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We study the damping of collisionless Alfvénic turbulence in a strongly magnetised
plasma by two mechanisms: stochastic heating (whose efficiency depends on the local
turbulence amplitude δzλ) and linear Landau damping (whose efficiency is independent
of δzλ), describing in detail how they affect and are affected by intermittency. The
overall efficiency of linear Landau damping is not affected by intermittency in
critically balanced turbulence, while stochastic heating is much more efficient in the
presence of intermittent turbulence. Moreover, stochastic heating leads to a drop in
the scale-dependent kurtosis over a narrow range of scales around the ion gyroscale.
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1. Introduction
The question of how collisionless plasma turbulence dissipates via kinetic processes

has received a great deal of recent interest (Parashar et al. 2015). The heating
mechanism(s) that effect this dissipation have dramatic consequences for the basic
thermodynamic state of the plasma, controlling the ion-to-electron temperature ratio
as well as affecting the temperature anisotropy of the plasma with respect to the
local magnetic-field direction. Attempts at solving this problem often fall into one
of two camps: (i) studies that invoke the ‘quasilinear premise’ (Klein et al. 2012;
Howes, Klein & TenBarge 2014) and propose that turbulent fluctuations damp at
the same rate (e.g. the linear Landau damping rate (Landau 1946)) as linear plasma
waves with similar polarisation properties (Howes et al. 2006, 2008; Schekochihin
et al. 2009; Howes, Tenbarge & Dorland 2011; TenBarge & Howes 2013; TenBarge,
Howes & Dorland 2013; Told et al. 2015; Howes, McCubbin & Klein 2018), or,
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2 A. Mallet and others

alternatively, (ii) studies that focus on intermittency and the associated ‘coherent
structures’ (Matthaeus & Lamkin 1986; Burlaga 1991; Horbury & Balogh 1997;
Sorriso-Valvo et al. 1999; Bruno et al. 2007; Cho & Lazarian 2009; Greco et al.
2009; Parashar et al. 2009; Salem et al. 2009; Servidio et al. 2009; Greco et al. 2010;
Osman et al. 2011; Servidio et al. 2011; Greco et al. 2012; Osman et al. 2012a,b;
Perri et al. 2012; Karimabadi et al. 2013; Wu et al. 2013; Osman et al. 2014;
Chasapis et al. 2015; Bañón Navarro et al. 2016; Lion, Alexandrova & Zaslavsky
2016; Perrone et al. 2016; Wan et al. 2016), arguing that these structures dissipate in
a fundamentally different way than linear waves. In this Letter, we straddle these two
camps by developing a novel modelling framework for the damping of intermittent
turbulence. We use this to predict, for the first time, the quantitative dependence (or
independence) of different heating mechanisms on the level of intermittency, and the
effect (or lack of effect) of these heating mechanisms on the intermittency itself,
with several surprising results. These results suggest a simple new observational test,
based on the scale-dependent kurtosis near the ion gyroscale, that will allow us to
distinguish between different heating mechanisms in collisionless plasma turbulence,
for example in the solar wind.

We first show that, in intermittent, critically balanced turbulence, intermittency
has no effect upon the total turbulent heating rate resulting from linear Landau
damping, and that linear Landau damping has no effect on the level of intermittency.
These results only apply when the turbulence is critically balanced: in both weak
turbulence and (unphysical) isotropic turbulence, the linear Landau heating rate does
depend on the intermittency. Thus, the ‘linear’ nature of Landau damping does not
by itself make (as might naïvely be expected) its associated turbulent heating rate
independent of intermittency. We then contrast this with the mechanism of stochastic
heating (McChesney et al. 1987; Chen, Lin & White 2001; White, Chen & Lin
2002; Chaston et al. 2004; Voitenko & Goossens 2004; Fiksel et al. 2009; Chandran
et al. 2010; Chandran 2010; Chandran et al. 2011; Bourouaine & Chandran 2013;
Vech, Klein & Kasper 2017); when the turbulence amplitude at the ion gyroscale
ρ = vth/Ωi (where vth=

√
2Ti/mi is the ion thermal speed and Ωi= ZeB/mi is the ion

gyrofrequency) becomes sufficiently large, ion orbits become chaotic, and ions may
gain energy by interacting with gyroscale turbulent structures with frequencies much
less than Ωi. The stochastic damping rate is a highly nonlinear function of turbulent
fluctuation amplitude. We show that (i) intermittency dramatically increases the
overall stochastic heating rate, and (ii) stochastic heating reduces the scale-dependent
kurtosis of the turbulent fluctuations at the scale ρ. Finally, we show that because of
this strong dependence on intermittency, stochastic heating may remain an important
dissipation mechanism in astrophysical situations, where naïvely it would be ignored
due to the small overall turbulence amplitude at the gyroscale.

