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Abstract

The Halfin–Whitt regime, or the quality-and-efficiency-driven (QED) regime, for
multiserver systems refers to a situation with many servers, a critical load, and yet
favorable system performance. We apply this regime to the classical multiserver loss
system with slow retrials. We derive nondegenerate limiting expressions for the main
steady-state performance measures, including the retrial rate and the blocking probability.
It is shown that the economies of scale associated with the QED regime persist for systems
with retrials, although in situations when the load becomes extremely critical the retrials
cause deteriorated performance. Most of our results are obtained by a detailed analysis of
Cohen’s equation that defines the retrial rate in an implicit way. The limiting expressions
are established by studying prelimit behavior and exploiting the connection between
Cohen’s equation and Mills’ ratio for the Gaussian and Poisson distributions.
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1. Introduction

Customers of call centers that obtain a busy signal usually repeat calls until the required
connection is made. A call center therefore receives two types of incoming calls: primary calls
received from customers calling for the first time, and repeated calls generated by previously
blocked customers. Such processes can be studied using retrial systems. It is widely accepted
that the phenomenon of repeated calls, in which customers keep calling until successful, is
one of the crucial factors for call center performance; see, for instance, [2]. In this paper we
investigate the basic multiserver loss system with repeated calls, or retrials, and study this
system in a regime with many servers under heavy-traffic conditions. The modeling of retrials
is quite challenging, see, e.g. [5] and [6], which is why one often resorts to computational
approaches [3]. These numerical approaches face increasing numerical difficulties when the
number of servers becomes large, which is precisely the regime we are interested in. Therefore,
we combine a many-server regime with a limit theorem of Cohen [5] for slow retrials, meaning
that blocked customers repeat their calls only after a relatively long time (compared to the time
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scale of the system). The combination of these two asymptotic regimes leads to a tractable
model.

There is by now a vast literature on the asymptotic analysis of multiserver systems, in which
a finite-size system is seen as one in a sequence of systems, and the limiting behavior of this
sequence is used to approximate the performance of this finite-size system. Depending on
how this sequence is parameterized, its limiting behavior is different, giving rise to different
approximations [4]. A quite effective approximation arises in the quality-and-efficiency-driven
(QED) regime, in which the number of servers s and the offered workload λ are related
according to a square-root principle, namely, λ = s − γ

√
s for some fixed constant γ . The

latter is asymptotically equivalent to setting s = λ+ β
√
λ (square-root staffing) for some fixed

constant β. Square-root staffing and the QED limiting regime for multiserver systems (without
retrials) were brought to the center of attention by the work of Halfin and Whitt [7], and,
therefore, the QED regime also goes by the name Halfin–Whitt regime.

In this paper we consider the multiserver loss system (M/M/s/s queue) with retrials.
We analyze this system in the Halfin–Whitt regime, in a similar spirit as was done for the
M/M/s queue [7], [10], the M/M/s/s queue [9], and the Erlang A model (M/M/s queue with
abandonments) [12]. Compared to these earlier studies, the system with retrials brings about
additional mathematical challenges, mainly because the retrial rate of returning customers is
given implicitly as the solution of what we call Cohen’s equation; cf. (1) below. In short, we
make the following contributions.

(i) Within the realm of the Halfin–Whitt regime, the retrial phenomenon was relatively
unexplored. In this paper we present the first analytical results in this direction. We derive
new QED approximations for the retrial rate and the blocking probability. We show that
the additional arrival rate due to retrials is of the same order as the overcapacity: both
are O(

√
s). Therefore, this additional load on the system can lead to serious capacity

problems, causing the system’s behavior to become much less favorable than perhaps
expected in the Halfin–Whitt regime. We further investigate the rate of convergence to
the limiting regime by undertaking an in-depth study of the prelimit or true retrial rate.
It is shown that the difference between the true retrial rate and its QED approximation
tends to 0 as the system size tends to ∞, which provides evidence for the appropriateness
of square-root staffing for call centers, even in the case of retrials.

(ii) A major effort is devoted to the study of Cohen’s equation and the analysis of its solution
(retrial rate), both for the case that s is finite and the limiting form of this equation
and solution when s → ∞ in the Halfin–Whitt regime. In the latter case, Cohen’s
equation comprises the well-known Mills’ ratio of the Gaussian distribution. Existence
and uniqueness of the solution of Cohen’s equation follows from monotonicity results
of this Mills’ ratio as given by Sampford [11]. For the case of finite s, Cohen’s equation
comprises a ratio of Mills type as well, and a sizeable part of this paper is devoted to
the case in which s is fixed. This yields Cohen’s existence and uniqueness result for his
equation with finite s, as well as analytic and asymptotic results for the solution as γ ↓ 0.

