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Varieties with ample cotangent bundle

Olivier Debarre

Abstract

The aim of this article is to provide methods for constructing smooth projective complex
varieties with ample cotangent bundle. We prove that the intersection of at least n/2
sufficiently ample general hypersurfaces in a complex abelian variety of dimension n has
ample cotangent bundle. We also discuss analogous questions for complete intersections
in the projective space. Finally, we present an unpublished result of Bogomolov which
states that a general linear section of small dimension of a product of sufficiently many
smooth projective varieties with big cotangent bundle has ample cotangent bundle.

1. Introduction

Projective algebraic varieties X with ample cotangent bundle have many properties: the subvarieties
of X are all of general type; there are finitely many nonconstant rational maps from any fixed
projective variety to X (see [NS82]); if X is defined over C, any entire holomorphic mapping C → X
is constant [Dem97, (3.1)]; if X is defined over a number field K, the set of K-rational points of
X is conjectured to be finite [Mor95].

Although these varieties are expected to be reasonably abundant, few concrete constructions
are available. The main result of this article, proved in § 2, is that the intersection of at least
n/2 sufficiently ample general hypersurfaces in an abelian variety of dimension n has ample
cotangent bundle. This answers positively a question of Lazarsfeld. As a corollary, we obtain results
about cohomology groups of sheaves of symmetric tensors on smooth subvarieties of abelian
varieties.

In § 3, mostly conjectural, we discuss analogous questions for complete intersections in the
projective space.

Finally, in § 4 we present an unpublished result of Bogomolov which states that a general linear
section of small dimension of a product of sufficiently many smooth projective varieties with big
cotangent bundle has ample cotangent bundle. This shows, in particular, that the fundamental
group of a smooth projective variety with ample cotangent bundle can be any group arising as the
fundamental group of a smooth projective variety.

We work over the complex numbers. Given a vector bundle E , the projective bundle P(E)
is the space of one-dimensional quotients of the fibers of E . It is endowed with a line bundle
OP(E)(1). We say that E is ample (respectively nef, respectively big) if the line bundle OP(E)(1)
has the same property. Following [Som78], we say more generally that given an integer k, the vector
bundle E is k-ample if, for some m > 0, the line bundle OP(E)(m) is generated by its global sections
and each fiber of the associated map P(E) → P

N has dimension � k. Ampleness coincides with
0-ampleness.
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2. Subvarieties of abelian varieties

We study the positivity properties of the cotangent bundle of a smooth subvariety of an abelian
variety A.

2.1 Preliminary material

Using a translation, we identify the tangent space TA,x at a point x of A with the tangent space TA,0

at the origin. We begin with a classical result.

Proposition 1. Let X be a smooth subvariety of an abelian variety A. The following properties
are equivalent:

(i) the cotangent bundle ΩX is k-ample;

(ii) for any nonzero vector ξ in TA,0, the set {x ∈ X | ξ ∈ TX,x} has dimension � k.

Proof. The natural surjection (ΩA)|X → ΩX induces a diagram

P(ΩX)

f

��

� � g
�� P(ΩA)|X � P(ΩA,0) ×X

p1
�� P(ΩA,0)

X

p2
��

�����������������������������
(1)

and

OP(ΩX)(1) = g∗OP(ΩA)|X (1) = f∗OP(ΩA,0)(1).

It follows that ΩX is k-ample if and only if each fiber of f has dimension � k (see [Som78, Corol-
lary 1.9]). The proposition follows, since the restriction of the projection P(ΩX) → X to any fiber
of f is injective.

Remarks 2.

(1) Let d = dim(X) and n = dim(A). Since dim(P(ΩX)) = 2d − 1, the proof of the proposition
shows that the cotangent bundle of X is (2d − n)-ample at best. It is always d-ample, and is
(d− 1)-ample except if X has a nonzero vector field, which happens if and only if X is stable
by translation by a nonzero abelian subvariety (generated by the vector field).

(2) Many things can prevent the cotangent bundle ofX from being ample. Below are two examples.

(i) Assume X ⊃ X1 +X2, where X1 and X2 are subvarieties of A of positive dimension. For all
x1 smooth on X1 and all x2 ∈ X2, one has TX1,x1 ⊂ TX,x1+x2, hence the cotangent bundle of
X is not (dim(X2)− 1)-ample. In the Jacobian of a smooth curve C, the cotangent bundle
of any smooth Wd(C) is therefore exactly (d − 1)-ample (although its normal bundle is
ample).

(ii) If A is (isogenous to) a product A1 ×A2 and Xa2 = X ∩ (A1 ×{a2}), the cotangent bundle
of X is at most (2 dim(Xa2) − dim(A1))-ample, because of the commutative diagram

P(ΩX)|(Xa2 )reg
f−→ P(ΩA,0)

∪ ∪
P(Ω(Xa2 )reg) −→ P(ΩA1,0)

In particular, if dim(Xa2) >
1
2 dim(A1) for some a2, the cotangent bundle of X cannot be

ample.
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We will encounter the following situation twice: assume F and G are vector bundles on a pro-
jective variety X that fit into an exact sequence

0 → F → V ⊗OX → G → 0 (2)

where V is a vector space.

Lemma 3. In the situation above, if moreover rank(F) � dim(X), we have

F∗ ample ⇒ G nef and big .

Proof. As in the proof of Proposition 1, G is nef and big if and only if the morphism f : P(G) → P(V )
induced by (2), which satisfies OP(G)(1) = f∗OP(V )(1), is generically finite.