2. Intermittency model

We restrict our analysis to intermittent Alfvén-wave turbulence and damping
mechanisms that are effective at k⊥ρ . 1. We assume that the velocity and
magnetic-field fluctuations (in velocity units) are much smaller than the background
magnetic field, and that the fluctuations are highly anisotropic with respect to the
direction of the background magnetic field, i.e. their parallel wavevectors are much
smaller than their perpendicular wavevectors, k‖ � k⊥. This allows us to model the
turbulence with the equations of reduced magnetohydrodynamics (RMHD) (Kadomtsev
& Pogutse 1973; Strauss 1976; Montgomery 1982), compactly written in terms of
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Intermittency and dissipation in collisionless plasma turbulence 3

Elsasser (1950) variables z±⊥ = u⊥ ± b⊥, where u⊥ and b⊥ are the perpendicular
velocity and magnetic-field (in velocity units) fluctuations respectively. There are
a number of different intermittency models (Müller & Biskamp 2000; Chandran,
Schekochihin & Mallet 2015) available; here, we will use the MS17 (Mallet &
Schekochihin 2017) model, but our results do not depend in detail on this choice.1
The Elsasser fluctuation amplitude of a structure with perpendicular scale λ is a
random variable,

δzλ = δzL⊥∆
q, (2.1)

where δzL⊥ is the outer scale amplitude, the constant ∆ = 1/
√

2 and q is a Poisson
random variable2 with mean µ = −log(λ/L⊥), L⊥ being the outer scale. This
distribution has ‘heavy tails’, becoming heavier at smaller scales λ, a classic hallmark
of intermittency (Frisch 1995). This may be usefully quantified by the scale-dependent
kurtosis,

κλ ≡
〈δz4
λ〉

〈δz2
λ〉

2
= κL⊥

(
λ

L⊥

)−1/4

. (2.2)

The nonlinear and linear time scales of each structure are

τnlλ ∼
λ

δzλ sin θλ
, τAλ ∼

l‖λ
vA

(2.3)

respectively, where vA= B0/
√

4πnimi is the Alfvén speed, θλ is the ‘alignment angle’
(Boldyrev 2006) and

sin θλ ∼
(
λ

L⊥

)1/2
δzL⊥

δzλ
. (2.4)

This model incorporates refined critical balance (Mallet, Schekochihin & Chandran
2015): the linear and nonlinear time scales in each structure are comparable, χλ ≡
τAλ/τnlλ∼1.3 Thus, either time may be used as the cascade time scale τcλ. The cascade
power within the local subvolume of a particular structure is

ελ ∼
δz2
λ

τcλ
. (2.5)

Note that 〈ελ〉 = δz3
L⊥/L⊥ ≡ ε, the injected power, for λ in the inertial range.

3. Damping model
In this work, we will assume that the damping mechanisms we study irreversibly

dissipate energy that is removed from the Alfvénic cascade.4 We can then relate the
1Provided that the critical balance conjecture (Goldreich & Sridhar 1995) is incorporated in an appropriate

way – this will be explained further in § 4.
2This statement is a slight simplification: in fact, it is a weighted combination of Poissons, which nevertheless

exhibits the same statistics.
3This principle is obeyed both in numerical simulations of RMHD turbulence (Mallet et al. 2015), and in

the solar-wind turbulence (Chen 2016).
4Technically, this irreversibility arises due to collisions (Schekochihin et al. 2009; Zocco & Schekochihin

2011; Loureiro, Schekochihin & Zocco 2013; Bañón Navarro et al. 2016; Pezzi, Valentini & Veltri 2016;
Servidio et al. 2017). There is certainly no guarantee that the collisional heating occurs in the same spatial
location as the damping: for example, Bañón Navarro et al. (2016) found that in gyrokinetic turbulence,
collisional heating was not localised to current sheets, because it takes some time for the velocity-space features
generated near the current sheet to phase-mix to small velocity-space scales, and during this time, the plasma
containing those velocity-space features flows away from the current sheet (Schekochihin et al. 2009). Where
exactly the final collisional entropy production happens does not affect the results in this paper.
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heating rate Qλ to the damping rate γλ via