(iii) When the overcapacity given by γ
√
s becomes small (γ ↓ 0), the retrial rate grows as√

s/γ and completely dominates the system’s performance. The case γ ↓ 0 can be
interpreted as a double heavy-traffic limit, in the sense that we not only let ρ = λ/s =
1 − γ /

√
s approach 1 by making s large, but also by making γ small. We present

several results that help in understanding the effects of both scalings (see Theorem 3 and
Proposition 1).
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In Section 2 we introduce the multiserver system with slow retrials. In Section 3 we present
the main results. In Section 4 we study Cohen’s equation and give the work plan for the proofs
of the main results. Finally, Section 5 contains all the proofs.

2. Description of the retrial system

We now describe the classical multiserver loss system with retrials (see, e.g. [3] and [6,
Chapter 2]). Consider a group of s servers to which calls arrive according to a Poisson process
with rate λ. These calls are referred to as primary calls. A primary call that finds, upon arrival,
a free server, immediately occupies this server and leaves the system after service. If all servers
are occupied, the blocked primary call leaves the system but reattempts to obtain service after
some time. Hence, each blocked primary call starts producing retrials until it is served.

Assume that periods between successive retrials are exponentially distributed with mean
1/µ, service times are exponentially distributed with mean 1, and interarrival times, service
times, and retrial times are mutually independent. The system state can then be described by
means of a bivariate process {(C(t), N(t)); t ≥ 0} with C(t) the number of busy servers and
N(t) the number of retrial sources at time t . Under the above assumptions, this process is a
continuous-time Markov chain on the lattice infinite strip {0, 1, . . . , s}×{0, 1, . . .}. We assume
that λ < s, which is a necessary and sufficient condition for ergodicity (see [6, Chapter 2]).
Denote by (C(∞), N(∞)) the random variables having the joint stationary distribution of the
process {(C(t), N(t)); t ≥ 0}.

Since the transition rates of this process clearly depend on the second coordinate, even
deriving the stationary distribution poses analytical difficulties, and no closed-form solutions
exist for cases with more than four servers. Due to the lack of analytical formulae for the main
performance measures, limit theorems fulfill an important role in understanding the influence
of the repeated attempts in some domains of the system parameters.

The main result in this direction was obtained by Cohen [5], who showed that the retrial
queue, in the limit as µ ↓ 0, behaves as an Erlang loss system, except with an increased arrival
intensity. More specifically, for the M/M/s/s loss system with retrials, as µ ↓ 0, the steady-
state distribution of the number of busy servers converges to the corresponding distribution of
the standard Erlang loss system M/M/s/s (which is a truncated Poisson distribution), but with
increased arrival rate λ+�, where � is the unique positive root of the equation

� = (λ+�)B(s, λ+�). (1)

Here B(s, λ) is the Erlang B formula, representing the steady-state blocking probability in the
Erlang loss system, and given by

B(s, λ) = λs/s!∑s
k=0 λ

k/k! = e−λ(λ/s)s∫ ∞
λ

e−λ′
(λ′/s)s dλ′ (2)

with λ > 0 and s = 1, 2, . . . . The form in (2) comprising the integral allows us to consider
B(s, λ) for arbitrary s > 0. The result of Cohen for µ ↓ 0 is also contained in the more general
result of Falin [6, Theorem 2.6], which says that, in the limit of µ ↓ 0, (i) C(∞) and N(∞)

are independent, (ii) C(∞) has a truncated Poisson distribution with rate λ + �, and (iii) an
appropriately scaled version ofN(∞) is Gaussian distributed with a certain mean and variance
that can be specified. In this paper we will focus entirely on assertion (ii).

Equation (1), written as λ = (λ + �)(1 − B(s, λ + �)), is intuitively clear as it expresses
equality of arrivals and carried traffic. However, in order for this heuristic to be justified,
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one needs to assume that the flow of repeated calls does not depend on the flow of primary
calls. In that case, the total flow of calls is a Poisson process with rate λ + �, a fact that was
rigorously proved to be true when µ ↓ 0 by Cohen [5]. Indeed, in the case of extremely long
retrial times, it seems plausible that the flow of repeated calls is independent from the flow of
primary calls. For retrial systems with finite retrial times, the independence assumption on the
two arrival processes gave rise to the so-called constant retrial rate approximation, which has
proved useful for many retrial systems (see [3]).