Let d be the dimension of X, let r be the dimension of V , let s be the rank of G, and let G be
the Grassmannian of vector subspaces of V ∗ of dimension s, with tautological quotient bundle Q of
rank r − s � d. The dual of the exact sequence (2) induces a map γ : X → G such that γ∗Q = F∗.

Assume that f(P(G)) has dimension < dim(P(G)) = d+s−1. There exists a linear subspace W ∗

of V ∗ of dimension r − d − s + 1 such that P(W ) does not meet f(P(G)). In other words, the
variety γ(X) does not meet the special Schubert variety {Λ ∈ G | Λ ∩W ∗ 
= {0}}, whose class
is cd(Q). We obtain γ(X) · cd(Q) = 0, hence 0 = cd(γ∗Q) = cd(F∗), and F∗ cannot be ample by
[BG71, Corollary 1.2].

2.2 Nef and big cotangent bundle
A characterization of subvarieties of an abelian variety whose cotangent bundle is nef and big follows
easily from a result of [Deb95].

Proposition 4. The cotangent bundle of a smooth subvariety X of an abelian variety is nef and
big if and only if dim(X −X) = 2dim(X).

Proof. The cotangent bundle of X is nef and big if and only if the morphism f in (1) is generically
finite onto its image

⋃
x∈X P(ΩX,x), i.e. if the latter has dimension 2 dim(X) − 1. The proposition

follows from [Deb95, Theorem 2.1].

The condition dim(X−X) = 2dim(X) implies, of course, that 2 dim(X) � dim(A). The converse
holds ifX is nondegenerate [Deb95, Proposition 1.4]: this means that for any quotient abelian variety
π : A → B, one has either π(X) = B or dim(π(X)) = dim(X). This property holds, for example,
for any subvariety of a simple abelian variety.1 It has also an interpretation in terms of positivity
of the normal bundle of X.

Proposition 5. The normal bundle of a smooth subvariety X of an abelian variety is nef and big
if and only if X is nondegenerate.

Proof. The normal bundle NX/A to X in A is nef and big if and only if the map f ′ in the diagram

P(NX/A)

f ′

��

� � �� P(TA)|X � P(TA,0) ×X p1
�� P(TA,0)

X

p2

��

����������������������������
(3)

is generically finite onto its image (i.e. surjective).

1An abelian variety A is simple if the only abelian subvarieties of A are 0 and A. For more about nondegenerate
subvarieties, see [Deb99, ch. VIII].
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To each point p in the image of f ′ corresponds a hyperplane Hp in TA,0 such that TX,x ⊂ Hp

for all x in the image Fp in X of the fiber. This implies TFp,x ⊂ Hp for all x in Fp, hence
the tangent space at the origin of the abelian variety Kp generated by Fp is contained in Hp

(see [Deb99, Lemme VIII.1.2]).
Since A has at most countably many abelian subvarieties, the abelian variety Kp is independent

of the very general point p in the image of f ′. Let π : A → B be the corresponding quotient.
The differential of π|X is not surjective at any point of Fp since its image is contained in the
hyperplane Tπ(Hp). By generic smoothness, π|X is not surjective.

If X is nondegenerate, π|X is generically finite onto its image, hence Fp is finite and f ′ is
generically finite onto its image. It follows that NX/A is nef and big.

Conversely, assume that NX/A is nef and big. Let π : A → B be a quotient of X such that
π(X) 
= B. The tangent spaces to X along a general fiber of π|X are all contained in a fixed
hyperplane. This fiber is therefore finite, hence X is nondegenerate.

Proposition 6. Let X be a smooth subvariety of an abelian variety A, of dimension at most
1
2 dim(A). We have

ΩX ample ⇒ NX/A nef and big ⇒ ΩX nef and big.

Proof. The first implication follows from Lemma 3 applied to the exact sequence 0 → TX → TA|X →
NX/A → 0.

The second implication follows from Propositions 4 and 5 and the fact that for a non-
degenerate subvariety X of A, the equality dim(X − X) = min(2 dim(X),dim(A)) holds [Deb95,
Proposition 1.4].

2.3 Ample cotangent bundle
In this section, we prove that the intersection of sufficiently ample general hypersurfaces in an
abelian variety A has ample cotangent bundle, provided that its dimension be at most 1

2 dim(A).
We begin by fixing some notation. If A is a smooth variety, ∂ a vector field on A, and L a line

bundle on A, we define, for any section s of L with divisor H, a section ∂s of L|H by the requirement
that for any open set U of A and any trivialization ϕ : OU

∼−→ L|U , we have ∂s = ϕ(∂(ϕ−1(s)))|H
in U ∩H. We denote its zero locus by H ∩ ∂H. We have an exact sequence

H0(A,L) −→ H0(H,L|H) −→ H1(A,OA)
∂s �−→ ∂ � c1(L)

where c1(L) is considered as an element of H1(A,ΩA) and the cup product is the contraction

H0(A,TA) ⊗H1(A,ΩA) −→ H1(A,OA).

2.3.1 The simple case. We begin with the case of a simple abelian variety, where we get an
explicit bound on how ample the hypersurfaces should be.

Theorem 7. Let L1, . . . , Lc be very ample line bundles on a simple abelian variety A of dimension n.
Consider general divisors H1 ∈ |Le1

1 |, . . . ,Hc ∈ |Lec
c |. If e2, . . . , ec are all > n, the cotangent bundle

of H1 ∩ · · · ∩Hc is max(n− 2c, 0)-ample.