Qλ ∼ γλδz2
λ. (3.1)

To motivate our model, we begin with the non-intermittent cascade model of Howes
et al. (Batchelor 1953; Howes et al. 2008, 2011), which in steady state far from the
forcing wavenumber leads to

εk1

εk0

= exp
(
−

∫ k1

k0

2γk⊥τck⊥
dk⊥
k⊥

)
, (3.2)

where εk⊥ = (δzk⊥)
2/τck⊥ is the cascade power at perpendicular wavenumber k⊥,

δzk⊥ is the turbulence amplitude at k⊥ and γk⊥ is the damping rate at k⊥. In order
to investigate different damping mechanisms analytically, we make the simplifying
assumption that the damping is localised to one particular reference scale ρ, i.e.
γk⊥τck⊥ = γρτcρδ[log(k⊥ρ)], where δ[. . .] denotes the Dirac delta distribution. In
practice, various potentially important forms of damping are localised around the
ion gyroscale: for example, stochastic heating, and ion Landau damping at high βi
(Howes et al. 2006). The cascade power (ερ−) and turbulence amplitude (δzρ−) at
k⊥ρ = 1 + d may then be written in terms of their counterparts ερ+ and δzρ+ at
k⊥ρ = 1− d (where d� 1),

ερ− = ερ+ exp
(
−2γρτcρ

)
, (3.3)

δzρ− = δzρ+ exp
(
−

2
3γρτcρ

)
, (3.4)

where to obtain (3.4) we use (2.3), assuming that damping affects the amplitude but
not the dynamic alignment.5

To generalise this, note that if a turbulent structure has perpendicular scale λ
and amplitude δzλ, its fluctuation power δzk⊥ ∼ δzλ peaks at k⊥ ∼ 1/λ. We further
assume (Kolmogorov 1962) that the local values of random variables in a structure
set its dynamical time scales τcλ, γ −1

λ , and promote all the variables in (3.3)–(3.4) to
configuration-space random variables. We call γρτcρ the damping factor.

We would like to stress that, of course, collisionless damping mechanisms do
not appear in RMHD, which models the (undamped) Alfvénic fluctuations at
k⊥ρi � 1 (irrespective of collisionality). However, the intermittency at k⊥ρi ∼ 1,
where collisionless damping appears in more complete models, is almost entirely
produced by the turbulence in the (assumed to be long, L⊥/ρi � 1) inertial range
in which RMHD is a good approximation. Thus, we model the intermittency using
RMHD, and then add the dissipation in the simple way described above at the scale
at which the RMHD approximation begins to break down.

We have made the rather drastic simplification that the damping only occurs over
an infinitesimal scale interval. No real damping mechanism is truly this localised in
scale. To go beyond this approximation, one would have to simultaneously integrate
over scale not only the damping part of the process (as in Howes et al. 2008) but also
the random part of the evolution describing the random log-Poisson evolution of the
intermittent probability distribution of amplitudes; replacing the algebraic exponents

5Physically, this formula seems reasonable: exponential damping of a structure’s amplitude δzρ+ at rate
2γρ/3 over its lifetime τcρ leads to precisely (3.4). The RMHD time scales (2.3) do not technically apply
beyond the ion gyroscale; we assume the true dynamical time scales are continuous in λ (in the absence of
damping), allowing us to use (2.3) to derive (3.4).
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of (3.3) and (3.4) with functional integrals. This makes the model analytically
intractable. Moreover, across any particular individual scale, the incremental damping
of the fluctuations is well described by (3.3) and (3.4), which means that many of
our results will not be qualitatively altered by making this approximation.

Finally, it is worth mentioning that other time scales could potentially enter the
problem (Matthaeus et al. 2014); for example, waves could be excited via instability
of the particle velocity distribution function. Indeed, Klein et al. 2018 have found
that the majority of solar-wind plasma is unstable, although only approximately 10 %
appears to be strongly unstable in that the growth time is shorter than their estimate
of the cascade time. We have ignored this possibility in our analysis here, and assume
that the underlying velocity distribution function is stable.

