CORRESPONDENCE.

GRADUATION.

To the Editor of the Journal of the Institute of Aetuaries.
Sir,-After an interval of three years, the readers of the Journal may perhaps bear with some further observations on the well-worn subject of graduation.

Dr. Sprague has convinced us that graduation by a formula correct only to third differences distorts a table of mortality. On the other hand I think we may agree with him and Mr. Woolhouse in regarding the error as practically unimportant. Still, it is desirable to get rid of the error, and such is the object of the present communication, in which Δ will everywhere mean $\Delta \mathrm{U}_{0}$.

If, by the formula in vol. xxv of the Journal, page 22, correct to
third differences, I graduate a series in seventh differences, I bring out successive results deficient as follows:

$$
\begin{array}{ccc}
6 \cdot 4 \Delta^{4}+38 \cdot 4 \Delta^{5}+107 \cdot 6 \Delta^{6}+186 \cdot 0 \Delta^{7} \\
6 \cdot 4 & +44 \cdot 8 & +146 \cdot 0 \\
6 \cdot 4 & +51 \cdot 2 & +190 \cdot 8 \\
6 \cdot 439 \cdot 6 \\
6 \cdot 4 & +57 \cdot 6 & +242 \cdot 0 \\
\& c . & \& c . & \& c . \\
8 . & \& c .
\end{array}
$$

These errors form a regular series in which the fourth differences vanish, and consequently, if graduated by the same formula or by one of similar capacity, they will be reproduced without alteration. Then, adding to the first graduation the graduated error (which is the same thing as the ungraduated error), I revert to the series in seventh differences with which I started.

Applying this to a mortality table, I graduate first the data, then the differences between the data and my results, and when the two are combined the work has been done correctly to the seventh order of differences.

Dr. Sprague's test (J.I.A., xxix, 235) is a complete investigation of Mr. Woolhouse's formula as hitherto used, but in pursuance of what has now been written, I proceed to graduate the error or differences in l_{x} which Dr. Sprague demonstrates. I use my own formula above quoted because it is smoother than the other and more simple, while agreeing closely with it in result. If I may be allowed to repeat myself I would like to state more clearly than before how this formula is arrived at.

Let S represent the result of summing four times in fives.
Σ the result of summing thrice in fives, then in fours and twos.
U_{c} (being U_{8}) the central or ninth term of the seventeen in summation.
$\mathrm{S}=\frac{(1+\Delta)^{5}-1}{\Delta}$ multiplied thrice by itself (J.I.A., xxv, 246) expanding and multiplying.

$$
\mathrm{S}=625 \mathrm{U}_{0}+5,000 \Delta^{1}+20,000 \Delta^{2}+52,500 \Delta^{3}+, \& \mathrm{c} .
$$

Compare $625 \mathrm{U}_{c}=625 \mathrm{U}_{0}+5,000 \Delta^{1}+17,500 \Delta^{2}+35,000 \Delta^{3}+$, \&c.

$$
\therefore 625 \mathrm{U}_{c}=\mathrm{S}-2,500 \Delta^{2}-17,500 \Delta^{3} .
$$

In the same manner we find

$$
1,000 \mathrm{U}_{c}=\Sigma \mathrm{\Sigma}-3,750 \Delta^{2}-26,250 \Delta^{9}
$$

and from these two equations

$$
\mathrm{U}_{c}=\frac{2 \Sigma-3 \mathrm{~S}}{125}
$$

which is more intelligible when written thus:

$$
\mathrm{U}_{c}=\frac{2 \mathrm{~S}_{5.5 .5 .4 .2}-3 \mathrm{~S}_{5,5.5 .5}}{125}
$$

The shortened working, which saves several columns, will be presently seen. (For explanation see J.I.A., xxv, 23.)