Proof. We need to prove that the fibers of the map f in (1) have dimension at most m = max(n−
2c, 0). This means that for Hi general in |Lei

i | and any nonzero constant vector field ∂ on A, the
dimension of the set of points x in X = H1 ∩ · · · ∩Hc such that ∂(x) ∈ TX,x is at most m; in other
words, that

dim(H1 ∩ ∂H1 ∩ · · · ∩Hc ∩ ∂Hc) � m.
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It is enough to treat the case c � n/2. We proceed by induction on c, and assume that the variety
Y∂ = H1∩∂H1∩ · · ·∩Hc−1∩∂Hc−1 has codimension 2c−2 in A for all nonzero ∂. Let Y∂,1, . . . , Y∂,q

be its irreducible components.

Let Ue(Y∂,i) be the open set of divisorsH in |Le
c| such that (Y∂,i)red∩H is integral of codimension 1

in Y∂,i. If H ∈ Ue(Y∂,i), we claim that Y∂,i ∩ H ∩ ∂H has codimension 2 in Y∂,i. Indeed, let s ∈
H0(A,Le

c) define H and set Y = (Y∂,i)red. The scheme Y ∩H ∩ ∂H is the zero set in Y ∩H of the
section ∂s defined above. In the commutative diagram,

H0(H,Le
c|H) ��

��

H1(A,OA)

ρ
��

∂s
� �� ∂ � e c1(Lc)

H0(Y ∩H,Le
c|Y ∩H) �� H1(Y,OY )

(4)

the restriction ρ is injective because Y generates A, hence ∂s does not vanish identically on the
integral scheme Y ∩H.

It follows that for H ∈ Ue(Y∂) =
⋂q

i=1 Ue(Y∂,i), the scheme Y∂ ∩ H ∩ ∂H has codimension 2c
in A. Thus, for Hc ∈

⋂
[∂]∈P(ΩA,0)

Ue(Y∂), the intersection

H1 ∩ ∂H1 ∩ · · · ∩Hc ∩ ∂Hc

has codimension 2c in A for all nonzero constant vector field ∂ on A (note that when c = 1, there
is no condition on H1). Lemma 12, to be proved in § 2.3.4, shows that the complement of Ue(Y∂) in
|Le

c| has codimension at least e − 1. For e > n, the intersection
⋂

[∂]∈P(ΩA,0)
Ue(Y∂) is therefore not

empty and the theorem follows.

2.3.2 The general case. A variant of the same proof works for any abelian variety, but we lose
control of the explicit lower bounds on e2, . . . , ec.

Theorem 8. Let L1, . . . , Lc be very ample line bundles on an abelian variety A of dimension n.
For e2, . . . , ec large and divisible enough positive integers and general divisors H1 ∈ |Le1

1 |, . . . ,
Hc ∈ |Lec

c |, the cotangent bundle of H1 ∩ · · · ∩Hc is max(n− 2c, 0)-ample.

Let us be more precise about the condition on the ei. What we mean is that there exists for
each i ∈ {1, . . . , c− 1}, a function δi : N

i → N
∗ such that the conclusion of the theorem holds if

e2 = e′2δ1(e1), e3 = e′3δ2(e1, e2), . . . , ec = e′cδc−1(e1, . . . , ec−1) with e′2, . . . , e
′
c > n. (5)

Proof. We keep the setting and notation of the proof of Theorem 7. Everything goes through
except when, in diagram (4), ρ(∂ � c1(Lc)) = 0. In this case, let A′′ be the abelian subvariety of A
generated by Y and let A′ be its complement with respect to Lc, so that the addition

π : A′ ×A′′ → A

is an isogeny and π∗Lc � Lc|A′ � Lc|A′′ . We have Y = a′ + Y ′′, with a′ ∈ A′, Y ′′ ⊂ A′′, and
∂ ∈ H0(A′, TA′). In particular, we have an injection

H0(A,Lc)
π∗
↪→ H0(A′, Lc|A′) ⊗H0(A′′, Lc|A′′).

It is, however, difficult to identify in a manner useful for our purposes the sections of Lc inside this
tensor product. Instead, we use a trick that will unfortunately force us to lose any control of the
numbers involved.
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The trick goes as follows. The kernel of π, being finite, is contained in the group of r-torsion
points of A′ ×A′′ for some positive integer r. Multiplication by r factors as

A′ ×A′′ π−→ A
π′−→ A′ ×A′′

and π′∗(Lc|A′ � Lc|A′′) is some power Le0
c of Lc. Sections of Le0

c that come from H0(A′, Lc|A′) ⊗
H0(A′′, Lc|A′′) induce a morphism from A to some projective space that factors through π′ and
embeds A′ ×A′′.

We will consider sections of Lee0 of the type π′∗s, with s ∈ H0(A′, Le
c|A′)⊗H0(A′′, Le

c|A′′). If the
divisor H of s on A′ × A′′ corresponds to a degree e hypersurface in Ue(π′(Y )), the intersection
π′(Y ) ∩H is integral of codimension 1 in π′(Y ) = {ra′} × rY ′′.