4. Linear Landau damping
One important and well-studied damping mechanism is linear Landau damping

(Howes et al. 2006), for which the damping rate may be written (in Fourier space)

γk⊥ = Fk⊥k‖vA, (4.1)

where Fk⊥ is a function of k⊥ and plasma parameters, but not δzk⊥ . Since (refined)
critical balance states that (for all structures) k‖vA ∼ τ

−1
ck⊥ , the damping factor is

γk⊥τck⊥ = Fk⊥←→ γλτcλ = Fλ (4.2)

where Fλ is a function of λ but not of δzλ. This result is true for any intermittency
model that incorporates refined critical balance, not solely in the MS17 model (Mallet
& Schekochihin 2017); it is also the case in the CSM15 model (Chandran et al. 2015).
(3.4) yields

log δzρ− = log δzρ+ − (2/3)γρτcρ . (4.3)

Because γρτcρ is independent of δzρ+, the effect of the damping is to shift the whole
distribution of log-amplitudes over by the constant (2/3)γρτcρ ; i.e. the shape of the
distribution is not changed. As a corollary, the kurtosis

κLD
ρ− =

〈δz4
ρ−〉

〈δz2
ρ−〉

2
=
〈δz4

ρ+〉e
−(8/3)Fρ

〈δz2
ρ+〉

2e−(8/3)Fρ
= κρ+ (4.4)

is unchanged. Similarly, the average heating rate per unit volume,

〈QLD
ρ 〉 = 〈ερ+ − ερ−〉 =

(
1− e−2Fρ

)
ε, (4.5)

is not affected by the intermittency at all. However, if one looks at the structures in
which the heating is happening, the intermittency is relevant: the heating rate random
variable for each structure,

QLD
ρ = ερ+ − ερ− =

(
1− e−2Fρ

)
ερ+, (4.6)

follows the (intermittent) distribution of the random variable ερ+, and damping is
concentrated in the higher-amplitude, intermittent structures. Thus, Landau damping
certainly does not lead to homogeneous wave damping – a point also made recently
by Howes et al. (2018). These results would also apply generically to any damping
mechanism for which the damping factor γρτcρ is independent of δzρ .
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It might be naïvely thought that these results (4.4), (4.5) are obvious due to the
linear nature of Landau damping. Thinking more carefully, these results only apply if
the turbulence is critically balanced in the refined sense. For example, if the turbulence
were isotropic (l‖ ∼ λ) at the gyroscale, γρτcρ ∝ 1/δzρ . Likewise, if the turbulence
were weak (l‖∼ const. and τc∼ λ

2vA/l‖δz2
ρ), γρτcρ ∝ 1/δz2

ρ . In both these non-critically
balanced cases, the Landau damping is less important in higher-amplitude structures,
i.e. the heating rate is more homogeneous than the distribution of ερ+. This is
yet another argument for why critical balance is a crucial organising principle for
magnetised plasma turbulence, and for why one cannot neglect either linear or
nonlinear physical phenomena when modelling such turbulence.

5. Stochastic heating
The damping rate of gyroscale fluctuations by stochastic heating may be written

(Chandran et al. 2010)6

γρ =
c1

2
δzρ
ρ

exp
(
−

c2vth

δzρ

)
. (5.1)

We take c1 = 0.75 and c2 = 0.34 (cf. Chandran et al. 2010). The exponential
suppression depends on the random variable

ξ ≡
δzρ
vth
∼ β

−1/2
i

δzρ+
vA

, (5.2)

where βi = 8πniTi/B2
0. Using (2.3) and (2.4), the damping factor is

γρτcρ =
c1

2

(
L⊥
ρ

)1/2 (
δzρ+
δzL⊥

)
exp

(
−

c2β
1/2
i vA

δzρ+

)
, (5.3)

a (highly nonlinear) function of δzρ+.7 In a qualitative sense, our results on the
efficiency of intermittent stochastic heating and its effect on intermittency also apply
generically to all mechanisms for which γρτcρ is an increasing function of δzρ+.

To illustrate our results, we use a numerically sampled log-Poisson distribution. We
take the outer scale amplitudes δzL⊥ to be distributed as the magnitude of a normal
random variable with zero mean and standard deviation σ = 0.1vA. We multiply
δzL⊥ by the log-Poisson factor ∆q (2.1), generating 107 samples of the intermittent
distribution δzρ+ just above the gyroscale ρ. We then apply damping using (3.4) and
(5.3) with various different values of βi and L⊥/ρ, obtaining the distributions of δzρ−
used in figures 1–3.