$\begin{gathered} l_{x}-l_{1} x \\ \text { (Dr. Sprague) } \end{gathered}$	Fives			Fives	Fives	Fives	$\begin{gathered} \text { Last } \\ \div 125 \\ \times \cdot \mathbf{r} \\ \times .008 \end{gathered}$
	Three middle terms	Two outside terms	Three less Two				
64	...	\ldots	\cdots	\cdots	\cdots	\ldots	\ldots
73			.	\ldots	\ldots	\ldots	
80	241	157	84	\ldots	\ldots	...	
88	261	170	91	\cdots	\ldots	...	\ldots
93	278	178	100	488	\ldots	...	
97	288	184	104	512	\ldots	...	\ldots
98	291	182	109	526	2,539	...	\ldots
96	283	175	108	520	2,488	...	
89	263	158	105	493	2,329	10,999	88
78	227	133	94	437	2,039	9,474	76
60	175	98	77	353	1,604	7,259	58
37	106	53	53	236	1,014	4,323	35
9	21	- 3	24	85	273	686	5
- 25	-79	-67	- 12	- 97	- 607	- 3,570	- 29
- 63	-192	-135	-57	- 304	-1,598	- 8,289	- 66
-104	-311	-206	-105	- 527	-2,652	$-13,241$	-106
-144	-429	-275	-154	- 755	-3,705	-18,122	-145
-181	-537	-338	-199	- 969	$-4,679$	-22,568	-181
-212	-627	-387	-240	$-1,150$	$-5,488$	-26,185	-209
-234	-689	-418	-271	-1,278	-6,044	-28,591	-229
-243	-714	-428	-286	-1,336	-6,269	-29,465	-236
-237	-696	-414	-282	-1,311	-6,111	-28,598	-229
-216	-633	-376	-257	-1,194	-5,553	-25,936	-207
-180	-529	-314	-215	- 992	-4,621	-21,619	-173
-133	-390	-236	-154	- 720	-3,382	-15,978	-128
-77	-230	-146	- 84	- 404	-1,962	$-9,507$	- 76
-20	-63	-53	-10	- 72	- 470
34	94	35	59	236	918	\ldots	...
80	226	109	117	490	...		
112	321	167	154	668	\ldots
129	374	204	170
133	386	218	168	\ldots	...
124	\ldots	\cdots	\cdots	\cdots
106	\cdots	**	\cdots	\ldots	\cdots	**	\cdots

It will be seen that the quantities to be added to $l^{1} x$ agree very closely with those which Dr. Sprague shows to be wanting; and in any case where it would be of advantage to graduate the differences still remaining, the work could be carried to the utmost degree of exactness.

The test, therefore, establishes the applicability of formulas of this kind when the distortion is cured which Dr. Sprague has pointed out.

It remains to consider what effect this procedure has upon the formula in regard to adjustment of irregularities. The first application makes U_{c}, which I will now call U_{0}, equal to

$$
\begin{aligned}
\cdot 200 \mathrm{U}_{0} & +192\left(\mathrm{U}_{-1}+\mathrm{U}_{+1}\right)+\cdot 144\left(\mathrm{U}_{-2}+\mathrm{U}_{+2}\right)+\cdot 080\left(\mathrm{U}_{-3}+\mathrm{U}_{+3}\right) \\
& +\cdot 024\left(\mathrm{U}_{-4}+\mathrm{U}_{+4}\right)-\cdot 016\left(\mathrm{U}_{-6}+\mathrm{U}_{+6}\right)-\cdot 016\left(\mathrm{U}_{-7}+\mathrm{U}_{+7}\right) \\
& -\cdot 008\left(\mathrm{U}_{-8}+\mathrm{U}_{+8}\right)
\end{aligned}
$$

obtained as follows, the terms of the numerator being differenced at commencement.

U_{n}	S_{4}	S4,2	$2 \mathrm{~S}_{4,2}$	S_{5}	$3 S_{5}$	$2 \mathrm{~S}_{4,2}-3 \mathrm{~S}_{\mathrm{j}}{ }^{*}$	Fives	Fives	Fives	Last $\stackrel{125}{\text { or }}$ or $\times 008$	
\ldots	...	\ldots	\ldots	- 1	-.008	U_{-8}
\ldots	\ldots	\ldots	\ldots	\ldots	\cdots		- 2	-.016	U-7
	...	\ldots	\ldots	\ldots	\cdots	-1	- ${ }_{-}^{2}$	- 016	U^{-8}
\ldots	…	...	…	\ldots	...	\ldots	\cdots	,	3	$\cdot 024$	U_{-4}^{-5}
							0	2	10	-080	U^{-3}
\cdots	1	1	2	1	3	-1	1	3	18	-144	U_{-2}
	1	2	4	1	3 3 3	1	${ }_{2}^{2}$	6	${ }^{24}$	- 192	U_{-1}
.	1	$\stackrel{2}{2}$	${ }_{4}^{4}$	1	3 3 3	1	$\stackrel{1}{2}$	${ }_{6}^{7}$	25 24 1	- 2192	$\mathrm{U}_{\mathrm{U}_{+1}}^{\mathrm{U}_{1}}$
...	...	1	2	1	3	-1	1	3	18	$\cdot 144$	U_{+2}
	...	\ldots	\ldots	0	2	10	-080	U_{+3}
...	\ldots	\cdots	-1	${ }^{0}$	3	-024	U_{+4}
\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	-1	${ }_{2}$	-.016	$\mathrm{U}_{\mathrm{U}_{+5}+5}$
...	…	...	\ldots	...	\ldots	...	-2	-.016	${ }_{\text {U7 }}^{+6}$
\ldots		- 1	-.008	U_{+8}