The additional arrival rate� can be thought of as the load formed by the sources of repeated
calls. This result shows that it is important to distinguish between the cases µ = 0 and µ ↓ 0.
Let {pi(µ); 0 ≤ i ≤ s} denote the stationary distribution of the number of busy servers in the
system with retrial rate µ. If µ = 0 then the blocked customers are lost (do not send repeated
attempts at all) and the retrial queue becomes the standard Erlang loss system with the same
arrival rate λ and stationary distribution

pk(0) = λk/k!∑s
k=0 λ

k/k! , k = 0, 1, . . . , s.

In contrast, if µ ↓ 0 then the retrial model in steady state can be viewed as the standard Erlang
loss system, but with the increased arrival rate λ + �. Because limµ→0 pi(µ) has a beautiful
closed-form solution, it is common practice to use this limit as an approximation of pi(µ) for
all µ > 0 (see [3]). The results presented in the next section are all for this limiting regime of
slow retrials.

3. Main results and their implications

We have divided our contributions into three parts. In Subsection 3.1 we present new QED
approximations for the retrial rate � and the blocking probability B(s, λ + �) of the retrial
system in the Halfin–Whitt regime. In Subsection 3.2 we present a series of results for�, both
in the case of finite s and infinite s (Halfin–Whitt regime). In Section 4 we give several new
results for the key function that governs Cohen’s equation (1). As it turns out, this key function
is a slight adaptation of the Erlang B formula that can be interpreted in terms of Mills’ ratio for
the Poisson distribution. Hence, all results presented in Section 4 are in fact new results for the
Erlang B formula and Mills’ ratio for the Poisson distribution. The proofs of all the results are
given in Section 5.

3.1. Halfin–Whitt regime

The Halfin–Whitt regime for multiserver systems refers to the scaling of the arrival rate λ
and the number of servers s such that, while both λ and s increase toward ∞, the traffic intensity
ρ = λ/s approaches 1 and

(1 − ρ)
√
s → γ,

where γ is a fixed constant. The scaling combines large capacity with high utilization. For
the Erlang loss system, this kind of scaling leads to the following classical result due to Erlang
(see, e.g. [9]).

Lemma 1. For λ = s − γ
√
s, with fixed γ ,

lim
s→∞

√
sB(s, λ) = ϕ(γ )

�(γ )
, (3)

where�(x) and ϕ(x) denote the standard normal cumulative distribution function and density,
respectively.
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We now apply the same scaling to the multiserver retrial system.

Theorem 1. For λ = s − γ
√
s, with fixed γ > 0, and � defined as in (1),

lim
s→∞

�√
s

= a

and
lim
s→∞

√
sB(s, λ+�) = a (4)

with a the unique positive solution of the equation

a = ϕ(γ − a)

�(γ − a)
. (5)

Theorem 1 shows that the additional load �, for a system with many servers, is of the
order

√
s. In particular, as the number of servers grows large, � is well approximated by a

√
s,

where a is a constant that no longer depends on s. This also means that, for the overall retrial
system, the arrival rate λ+� is approximately s − (γ − a)

√
s, which gives (4). Theorem 1 thus

says that the blocking probability of the retrial system in the Halfin–Whitt regime isO(1/
√
s).

When the number of servers is large enough, the blocking probability is well approximated by
some constant divided by

√
s, where the constant a depends only on γ . This then gives the

QED approximations

� ≈ a
√
s, B(s, λ+�) ≈ ϕ(γ − a)√

s�(γ − a)
.

Theorem 1 follows from the stronger result given in Subsection 5.11. The key idea behind the
proof of Theorem 1 is the following. Writing � = a

√
s and using (1) gives

lim
s→∞

�√
s

= lim
s→∞

s − (γ − a)
√
s√

s
B(s, s − (γ − a)

√
s)

= lim
s→∞

√
sB(s, s − (γ − a)

√
s), (6)

so that the result follows from (3). Note that in (6) we ignore the fact that, for finite s, the factor a
is not only a function of γ (through (5)) but also of s. Therefore, the steps in (6) are only serving
as a heuristic. The formal proof of Theorem 1 will take into account this dependence on s and
starts from a transformed version of (1) that is easier to work with in the Halfin–Whitt regime
(see Section 4). That is, we let λ = s − γ

√
s in (1), and we write the unique solution � as

as(γ )
√
s, where as(γ ) is referred to as the retrial factor. In terms of retrial factors, Theorem 1

can be reformulated as as(γ ) → a∞(γ ) as s → ∞, where a = a∞(γ ) is the unique positive
solution of (5) when γ > 0. In Subsection 3.2 we present several properties of the retrial factor
that help in understanding the behavior of the retrial system.