6. Distribution of fluctuation amplitudes
The shape of the distribution of log(δzρ−/σ) resulting from stochastic heating is

shown for L⊥/ρ= 104 (a value similar to that in the solar wind) and various values of
βi (i.e. various different overall damping rates) in Figure 1. As the damping becomes

6The damping rate (5.1) is only expected to be valid at low βi; a different formula applies at high βi
(Hoppock et al. 2018); we do not consider this case.

7This is also true using the Chandran et al. (2015) intermittency model, although the precise amplitude
dependence is different.
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FIGURE 1. The distribution of log(δzρ−/σ) resulting from (nonlinear) stochastic heating
at ρ = 10−4L⊥, for various values of βi = 1, 0.1, 0.01, 0.001 (blue to red). Vertical dotted
lines show δzmax for each βi. The distribution of log(δzρ+/σ) is shown in black.

more important (i.e. at lower βi), the fluctuations with higher amplitude are heavily
damped, causing a relatively sharp upper limit on δzρ−. This limit is the amplitude
δzmax for which

d log(δzρ−)
d log(δzρ+)

∣∣∣∣
δzmax

= 0, (6.1)

shown in figure 1 as a vertical dotted line for each βi.
Because of this modification of the shape, the kurtosis (2.2) is heavily affected by

the damping. In the inertial range, the kurtosis increases as λ decreases, reaching a
value of κρ+ = 30 just above ρ = 10−4L⊥. As the stochastic heating becomes more
important (with decreasing βi), the kurtosis just below ρ, κSH

ρ−, decreases significantly –
see figure 2(a). Such a decrease in kurtosis is a generic property of nonlinear damping
mechanisms for which γλτcλ is an increasing function of δzλ.

7. Heating
Unlike in the linear case, the average stochastic heating rate

〈QSH
ρ 〉 = 〈ερ+ − ερ−〉= 〈(1− exp(−2γρτcρ)ερ+)〉 (7.1)

is affected by the intermittency of the turbulence. This heating rate may be compared
with 〈ερ+〉 = 〈εL⊥〉 = ε, and also with the heating rate that would be obtained without
intermittency, QSH

rms, using the root-mean-square (r.m.s.) amplitude δzrmsρ+∼σ(ρ/L⊥)1/4

in place of the random variable δzρ+. These intermittent and r.m.s. heating rates,
calculated using (5.3) and normalised to ε, are shown in Figure 2(b), again with
L⊥/ρ = 104. The value of βi at which the damping removes approximately half of
the cascade power is significantly higher (by approximately a factor of 20) with
intermittency: 〈QSH

ρ 〉& 0.5 for βi . 0.1, while QSH
rms & 0.5 for βi . 0.005.
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(a) (b)

FIGURE 2. (a) In blue, the kurtosis after damping, κSH
ρ−, as a function of βi. The black

dotted line is the kurtosis without damping κρ+. (b) The heating rates as functions of βi:
〈QSH

ρ 〉 calculated using the intermittent distribution (red), QSH
rms using the root-mean-square

(r.m.s.) turbulent amplitude (blue), and QLD
ρ , the linear Landau-damping heating rate,

normalised to the cascade power ε. In both panels, L⊥/ρ = 104 and the outer-scale
turbulence amplitude distribution is fixed, parametrised by σ = 0.1vA (see text).

Finally, we calculate the kinetic-Alfvén-wave damping rates γ KAW
ρ and real

frequencies ωKAW
ρ for k⊥ρ = 1 and k‖/k⊥ = 10−3, using the PLUME numerical

Vlasov–Maxwell linear dispersion solver (Klein & Howes 2015), thus estimating
the average heating rate from linear Landau damping,8 〈QLD

ρ 〉 (using (4.5) with
Fρ = γ KAW

ρ /ωKAW
ρ ), plotted in figure 2(b). At the gyroscale, intermittent stochastic

heating is comparable to linear Landau damping even for βi = 1.

8. Length of the inertial range
The level of intermittency at the gyroscale ρ depends on the length of the inertial

range L⊥/ρ (cf. 2.2). QSH
rms is a strongly decreasing function of L⊥/ρ, simply because

the r.m.s. amplitude δzrmsρ+ ∼ σ(ρ/L⊥)1/4. The intermittent stochastic heating rate
〈QSH

ρ 〉 has a weaker dependence on L⊥/ρ, because intermittent, high-amplitude
fluctuations in the MS17 model resemble discontinuities with (up to) the outer scale
amplitude δzL⊥ .