When, in like manner, the differences between the first and last columns have been expanded and the two sets of results combined, the completed operation makes U_{0} equal to

$$
\begin{aligned}
& \cdot 229696 \mathrm{U}_{0} \quad \Delta-005440 \\
& +224256\left(\mathrm{U}_{-1}+\mathrm{U}_{+1}\right) \\
& \text {-. } 067840 \\
& +156416\left(\mathrm{U}_{-2}+\mathrm{U}_{+2}\right) \quad-.089600 \\
& +066816\left(\mathrm{U}_{-3}+\mathrm{U}_{+3}\right) \quad-.072320 \\
& -.005504\left(\mathrm{O}_{-4}+\mathrm{U}_{+4}\right) \quad-.014720 \\
& -.020224\left(\mathrm{U}_{-5}+\mathrm{U}_{+5}\right) \quad-.010240 \\
& -.030464\left(\mathrm{U}_{-6}+\mathrm{U}_{+6}\right) \quad+.010240 \\
& -020224\left(\mathrm{U}_{-7}+\mathrm{U}_{+7}\right)+.017600 \\
& -.002624\left(\mathrm{U}_{-8}+\mathrm{U}_{+8}\right) \quad+.012864 \\
& +010240\left(\mathrm{U}_{-9}+\mathrm{U}_{+9}\right) \quad-.004608 \\
& +.005632\left(\mathrm{U}_{-10}+\mathrm{U}_{+10}\right) \quad-.003584 \\
& +\cdot 002048\left(\mathrm{U}_{-11}+\mathrm{U}_{+11}\right) \quad-.001920 \\
& +\cdot 000128\left(\mathrm{U}_{-12}+\mathrm{U}_{+12}\right) \quad-000640 \\
& -\cdot 000512\left(\mathrm{U}_{-13}+\mathrm{U}_{+13}\right) \\
& -.000512\left(\mathrm{U}_{-14}+\mathrm{U}_{+14}\right) \quad+.000256 \\
& -.000256\left(\mathrm{U}_{-15}+\mathrm{U}_{+15}\right)+.000192 \\
& -000064\left(\mathrm{U}_{-36}+\mathrm{U}_{+16}\right)
\end{aligned}
$$

This is correct to seventh differences, and the coefficients show the distribution of an irregularity occurring at U_{0} and amounting to unity.

In constructing a formula to inclade in summation 15 terms only, we note that U_{c} is now U_{7}, and find that

$$
375 \mathrm{U}_{c}=S_{5.5,5,3}-1,250 \Delta^{2}-7,500 \Delta^{3} .
$$

Also, bearing in mind that we are using two summations of different scope (U_{0} in the shorter being U_{1} in the longer when they are referred to the same centre),

$$
125 \mathrm{U}_{c}=\mathrm{S}_{5.5 .5}-375 \Delta^{2}-2,250 \Delta^{3} .
$$

* In working, begin with this column (three middle terms of five, less two outside terms).

From these equations $\mathrm{U}_{c}=\frac{10 \mathrm{~S}_{5.5 .5}-3 \mathrm{~S}_{5.55 .5 .3}}{125}$, which expands as follows:

U_{n}	S_{3}	$3 S_{3}$	$10 \mathrm{U}_{n}-3 \mathrm{~S}_{3}$	Fives	Fives	Fives	$\begin{gathered} \text { Last } \\ \div 125 \\ \div \\ 0 r \\ \times 008 \end{gathered}$	
\ldots	\cdots	\ldots	\cdots	...	\cdots	- 3	-.024	U_{-7}
\ldots	\ldots	...	\ldots	...		- 2	-. 016	U_{-6}
\cdots	\cdots	\ldots	...	\ldots	-3	0	0	U_{-5}
\ldots	\ldots	\ldots	\ldots		1	3	$\cdot 024$	U_{-4}
\ldots	\ldots	...	\ldots	-3	2	7	.056	U_{-3}
...	\cdots	..	\ldots	+4	3	21	$\cdot 168$	U_{-2}
...	1	3	-3	+1	4	24	-192	U-1
1	1	3	+7	+1	11	25	-200	U_{0}
...	1	3	-3	+1	4	24	$\cdot 192$	U_{41}
...	\cdots	+4	3	21	$\cdot 168$	U_{+2}
\ldots	\ldots	-3	2	7	$\cdot 056$	J_{4}
\ldots	1	3	-024	U_{+4}
...	-3	0	0	U_{+5}
\ldots	\ldots	\cdots	\ldots	-2	-.016	U_{46}
...	- 3	-.024	U_{+7}