Fix a basis (s′′1, . . . , s′′d) for H0(A′′, Le
c|A′′) and write s =

∑d
i=1 s

′
i ⊗ s′′i , so that

π′(Y ) ∩H = π′(Y ) ∩ div
( d∑

i=1

s′i(ra
′)s′′i

)

π′(Y ) ∩H ∩ ∂H = π′(Y ) ∩ div
( d∑

i=1

s′i(ra
′)s′′i

)
∩ div

( d∑
i=1

∂s′i(ra
′)s′′i

)
.

Since π′(Y )∩H is integral, π′(Y )∩H∩∂H has codimension 2 in π′(Y ) (hence, Y ∩π′−1(H)∩∂π′−1(H)
has codimension 2 in Y ) unless, for some complex number λ, the section

∑d
i=1(λs

′
i + ∂s′i)(ra

′)s′′i of
Le

c|A′′ vanishes on rY ′′. In other words, if we let

ΓrY ′′ =
{

(a1, . . . , ad) ∈ C
d

∣∣∣∣
d∑

i=1

ais
′′
i vanishes on rY ′′

}

and

M∂ =
(
s′1(ra′) · · · s′d(ra

′)
∂s′1(ra′) · · · ∂s′d(ra

′)

)

we have (λ, 1) ·M∂ ∈ ΓrY ′′ . Now we may pick any collection (s′1, . . . , s′d) we like. Fix one such that
the corresponding matrix M∂ has rank 2 for all nonzero ∂ and apply a square matrix N of size
dim(A′). The condition is now that the composition

Im(tM∂) ⊂ C
d

tN−→ C
d −→ C

d/ΓrY ′′

is not injective, that is either:

(i) tN · Im(tM∂) ∩ ΓrY ′′ 
= {0}, which imposes codim(ΓrY ′′) − 1 conditions on N ; or

(ii) Ker(tN) ∩ Im(tM∂) 
= {0}, which imposes d− 1 conditions on N .

The ‘bad’ locus for H corresponds to the space of matrices N that satisfy either one of these
properties for some nonzero ∂ ∈ H0(A′, TA′). Since, on the one hand, d = h0(A′′, Le

c|A′′) > e
and, on the other hand, the codimension of ΓrY ′′ is the rank of the linear map H0(A′′, Le

c|A′′) →
H0(rY ′′, Le

c|rY ′′), which is greater than e, the codimension of the ‘bad’ locus is at least e−dim(A′)+2.
This means that for A′′ (hence A′) fixed, e > n, and H general in |Lee0

c |, for any component Y of
Y∂ that spans (as a group) A′′, the intersection Y ∩H ∩ ∂H has codimension 2 in Y for all nonzero
∂ in H0(A,TA).

Since A has at most countably many abelian subvarieties, there are only finitely many different
abelian subvarieties spanned by components of Y∂ = H1∩∂H1∩· · ·∩Hc−1∩∂Hc−1 for H1, . . . ,Hc−1

general in |Le1
1 |, . . . , |Lec−1

c−1 | as ∂ runs through the nonzero elements of H0(A,TA). Therefore, for
some positive integer δ, any e > n, and H general in |Leδ

c |, the intersection Y∂ ∩ H ∩ ∂H has
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codimension 2 in Y∂ for all nonzero ∂ ∈ H0(A,TA). This proves our claim by induction on c hence
the theorem.

2.3.3 The four-dimensional case. In the case where the ambient abelian variety has dimen-
sion 4, we can make the numerical conditions in Theorem 8 explicit.

Theorem 9. Let L1 and L2 be line bundles on an abelian fourfold A, with L1 ample and L2 very
ample. For e1 � 5, e2 � 5, and H1 ∈ |Le1

1 | and H2 ∈ |Le2
2 | general, the surface H1 ∩H2 has ample

cotangent bundle.

Proof. We claim that for H1 general in |Le1
1 |, the scheme Y∂ = H1 ∩ ∂H1 is an integral surface for

each nonzero vector field ∂ on A. Granting the claim for the moment and using the notation of the
proof of Theorem 7, the scheme H1 ∩ ∂H1 ∩ H2 is then, for H2 ∈ Ue2(Y∂), an integral curve that
generates A since its class is e2H2

1H2. The argument of the proof of Theorem 7 applies in this case
to prove that H1 ∩ ∂H1 ∩H2 ∩ ∂H2 is finite. Taking H2 in

⋂
[∂]∈P(ΩA,0)

Ue2(Y∂) (which is possible by
Lemma 12 since e2 > 4), the intersection

H1 ∩ ∂H1 ∩H2 ∩ ∂H2

is finite for all nonzero vector fields ∂, which is what we need. The theorem therefore follows from
the claim, proved in the next lemma.

Lemma 10. Let A be an abelian variety of dimension at least 4 and let L be an ample line bundle
on A. For e � 5 and H general in |Le|, the scheme H ∩∂H is integral for all nonzero ∂ ∈ H0(A,TA).

Proof. Assume to the contrary that for some smooth H ∈ |Le|, we have H ∩ ∂H = D′
1 +D′

2, where
D′

1 and D′
2 are effective nonzero Cartier divisors in H. We follow [BD86, Proposition 1.6]: since

dim(H) � 3, there exist by the Lefschetz theorem divisors D1 and D2 on A such that D1 +D2 ≡ H
and Di|H ≡ D′

i. Since D′
i is effective, the long exact sequence in cohomology associated with the

exact sequence
0 → OA(Di −H) → OA(Di) → OH(D′

i) → 0
shows that, for each i ∈ {1, 2}, either H0(A,Di) 
= 0 or H1(A,Di −H) 
= 0. The case where both
H1(A,D1 −H) and H1(A,D2 −H) are zero is impossible, since we would then have a section of Le

with divisor H ∩ ∂H on H. The case where both H1(A,D1 −H) and H1(A,D2 −H) are nonzero
is impossible as in [BD86] because dim(A) � 3.