The dependence of the stochastic heating rates for βi = 0.1, 1.0 on L⊥/ρ are
shown in figure 3, along with 〈QLD

ρ 〉. The weak dependence of 〈QSH
ρ 〉 on L⊥/ρ means

that, for βi = 0.1, stochastic heating still removes approximately 10 % of the overall
cascade power at L⊥/ρ ≈ 1011. Moreover, it remains comparable to 〈QLD

ρ 〉 up to
L⊥/ρ ≈ 1012. Thus, intermittency may have important astrophysical consequences:
even at only moderately low βi, stochastic heating may (i) convert a large portion
of the total cascade power into ion thermal energy at the gyroscale in solar-wind
turbulence, where L⊥/ρ ≈ 104, and (ii) be non-negligible (and comparable to linear
Landau damping) in the warm interstellar medium (ISM), where L⊥/ρ ≈ 1011

− 1013

(Ferrière 2001; Cox 2005; Beck 2007; Haverkorn et al. 2008).
8Note that in the low beta regime, Landau damping is dominated by the transfer of energy to electrons.
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Intermittency and dissipation in collisionless plasma turbulence 9

FIGURE 3. Heating rates (normalised to ε) 〈QSH
ρ 〉 (red), QSH

rms (blue), and QLD
ρ (green), all

at βi=0.1 (solid lines) and βi=1 (dotted lines) as a function of L⊥/ρ. The two curves for
QLD
ρ are nearly identical (and thus indistinguishable here – see figure 2(b)). Approximate

ranges of L⊥/ρ in the solar wind and in the warm ISM are labelled as SW (dotted line)
and ISM (grey box). Q∗ρ multiplied by a factor (4 for βi= 0.1 and 6.5 for βi= 1) is also
shown (black dashed lines).

To explain the shallow dependence of 〈QSH
ρ 〉 on L⊥/ρ, we calculate the minimum

amplitude δz∗ρ+ for which fluctuations are strongly damped. Setting γρτcρ = 1 in (5.3),
we obtain

log
(
δz∗ρ+
δzL⊥

)
=W

[
c1c2β

1/2
i

2σ

(
L⊥
ρ

)1/2
]
− log

[
c1

2

(
L⊥
ρ

)1/2
]
, (8.1)

where W is the Lambert W function. This analytic expression for δz∗ρ+ approximates
δzmax in (6.1). If δz∗ρ+ were determined by simply setting the exponent in (5.3) equal
to some constant threshold value, then δz∗ρ+ would be independent of L⊥/ρ. However,
as L⊥/ρ increases, the fluctuations are increasingly highly aligned (see (2.4)) at the
gyroscale, which increases τcρ but not γ −1. This introduces the factor (L⊥/ρ)1/2 in
(5.3), causing δz∗ρ+ to decrease with increasing L⊥/ρ.

The corresponding heating rate from the damping of the structures with this
amplitude is

Q∗ρ ∼
(δz∗ρ+)

2

τcρ
P(q∗)∼

[log(L⊥/ρ)∆2
]

q∗

√
2πq∗(q∗/e)q

∗ ε, (8.2)

where q∗ = log(δz∗ρ+/δzL⊥)/ log∆ (cf. (2.1)), and we have used Stirling’s formula to
approximate the factorial in the Poisson probability mass function. Q∗ρ is a reasonable
analytic estimate for the scaling dependence of 〈QSH

ρ 〉 on L⊥/ρ for log(L⊥/ρ)� 1;
however, it is an underestimate (by a factor approximately independent of L⊥/ρ),
due to (i) δz∗ρ+ being an overestimate of the true cutoff, δzmax, (ii) the neglect of
the cascade power damped in structures with higher amplitudes δz∗ρ+ < δzρ+ < δzL⊥ ,
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(iii) the neglect of the width of the outer scale (normal) distribution of fluctuation
amplitudes. For each βi, Q∗ρ multiplied by an empirical correction factor is plotted
in figure 3. The analytic expressions for Q∗ρ and δz∗ρ+ make clear that the slowly
decreasing nature of 〈QSH

ρ 〉 with L⊥/ρ arises due to a competition between the
decreasing volume-filling fraction of structures above any particular amplitude and
the decreasing cutoff amplitude δzmax (≈δz∗ρ+).