This formula is the exact equivalent of Woolhouse's. Indeed, it should claim no more than to be a ready means of obtaining Mr. Woolhouse's results; for it is he who has laid down the lines on which arithmetical graduation should proceed, and whose work I have imitated in the desire "to devise a method of adjustment as even and correct as that of Mr. Woolhouse and more easy in application" (J.I.A., xxiv, 44). Certainly, the arrangement in black and white with which he left the practical part of his subject (J.I.A., xxi , 45) was troublesome; and it did not admit of the check by addition which can be applied to the columnar arrangement. These objections were afterwards met by Mr. Ackland (J.I.A., xxiii, 355), and the formula now given merely does his work by a shortened process, thus:

Age	$\begin{gathered} d_{x} \\ \left(H^{n}\right) \end{gathered}$	\mathbf{S}_{3}	$3 S_{3}$	$10 d_{x}-3 S_{3}$	Fives	Fives	Fives	$\begin{array}{r} \div 125 \\ \text { or } \\ \times \cdot 008 \end{array}$
66	220	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots
67	220	677	2,081	169	\ldots	\cdots	...	
68	237	703	2,109	261		\ldots	...	\ldots
69	246	696	2,088	372	1,000	...	\cdots	...
70	213	681	2,043	87	1,312		\ldots	...
71	222	703	2,109	111	1,048	5,973	\ldots	...
72	268	733	2,199	481	1,324	6,471	...	
73	243	811	2,433	- 3	1,289	6,331	31,920	$255 \cdot 36$
74	300	784	2,352	648	1,498	6,711
75	241	786	2,358	52	1,172	6,434
76	245	710	2,130	320	1,428	
77	224	695	2,083	155	1,047	\cdots	...	
78	226	609	2,007	253	...	\ldots	...	
79	219	641	1,923	287	\cdots	\ldots	\cdots	...
80	196	\cdots	...	\cdots	\ldots	\cdots	-	\cdots

The two formulas are now equally short in lateral working (compare J.I.A., xxv, 23), and the saving of labour is a material set-off against the added work of graduating the primary errors or differences.

When graduation by this formula is completed in the manner hereinbefore proposed, U_{0} becomes equal to

$$
\begin{aligned}
& \cdot 220736 \mathrm{U}_{0} \quad \Delta-\cdot 000320 \\
& +\cdot 220416\left(\mathrm{U}_{-1}+\mathrm{U}_{+1}\right) \quad-.017280 \\
& +\cdot 203136\left(\mathrm{U}_{-2}+\mathrm{U}_{+2}\right) \quad-.184320 \\
& +.018816\left(\mathrm{U}_{-3}+\mathrm{U}_{+3}\right) \quad-.022080 \\
& -.003264\left(\mathrm{U}_{-4}+\mathrm{U}_{+4}\right) \quad-.010560 \\
& -.013824\left(\mathrm{U}_{-5}+\mathrm{U}_{+5}\right) \quad-.013760 \\
& -.027584\left(\mathrm{U}_{-6}+\mathrm{U}_{+6}\right) \quad-.007360 \\
& -.034944\left(\mathrm{U}_{-7}+\mathrm{U}_{+7}\right) \quad+.048960 \\
& +.014016\left(\mathrm{U}_{-8}+\mathrm{U}_{+8}\right) \quad-.004160 \\
& +.009856\left(\mathrm{U}_{-9}+\mathrm{U}_{+9}\right) \quad-.006400 \\
& +\cdot 003456\left(\mathrm{U}_{-10}+\mathrm{U}_{+10}\right) \quad-\cdot 002304 \\
& +.001152\left(\mathrm{U}_{-11}+\mathrm{U}_{+11}\right) \quad-.001408 \\
& -.000256\left(\mathrm{U}_{-12}+\mathrm{U}_{+12}\right) \quad-.000512 \\
& -.000768\left(\mathrm{U}_{-13}+\mathrm{U}_{+13}\right)+.000192 \\
& -.000576\left(\mathrm{U}_{-14}+\mathrm{U}_{+14}\right)
\end{aligned}
$$

This also is correct to seventh differences, but the formula is evidently less suited than the other to even graduation. The base of this is $-3 \mathrm{U}_{-1}+7 \mathrm{U}_{0}-3 \mathrm{U}_{+1}$; the base of the other is $-\mathrm{U}_{-2}+\mathrm{U}_{-1}+\mathrm{U}_{0}+\mathrm{U}_{+1}-\mathrm{U}_{+2}$.