3.2. Properties of the retrial factor

We first present several results for the retrial factor as(γ ) with finite s.

Theorem 2. The retrial factor as(γ ) : (0,√s) → (0,∞) is a positive, decreasing, and convex
function of γ ∈ (0,√s).

See Figure 1. Theorem 2 can be understood by interpreting γ as the inverse load on the
system. Indeed, the load is given by 1 − γ /

√
s and, hence, decreases from 1 for γ = 0 to 0 for

γ = √
s. We expect the retrial factor to increase with the load, since an increased load leads to

more blocked calls.
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Figure 1: The function as(γ ) for s = 10, 20, 100,∞ (ordered upwards).

The next result describes the asymptotic behavior of the retrial factor in heavy traffic (when
γ is small).

Theorem 3. Let s ≥ 1 be fixed. Then, for 0 < γ <
√
s,

as(γ ) = 1

γ
− 2√

s
−

(
1 − 2

s

)
γ +O(γ 2). (7)

That as(γ ) → ∞ as γ ↓ 0 is intuitively clear. Furthermore, that as(γ ) is of the order 1/γ
as γ ↓ 0 can be anticipated from Theorem 1 and the well-known result

ϕ(δ)

�(δ)
= −δ +O(δ−1) as δ → −∞.

We next complement the asymptotic result in (7) with some basic inequalities satisfied by
as(γ ).

Proposition 1. For 0 < γ <
√
s, γ as(γ ) is a monotonically decreasing function, and

1

γ
− 2√

s
− γ < as(γ ) <

1

γ
− 1√

s
. (8)

See Figure 2. Note that the additional arrivals as(γ )
√
s due to retrials is of the same order as

the overcapacityγ
√
s, and these additional arrivals start causing serious capacity problems when

as(γ ) > γ , and in particular when γ ↓ 0. Indeed, for large but fixed s, and γ approaching 0,
the blocking probability approaches 1. To see this, we can use the fact that as(γ ) tends to ∞,
like 1/γ , and, hence, for fixed s and γ ↓ 0 (a → ∞),

B(s, s − (γ − a)
√
s) = 1 −

√
s

a − γ
+O

((
1

a − γ

)2)
,

where we have also used the well-known fact that B(s, s − δ
√
s) = 1 + √

s/δ +O(1/δ2) as
δ → −∞.

Proposition 1 indicates that additional arrivals as(γ )
√
s and overcapacity are of the same

order of magnitude when γ is of order unity. A precise result for this is that

as(γ ) = γ when γ = γ ∗
s = √

s B(s, s). (9)

This γ ∗
s lies between 1

2 (s = 1) and (2/π)1/2 = 0.79788 . . . (s = ∞). See Figure 1.
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Figure 2: The function γ as(γ ) for s = 10, 20, 100,∞ (ordered upwards).

The next result describes the retrial factor in light-traffic conditions (when γ is large).

Theorem 4. Let s ≥ 1 be fixed. Then, for γ ↑ √
s,

as(γ ) = ss+1/2

s!
(

1 − γ√
s

)s+1(
1 +O

((
1 − γ√

s

)))
. (10)

There is the following monotonicity result.

Theorem 5. The retrial factor as(γ ), with γ ∈ (0,√s) fixed, increases monotonically in s ≥ 1.

See Figures 1 and 2. There seems no easy explanation for Theorem 5. Note that the traffic
intensity, with γ ∈ (0,√s) fixed,

ρ = λ

s
= 1 − γ√

s
,

increases monotonically in s, but there is no obvious ordering between two systems (indexed
by s), making a stochastic comparison difficult.

Theorem 5 gives useful complementary information on Theorem 1 in that the asymptotic
retrial factor a∞(γ ) is approximated monotonically from below by the retrial factor as(γ ) as
s → ∞. We now present several properties on this a∞(γ ).

Theorem 6. For any γ > 0, (5) has a unique solution a = a∞(γ ). This a∞(γ ) is a strictly
decreasing and convex function of γ > 0. Moreover,

a∞(γ ) = 1

γ
− γ + 2γ 3 − 20γ 5 + 82γ 7 +O(γ 9), γ > 0, (11)

and there is the inequality

1

γ
− γ < a∞(γ ) <

1

γ
, γ > 0. (12)

Finally,

a∞(γ ) = O(e−γ 2/2), γ ≥ 1. (13)
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4. Cohen’s equation in the Halfin–Whitt regime