So we may assume H1(A,D2 −H) 
= 0 and H1(A,D1 −H) = 0, and take D1 effective such that
D1 ∩H = D′

1.
As in [BD86], A contains an elliptic curve E such that, if B is the neutral component of the

kernel of the composed morphism

A
φH−→ Pic0(A) → Pic0(E),

the addition map π : E × B → A is an isogeny, ∂ is tangent to E, and π∗(D1) = p∗1(DE) for
some effective divisor DE on E. Pick a basis (t1, . . . , td) for H0(B,Le|B) and a section s of Le with
divisor H, and write

π∗s =
d∑

i=1

si ⊗ ti

with s1, . . . , sd ∈ H0(E,Le|E), so that π−1(H ∩ ∂H) is defined by
d∑

i=1

si ⊗ ti =
d∑

i=1

∂si ⊗ ti = 0.
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Since D′
1 = H ∩D1 is contained in H ∩ ∂H, for every point x of the support of DE , we have

div
( d∑

i=1

si(x)ti

)
⊂ div

( d∑
i=1

∂si(x)ti

)
⊂ B.

Since these two divisors belong to the same linear series |Le|B | on B, they must be equal and

rank
(
s1(x) · · · sd(x)
∂s1(x) · · · ∂sd(x)

)
� 1.

Since H is irreducible, the sections s1, . . . , sd have no common zero and the morphism ψH : E →
P

d−1 that they define is ramified at x.

The vector subspace of H0(E,Le|E) generated by s1, . . . , sd only depends on s, not on the choice
of the basis (t1, . . . , td). If b1, . . . , bd are general points of B, it is also generated by s( · +b1), . . . ,
s( · +bd) and

rank
(
s(x+ b1) · · · s(x+ bd)
∂s(x+ b1) · · · ∂s(x+ bd)

)
� 1.

Assume now that the conclusion of the lemma fails for general H (and s). The point x varies with s,
but remains constant for s in a hypersurface Hx of H0(X,Le). If s is in

H ′
x = Hx ∩ {t ∈ H0(X,Le) | t(x+ b1) = t(x+ b2) = 0}

it also satisfies ∂s(x+ b1) = ∂s(x+ b2) = 0. Since H ′
x has codimension at most 3 in H0(X,Le), this

means that Le is not 3-jet ample and contradicts Theorem 1 of [BS97]: the lemma is proved.

Remark 11. Let A be an abelian fourfold that contains no elliptic curves. The proof of Lemma 10
shows that for any smooth ample hypersurface H in A and any nonzero ∂ ∈ H0(A,TA), the scheme
H∩∂H is integral. It follows that for L very ample, e � 5, and H ′ ∈ |Le| general, the surface H∩H ′

has ample cotangent bundle (compare with Theorem 7).

2.3.4 Proof of the lemma. We prove the lemma used in the proofs of all three theorems.

Lemma 12. Let Y be an integral subscheme of P
n of dimension at least 2 and let Ve,n be the

projective space of hypersurfaces of degree e in P
n. The codimension of the complement Ve(Y ) of

Ue(Y ) = {F ∈ Ve,n | Y ∩ F is integral of codimension 1 in Y }
in Ve,n is at least e− 1.

Proof. By taking hyperplane sections, we may assume that Y is a surface. We proceed by induction
on n. For n = 2, this codimension is

min
1�k�e−1

((
e+ 2

2

)
−

(
k + 2

2

)
−

(
e− k + 2

2

)
+ 1

)
= e− 1.

Assume n � 3. Let V be a component of Ve(Y ) of maximal dimension and let Ce,p be the linear
subspace of Ve,n that consists of cones with vertex a point p. If V does not meet Ce,p, we have

codim(V) � dim(Ce,p) − 1 =
(
n− 1 + e

e

)
− 1 > e− 1

and the lemma is proved. We will therefore assume that V meets Ce,p. Let π : P
n {p} → P

n−1 be
a projection. If F is general in V ∩ Ce,p, either:
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(i) π(F ) ∩ π(Y ) is not integral of dimension 1, the induction hypothesis yields

codimVe V � codimCe,p(V ∩ Ce,p)
� codimVe,n−1(Ve(π(Y )) ∩ Ve,n−1)
� e− 1

and the lemma is proved; or
(ii) the curve π(F ) ∩ π(Y ) is integral of dimension 1, but is contained in the locus E over which

the finite morphism π|Y : Y → π(Y ) is not an isomorphism.