A section from a completed graduation of $\mathrm{H}^{\mathrm{M}} d_{x}$ by each of the two formulas will be as follows:-

First Formula (Higham): $\mathrm{U}_{\boldsymbol{c}}=\frac{2 \mathrm{~S}_{5.5 .5 .4 .9}-3 \mathrm{~S}_{5.5 .5 .5}}{125}$.

Age	$\underset{\text { Ungradinated }}{d_{x}}$	First Graduation	Difference	Difference Graduated	Completed Gradration	Δ^{\prime}	$\Delta^{\prime \prime}$
60	1,840	1,747	93	- 5	1,742	$+85$	$+5$
61	1,860	1,831	29	-4	1,827	$+90$	+ 1
62	1,910	1,916	- 6	1	1,917	+91	- 16
63	2,000	2,001	- 1	7	2,008	$+75$	-9
64	2,060	2,074	- 14	9	2,083	$+66$	- 11
65	2,150	2,139	11	10	2,149	$+55$	-17
66	2,200	2,195	5	9	2,204	$+38$	-21
67	2,200	2,240	-40	2	2,242	$+17$	$+22$
68	2,370	2,274	96	-15	2,259	$+39$	$+13$
69	2,460	2,320	140	-22	2,298	+ 52	+ 24
70	2,130	2,374	-244	-24	2,350	± 76	-1
71	2,220	2,439	-219	-13	2,426	$+75$	$+1$
72	2,680	2,500	180	1	2,501	$+76$	-60
73	2,430	2,553	-123	24	2,577	$+16$	- 50
74	3,000	2,564	436	29	2,593	-34	- 53
75	2,410	2,535	-125	24	2,559	-87	- 20
76	2,450	2,464	- 14	8	2,472	-107	-19

Second Formula (Woolhouse)				$: \quad \mathrm{U}_{c}=\frac{10 \mathrm{~S}_{5.5 .5}-3 \mathrm{~S}_{5.5 .5 .3}}{125}$			
Age	$\begin{gathered} d_{x} \\ \text { Ungraduated } \end{gathered}$	$\begin{gathered} \text { First } \\ \text { Graduation } \end{gathered}$	Difference	Difference Graduated	Completed Graduation	Δ^{1}	Δ^{2}
60	1,840	1,747	93	-4	1,743	+ 80	+ 14
61	1,860	1,828	32	- 5	1,823	+ 94	- 4
62	1,910	1,917	- 7	0	1,917	+ 90	- 7
63	2,000	2,001	- 1	6	2,007	+ 83	- 34
64	2,060	2,079	- 19	11	2,090	+ 49	+ 23
65	2,150	2,135	15	4	2,139	+ 72	- 33
66	2,200	2,199	1	12	2,211	+ 39	- 29
67	2,200	2,243	- 43	7	2,250	+ 10	+ 5
68	2,370	2,274	96	-14	2,260	+ 15	+ 82
69	2,460	2,307	153	-32	2,275	+ 97	-66
70	2,130	2,383	-253	-11	2,372	+ 31	+ 71
71	2,220	2,427	-207	-24,	2,403	+102	- 31
72	2,680	2,503	177	2	2,505	+ 71	- 30
73	2,430	2,554	-124	22	2,576	+ 41	-119
74	3,000	2,578	422	39	2,617	- 78	+ 28
75	2,410	2,527	-117	12	2,539	- 50	-86
76	2,450	2,474	- 24	15	2,489	-136	+ 22

In graduating the differences it is convenient, for avoidance of negative signs, to add a constant at commencement and take it off afterwards. For instance: add 500 at outset, drop 2,000 in the first fives, and take off 100 at the end. And when there is much irregularity, it is well to postpone till after the first fives the differencing of the terms of the numerator.

I am not without hope that the foregoing may be of service to those whose skill qualifies them to use the graphic method. A clear and undistorted presentation of what a record of mortality does say must afford some assistance in the determination of what it meant to say.

$$
\begin{aligned}
& \text { I am, Sir, } \\
& \text { Your obedient servant, } \\
& \text { J. A. HIGHAM. }
\end{aligned}
$$