In many astrophysical plasmas, δzL0 ∼ vA at an outer scale L0 that is beyond the
RMHD regime. We can apply our model in such cases on scales λ smaller than an
effective outer scale L⊥ � L0, where δzrmsL⊥ ≈ 0.1vA. For example, if δzrmsλ ∝ λ

1/4

at L⊥ < λ < L0, then L⊥ = 10−4L0. The stochastic heating rate when the outer scale
amplitude δzL0 ∼ vA is then much larger than our numerical example, where δzL0 ∼

0.1vA, because the gyroscale fluctuation amplitudes are much larger. Our figures thus
provide a highly conservative lower limit on the stochastic heating rate in plasmas in
which δzL0 ∼ vA.

9. Conclusions
In this study, we consider the collisionless damping of critically balanced,

intermittent plasma turbulence by two mechanisms. We develop a new general
modelling framework for studying the effects of intermittency on dissipation (and
vice versa), and use it to make specific predictions for the efficiency of two different
mechanisms. First, for linear Landau damping (Landau 1946; Howes et al. 2006,
2008, 2011), γλτcλ is independent of the turbulent amplitude δzλ. In this case, (i)
damping affects neither the shape of the distribution of log-fluctuation amplitudes,
nor the kurtosis of the distribution of fluctuation amplitudes, and (ii) the overall
efficiency of damping is not enhanced by the presence of intermittency. However,
(iii) locally, damping is still concentrated near coherent structures (TenBarge &
Howes 2013; Howes et al. 2018). Importantly, these results are not an inevitable
consequence of the ‘linear’ nature of linear Landau damping: the efficiency would be
strongly affected by intermittency if the turbulence did not obey the refined critical
balance (Mallet et al. 2015).

On the other hand, for stochastic heating (Chandran et al. 2010), γλτcλ depends
on δzλ, leading to damping that (i) strongly affects the shape of the distribution
of log-fluctuation amplitudes and the kurtosis of the distribution of fluctuation
amplitudes. In addition, stochastic heating is (ii) much more efficient if one accounts
for intermittency and (iii) even more concentrated near coherent structures than
heating by linear Landau damping. Our results suggest that, once intermittency
is incorporated, stochastic heating may be an important damping mechanism for
solar-wind turbulence, and perhaps also for some regimes of interstellar turbulence,
even when ξ ∼ δzρrms/vth � 1 (in which case one would be justified in ignoring
stochastic heating if the turbulence were not intermittent).

Our results can be easily extended to other dissipation mechanisms, which may
be divided into different classes based on the (in)dependence of γλτcλ on δzλ. This
will allow us to quantitatively distinguish between different dissipation mechanisms
in observations and simulations of collisionless plasma turbulence. We predict that
a nonlinear heating mechanism (for which γλτcλ is an increasing function of δzλ)
decreases the scale-dependent kurtosis just below the dissipation scale. This leads to
a simple observational test to establish the presence of a nonlinear mechanism. Indeed,
there are numerous observations of decreases in or flattening of the scale-dependent
kurtosis at around the ion scale in both numerical and solar-wind turbulence
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(Sundkvist et al. 2007; Alexandrova et al. 2008; Wan et al. 2012; Wu et al. 2013;
Leonardis et al. 2016); our model provides a natural explanation for this phenomenon
(however, we cannot explain why the scale-dependent kurtosis remains rather constant
in the range of scales between the ion and electron gyroradii, as in the results of
Wu et al. (2013) and Chen et al. (2014)). Moreover, there is direct evidence for
a nonlinear ion heating mechanism, whose efficiency depends on ξ (suggestive of
stochastic heating, cf. (5.2)), in some numerical simulations (Matthaeus et al. 2016;
Grošelj et al. 2017; Shay et al. 2018), while electron heating appears to have γρτcρ
independent of δzρ (suggestive of linear Landau damping; see also Bañón Navarro
et al. (2016) and Chen, Klein & Howes (2019)). Our new modelling framework
provides a useful way to interpret these simulation results.

Our results clarify the role of intermittency in heating by collisionless plasma
turbulence: since heating rates for nonlinear mechanisms (e.g. stochastic heating)
are dramatically enhanced by intermittency, an understanding of the intermittency is
essential for determining relative heating rates of different mechanisms, and thus for
explaining the eventual thermodynamic state of a turbulent collisionless plasma.
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