In case (ii), if n � 4, the morphism π|Y is birational, E has dimension at most 1, hence

codimVe,n V � codimCe,p(V ∩ Ce,p)
� codimVe,n−1{F ∈ Ve,n−1 | F contains a component of E}
� e+ 1

where the last inequality holds because any e+ 1 points in P
n−1 impose independent conditions on

hypersurfaces of degree e. The lemma is proved in this case.
We are reduced to the case n = 3: the curve C = π(F ) ⊂ P

2 is integral and its inverse image
F ∩ Y by π|Y : Y → P

2, is reduced but reducible.
We consider the following degeneration. Denote by G an equation for Y ; the surface Yt

defined by G(tx0, x1, x2, x3) = 0 is projectively equivalent to Y for t 
= 0, whereas Y0 is the cone
with vertex (1, 0, 0, 0) and base Y ∩ (x0 = 0). We may therefore assume that Y is an integral
cone with vertex a point p′ 
= p and we let π′ : Y {p′} → C ′ ⊂ P

2 be the projection. Let O
be the intersection of the line pp′ with the plane P

2. Pick a line L in P
2, avoiding O, and consider

the projections C {O} → L and C ′ → L from O (the point O might be on C (if F 
 p′), but is
not on C ′, because p /∈ Y ). The maps

(F ∩ Y ) {p′} −→ (C {O}) ×L C
′

x �−→ (π(x), π′(x))

and
(C {O}) ×L C

′ −→ (F ∩ Y ) {p′}
(y, y′) �−→ py ∩ p′y′

are inverse to each other. Therefore, given the integral curve C ′, we need to study the dimension of
the set of curves C of degree e for which the curve C ×L C

′ is reducible.
Using the same trick as above, we degenerate C ′ to the union C ′

0 of deg(C ′) distinct lines through
some point. At the limit, C×LC

′
0 is the union of deg(C ′) curves isomorphic to C. If C is integral, the

projection C ×LC
′
0 → C ′

0 has the property that every irreducible component of C ′
0 is dominated by

a unique component of C ×LC
′
0, and the set of ‘bad’ curves has codimension e− 1 as we saw in the

case n = 2. This property of the projection, begin open, carries over to C×LC
′ → C ′. This finishes

the proof of the lemma.

2.4 Cohomology of symmetric tensors
Let X be a smooth subvariety of an abelian variety. We are interested in the cohomology groups of
the symmetric powers S

rΩX .

Proposition 13. Let A be an abelian variety of dimension n and let X be a smooth subvariety
of codimension c of A with ample normal bundle. For r � 0, the restriction

Hq(A,SrΩA) −→ Hq(X,SrΩX)

is bijective for q < n− 2c and injective for q = n− 2c.
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Remark. For the case q = 0, Bogomolov gave in [Bog78] a very nice proof that goes as follows.
Arguing as in the proof of Proposition 4, we find that the morphism f of (1) is surjective whenever
X −X = A. Any fiber of f is isomorphic to its projection to X, which is the zero locus of a section
of NA/X . It follows that when NA/X is ample and c < n − c, the fibers of f are connected, hence
f∗OP(ΩX)(r) � OP(ΩA,0)(r), from which we get, for all r � 0,

H0(X,SrΩX) � H0(P(ΩX),OP(ΩX )(r))

� H0(P(ΩA,0),OP(ΩA,0)(r)) � H0(A,SrΩA).

Proof. We follow the ideas of [Sch92]. The symmetric powers of the exact sequence 0 → N∗
X/A →

ΩA|X → ΩX → 0 yield, for each r > 0, a long exact sequence

0 → ∧cN∗
X/A ⊗ S

r−cΩA → · · · → N∗
X/A ⊗ S

r−1ΩA → S
rΩA|X → S

rΩX → 0.

By Le Potier’s vanishing theorem [Lep75, Laz04, Remark 7.3.6], Hq(X,∧iN∗
X/A) vanishes for n −

c− q > c− i and i > 0. Since ΩA is trivial, we get, by an elementary homological algebra argument
[Sch92, Lemma, p. 176],

Hq(X,Ker(SrΩA|X → S
rΩX)) = 0 for all q � n− 2c.

The proposition now follows from the fact that the restriction Hq(A,OA) → Hq(X,OX ), hence also
the restriction Hq(A,SrΩA) → Hq(X,SrΩA|X), is bijective for q � n− 2c (see [Som79]).

Sommese proved [Som78, Proposition (1.7)] that for any k-ample vector bundle E on a
projective variety X and any coherent sheaf F on X,

Hq(X,SrE ⊗ F) = 0

for all q > k and r � 0. Theorem 7 and Proposition 13 therefore imply the following.
Corollary 14. Let X be the intersection of c sufficiently ample general hypersurfaces (for which
(5) is satisfied) in an abelian variety A of dimension n. We have

hq(X,SrΩX)




= 0 for q > max{n− 2c, 0} and r � 0
= hq(A,SrΩA) for q < n− 2c and r � 0
� hq(A,SrΩA) for q = n− 2c and r � 0.

3. Subvarieties of the projective space
We now study the positivity properties of the cotangent bundle of a smooth subvariety of the
projective space.

3.1 Big twisted cotangent bundle
If X is a smooth subvariety of P

n of dimension d, we let γX : X → G(d,Pn) be the Gauss map.
We denote by S the universal subbundle and by Q the universal quotient bundle on G(d,Pn).
We have γ∗XQ = NX/Pn(−1) and a commutative diagram

0 0
↓ ↓

N∗
X/Pn(1) = N∗

X/Pn(1)
↓ ↓

0 −→ ΩPn(1)|X −→ On+1
X −→ OX(1) −→ 0

↓ ↓ ‖
0 −→ ΩX(1) −→ γ∗XS∗ −→ OX(1) −→ 0

↓ ↓
0 0

(6)

The following result is proved as Propositions 4 and 6.
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Proposition 15. Let X be a smooth subvariety of dimension d of P
n.

(i) If γ∗XS∗ is big, 2d � n.

(ii) If 2d � n and NX/P n(−1) is ample, γ∗XS∗ is nef and big.

Similarly, with the same ideas, we prove an analog of Theorem 7.

