider (a). Then from Lemma 2 it follows that for every number $k \in (0, +\infty)$ there exists a point $t_k \geq \overline{t}$ such that the function x(t) - k changes its sign in every interval $[s, +\infty)$, $s \geq t_k$, and therefore x(t) is k-oscillating for every $k \in (0, +\infty)$.

For (b) we set

$$k = C_3/2 = \frac{1}{2} \lim_{t \to +\infty} [x(t) + \lambda x(t-\tau)],$$

and from Lemma 2 we obtain that x(t) is k-oscillating for $k = C_3/2$. Thus Theorem 2 has been proved.

Finally we give two examples.

EXAMPLE 1. We consider the equation

(10) $x''(t) + x''(t-2\pi) + 2x(t-2\pi) = 0$.

In this case F(t, u, v) = 2f(u), f(u) = u, and p(t) = 2. One can immediately verify that the functions F(t, u, v), f(u) and p(t)satisfy the conditions Al-A3 of Theorem 1 and, therefore, all solutions of (10) will be oscillating. (For example, the functions $x(t) = C_1 \cos t + C_2 \sin t$ where C_1 and C_2 are arbitrary constants, $\left|\mathcal{C}_{1}\right|$ + $\left|\mathcal{C}_{2}\right|$ > 0 , define oscillating solutions of (10) .

EXAMPLE 2. In the equation

$$(11) \qquad x''(t) + x''(t-\tau) + p(t)x^{3}(t-\tau) = 0$$
we have $F(t, u, v) = p(t)f(u)$, $f(u) = u^{3}$, and
$$\begin{cases} e^{-t}, t \in [t_{0}+2k\tau, t_{0}+(2k+1)\tau], \\ (2(\tau-e^{-[t_{0}+(2k+2)\tau]})/\tau)[t-(t_{0}+(2k+1)\tau]] + e^{-[t_{0}+(2k+1)\tau]}, \\ t \in [t_{0}+(2k+1)\tau, t_{0}+(2k+(3/2))\tau], \\ (2(e^{-[t_{0}+(2k+2)\tau]}-\tau)/\tau)[t-[t_{0}+(2k+(3/2))\tau]] + \tau, \\ t \in [t_{0}+(2k+(3/2))\tau, t_{0}+(2k+2)\tau], \end{cases}$$

$$k = 0, 1, 2, \ldots$$

The functions F(t, u, v) and f(u) satisfy the conditions Al and A2 of Theorem 1, and the function p(t) (p(t) > 0 for $t \ge t_0$) satisfies (7). Then, from Theorem 2, it follows that there exists numbers k, $k \in (-\infty, +\infty)$ such that all the solutions of (11) are k-oscillating.

Note. The function p(t) from (11) is an example of a function satisfying the conditions of Theorem 2 but not satisfying the condition A3 of Theorem 1.

Actually, let us denote by E the set

$$E = \bigcup_{k=0}^{\infty} \left[t_0^{+2k\tau}, t_0^{+(2k+1)\tau} \right]$$

whose intersection with every interval of the form $[t, t+2\tau]$ has a measure τ ; then

$$\int_E p(t)dt = \int_E e^{-t}dt \leq \int_{t_0}^{+\infty} e^{-t} < +\infty$$

A.I. Zahariev and D.D. Bainov

References

- [1] С.Б. Норнин [S.B. Norkin], "Осцилляция решений дифференциальных уравнений с отнлоняющимся аргументом" [Oscillation of the solutions of differential equations with a deviating argument], Дифференциальные уравнения с отклоняющимся аргументом, 247-256 [Differential equations with a deviating argument] (Naukova Dumka, Kiev, 1977).
- [2] В.Н. Шевело [V.N. Ševelo], Осцилляция решений дифференциальных уравнений с отклоняющикся аргументом [Oscillation of the solutions of differential equations with a deviating argument] (Naukova Dumka, Kiev, 1978).

Faculty of Mathematics, University of Plovdiv, Car Asen Str. 24, 4000 Plovdiv, Bulgaria.