Theorem 16. Let X be a general complete intersection in P
n of multidegree (e1, . . . , ec). If e1 � 2

and e2, . . . , ec are all � n+ 2, the vector bundle γ∗XS∗ is max(n− 2c, 0)-ample.

Proof. We need to prove that the fibers of the composed map

P(γ∗XS∗) � � �� P
n ×X

p1 �� P
n

analogous to the map f in diagram (3) have dimension at most m = max(n − 2c, 0). This means
that for Hi general in |OPn(ei)| and for any t in P

n, the dimension of the set of points x in X
such that t ∈ TX,x is at most m. Pick coordinates and write t = (t0, . . . , tn). If s is an equation of
a hypersurface H, we let ∂tH be the hypersurface with equation ∂ts =

∑n
i=0 ti(∂s/∂xi). With this

notation, we want
dim(H1 ∩ ∂tH1 ∩ · · · ∩Hc ∩ ∂tHc) � m.

As in the proof of Theorem 7, we proceed by induction on c, assuming c � n/2. When c = 1, it is
clear that e1 � 2 is sufficient.

Assume that Yt = H1 ∩ ∂tH1 ∩ · · · ∩Hc−1 ∩ ∂tHc−1 has (pure) codimension 2c − 2 in P
n, with

irreducible components Yt,1, . . . , Yt,m. Set Y = (Yt,i)red; it follows from Lemma 12 that Y ∩ H is
integral of codimension 1 in Y for H outside a closed subset of codimension � d− 1 in |OPn(d)|.

Assume that this is the case. If codimY (Y ∩H∩∂tH) � 1, the section ∂ts must vanish on Y ∩H.
Since the restriction

H0(Y,OY (d− 1)) → H0(Y ∩H,OY ∩H(d− 1))
is injective, it must also vanish on Y . Since any d distinct points of Y impose independent conditions
on elements of |OPn(d − 1)| and the map ∂t : H0(Pn,OPn(d)) → H0(Pn,OPn(d − 1)) is surjective,
we have proved that the set of hypersurfaces H in |OPn(d)| such that codimYt(Yt ∩H ∩ ∂tH) � 1
has codimension � d− 1 in |OPn(d)|. The theorem follows.

Corollary 17. Let X be a general complete intersection in P
n of multidegree (e1, . . . , ec). If e1 � 2

and e2, . . . , ec are all � n+ 2, and c � n/2, the vector bundle ΩX(1) is big.

When X is a surface (i.e. c = n− 2), results of Bogomolov [Bog79, Bog78] give the much better
result that ΩX(−1

5KX) is big.

Proof. The last row of diagram (6) yields, for all positive integers r, an exact sequence

0 → S
r(ΩX(1)) → S

r(γ∗XS∗) → S
r−1(γ∗XS∗) ⊗OX(1) → 0.

It follows from Theorem 16 that for r � 0, we have

Hq(X,Sr(ΩX(1))) = 0 for q > 1. (7)

On the other hand, if d = n−c, the coefficient of r2d−1/((2d−1)!) in the polynomial χ(X,Sr(ΩX(1)))
is

sd(ΩX(1)∗) =
[ c∏

i=1

(1 + (ei − 1)h)(1 − h)
]

d

=
∑

1�i1<···<id�c

(ei1 − 1) · · · (eid − 1) −
∑

1�i1<···<id−1�c

(ei1 − 1) · · · (eid−1
− 1).
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Since c � n/2 this is positive, so that by (7), we have, for r � 0,

h0(X,Sr(ΩX(1))) � χ(X,Sr(ΩX(1))) = αr2d−1 +O(r2d−2)

for some α > 0. This shows that ΩX(1) is big.

3.2 Conjectures
By analogy with Theorem 7, it is tempting to conjecture the following generalization of a question
formulated by Schneider in [Sch92, p. 180].

Conjecture 18. The cotangent bundle of the intersection in P
n of at least n/2 general hypersur-

faces of sufficiently high degrees is ample.

Ampleness can be characterized cohomologically as follows.

Proposition 19. Let X be a projective variety and let L be an ample line bundle on X. A vector
bundle E on X is ample if and only if, for any integer m, we have Hq(X,SrE ⊗Lm) = 0 for all q > 0
and r � 0.

Proof. Let F be an arbitrary coherent sheaf on X. It has a possibly nonterminating resolution

· · · → E2 → E1 → E0 → F → 0

by locally free sheaves that are direct sums of powers of L. Therefore, Hq(X,SrE ⊗ Ej) = 0 for all
j ∈ {0, . . . ,dim(X)}, all q > 0 and r � 0, and this implies Hq(X,SrE ⊗ F) = 0 for all q > 0 and
r � 0. This proves that E is ample [Laz04, Theorem 6.1.10].

Conjecture 18 therefore has the following equivalent cohomological formulation.

Conjecture 20. Let X be as in Conjecture 18. For any integer m, we have Hq(X, (SrΩX)(m)) = 0
for all q > 0 and r � 0.

Let X be a smooth projective variety of dimension d with ωX ample and let L be a line bundle
on X. It follows from [Dem97, Theorem 14.1], that Hd(X,SrΩX ⊗L) vanishes for r � 0. This leads
us to think that the following stronger form of Conjecture 20 might be true.

Conjecture 21. Let X be the intersection in P
n of c general hypersurfaces of sufficiently high

degrees and let m be an integer. For r � 0, we have

Hq(X, (SrΩX)(m)) = 0 (8)

except for q = max{n − 2c, 0}.
Remarks 22.
(1) For any smooth subvariety X of P

n of codimension c, the vanishing (8) holds for q < n − 2c
and r � m+2 by [Sch92, Theorem 1.1], and for q = n−c by Demailly’s theorem. In particular,
Conjecture 21 holds for c � 1.

(2) Under the hypotheses of Conjecture 21, one checks that the leading coefficient of the polynomial
χ(P(ΩX),OP(ΩX )(r)) has sign (−1)max{n−2c,0}. This is compatible with the conjecture.

4. Bogomolov’s construction of varieties with ample cotangent bundle

We present here an old unpublished construction of Bogomolov that produces varieties with ample
cotangent bundle as linear sections of products of varieties with big cotangent bundle (a differential-
geometric version of this construction appeared later in [Won84]). Everything in this section is due
to Bogomolov.
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Proposition 23 (Bogomolov). Let X1, . . . ,Xm be smooth projective varieties with big cotangent
bundle, all of dimension at least d > 0. Let V be a general linear section of X1 × · · · × Xm.
If dim(V ) � (d(m+ 1) + 1)/2(d + 1), the cotangent bundle of V is ample.

Proof. Since ΩXi is big, there exist a proper closed subset Bi of P(ΩXi) and an integer q such that
for each i, the sections of OP(ΩXi

)(q), i.e. the sections of S
qΩXi , define an injective morphism

fi : P(ΩXi) Bi −→ P
ni .

Lemma 24. Let X be a smooth subvariety of P
n and let B be a subvariety of P(ΩX). A general

linear section V of X of dimension at most 1
2 codim(B) satisfies

P(ΩV ) ∩B = ∅.

Proof. Consider the variety

{((t, x),Λ) ∈ B ×G(n − c,Pn) | x ∈ X ∩ Λ, t ∈ TX,x ∩ TΛ,x}.
The fibers of its projection to B have codimension 2c, hence it does not dominate G(n − c,Pn) as
soon as 2c > dim(B). This is equivalent to 2(dim(X) − dim(V )) − 1 � 2 dim(X) − 1 − codim(B)
and the lemma is proved.

Let B′
i be the (conical) inverse image of Bi in the total space of the tangent bundle of Xi. Let V

be a general linear section of X1 × · · · ×Xm and set a = m+ 1 − 2 dim(V ).
If t = (t1, . . . , tm), with ti ∈ TXi,xi , is a nonzero tangent vector to V , the lemma implies that

there are at least a values of the index i for which ti /∈ B′
i. If, say, t1 is not in B′

1, there exists a
section of S

qΩX1 that does not vanish at t1. This section induces, via the projection V → X1,
a section of S

qΩV that does not vanish at t. It follows that OP(ΩV )(q) is base-point-free and its
sections define a morphism f : P(ΩV ) −→ P

n.
We need to show that f is finite. Assume to the contrary that a curve C in P(ΩV ) through t is

contracted. Since the restriction of the projection π : P(ΩV ) → V to any fiber of f is injective, and
since fi is injective, the argument above proves that the curve π(C) is contracted by each projection
pi : V → Xi such that ti /∈ B′

i.
The following lemma leads to a contradiction when 2dim(V ) � ad + 1. This proves the

proposition.

Lemma 25. Let V be a general linear section of a productX×Y in a projective space. If 2 dim(V ) �
dim(X) + 1, the projection V → X is finite.

Proof. Let P
n be the ambient projective space and let G = G(n − c,Pn). Set

I = {(x, y, y′,Λ) ∈ X × Y × Y ×G | y 
= y′, (x, y) ∈ Λ, (x, y′) ∈ Λ}.
General fibers of the projection I → X × Y × Y have codimension 2c. If Λ is general in G and
V = (X × Y ) ∩ Λ, the fiber of the projection I → G at Λ, which is isomorphic to

{((x, y), (x, y′)) ∈ V × V | y 
= y′, (x, y) ∈ V, (x, y′) ∈ V }
therefore has dimension at most 1 as soon as 2c � dim(X ×Y ×Y )− 1, or equivalently 2 dim(V ) �
dim(X) + 1. When this holds, the projection V → X is finite and the lemma is proved.

Using his construction, Bogomolov exhibits smooth projective varieties with ample cotangent
bundle that are simply connected. More generally, his ideas give the following result.

Proposition 26. Given any smooth projective variety X, there exists a smooth projective surface
with ample cotangent bundle and same fundamental group as X.
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Proof. By the Lefschetz hyperplane theorem, a sufficiently ample three-dimensional linear section
Y of X × P

4 has same fundamental group as X and ample canonical bundle. A smooth hyperplane
section S of Y with class ah satisfies

c21(S) − c2(S) = a2h2 · c1(Y ) + ah · (c21(Y ) − c2(Y )).

This is positive for a � 0, hence the cotangent bundle of S is big by a famous trick of
Bogomolov [Bog78]. Moreover, S and X have isomorphic fundamental groups. Starting from a
simply connected X0, we similarly obtain a simply connected surface S0 with big cotangent bundle.
Taking in Bogomolov’s construction X1 = · · · = X5 = S0, we produce a smooth simply connected
projective surface S1 with ample cotangent bundle.

Taking in Bogomolov’s construction X1 = S and X2 = · · · = X5 = S1, we produce a smooth
projective surface with ample cotangent bundle and same fundamental group as X.
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