Using λ = s − γ
√
s with γ <

√
s (negative values of γ are allowed) and � = a

√
s with

a > 0, Cohen’s equation (1) takes the form

a = fs(γ − a), (14)

where, for δ <
√
s,

fs(δ) = √
s

(
1 − δ√

s

)
B(s, s − δ

√
s). (15)

For solving (14) and understanding its solution a = as(γ ), it is necessary to study the
function fs . In Subsection 4.1 we present a number of results for fs that are finite s-versions
of known results for (the reciprocal of) Mills’ ratio

f∞(δ) = ϕ(δ)

�(δ)
= e−δ2/2∫ δ

−∞ e−(δ′)2/2 dδ′
, δ ∈ R, (16)

for the normal distribution. With regard to analytic properties, one can view f−1
s (δ) as the

appropriate version of Mills’ ratio for the Poisson distribution. In Subsection 4.2 we indicate
how the various results for fs and f∞ can be used to prove the results in Section 3 on as and a∞,
and we comment on the interrelations between the various results on fs . From this, a technical
workplan for proving the results on as and a∞ in Section 3 and those on fs and f∞ emerges
that is carried out in detail in Section 5. Finally, in Subsection 4.3 we present a Newton-type
computational method, based on the results on fs and f∞, for as and a∞.

4.1. Properties of fs and f∞
The properties of fs given in this subsection can be derived from the integral representation

of B(s, λ) in (2) that can be used to represent fs in quasi-Gaussian form. For this, we let

αs(δ) =
(

−2s

(
δ√
s

+ ln

(
1 − δ√

s

)))1/2

, δ <
√
s, (17)

where the square root is taken such that sgn(αs(δ)) = sgn(δ). With λ = s − δ
√
s and the

substitution λ′ = s − δ′
√
s in the integral in (2), we can write fs(δ) in terms of αs as

fs(δ) = (1 − δ/
√
s)e−α2

s (δ)/2∫ δ
−∞ e−α2

s (δ
′)/2 dδ′

, δ <
√
s; (18)

compare (16). A power series expansion in (17) yields, for δ ∈ R,

αs(δ) = δ

(
1 + 2δ

3
√
s

+ · · ·
)1/2

= δ +O

(
δ2

√
s

)
as s → ∞, (19)

and this can be used in showing that fs(δ) → f∞(δ) as s → ∞ for δ ∈ R; see Proposition 6
below.

There is a number of (known) properties of f∞ that turn out to have finite s-versions. These
are the asymptotic expansion

f∞(δ) = −δ − 1

δ
+ 2

δ3 − 10

δ5
+ 74

δ7 +O

(
1

δ9

)
as δ → −∞, (20)
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the inequalities for derivatives

f∞(δ) > −δ, −1 < f ′∞(δ) < 0, f ′′∞(δ) > 0, δ ∈ R, (21)

and the bounds

− 3
4δ + 1

4 (δ
2 + 8)1/2 < f∞(δ) < − 1

2δ + 1
2 (δ

2 + 4)1/2, δ ∈ R. (22)

The results in (21) and (22) were obtained by Sampford [11], while (20) is obtained from the
asymptotic expansion of the error function; see Subsection 5.11. For fs , we show the following
results in Section 5.

Proposition 2. Let s ≥ 1 be fixed. We have, for δ < 0,

fs(δ) = −δ − 1

δ
− 2

δ2
√
s

+
(

2 − 6

s

)
1

δ3 +O

(
1

δ4

)
. (23)

Proposition 3. For s ≥ 1 and δ <
√
s, we have

fs(δ) > −δ, −1 < f ′
s (δ) < 0, f ′′

s (δ) > 0. (24)

Proposition 4. For δ ∈ R, let

Ls(δ) = −3

4
δ − 1

2
√
s

+ 1

4

((
δ − 2√

s

)2

+ 8

)1/2

, (25)

Us(δ) = −1

2
δ − 1

2
√
s

+ 1

2

((
δ − 1√

s

)2

+ 4

)1/2

. (26)

For s ≥ 1 and δ <
√
s, we have

Ls(δ) < fs(δ) < Us(δ). (27)

Furthermore, with regard to dependence on s of fs(δ), we have the following results. Define
fs(δ) = 0, δ ≥ √

s.

Proposition 5. fs(δ) increases to f∞(δ) for any δ ∈ R.

Proposition 6. We have

fs(δ)− f∞(δ) = O

(
1√
s

)
,

uniformly in any compact set of δ ∈ R.

4.2. Technical workplan

We now indicate how the results of Propositions 2–6 on fs are used to prove the results on
as given in Section 3; the results on a∞ as given in Theorem 6 follow in a similar way from the
results in (20)–(22) on f∞.

Proposition 3 gives, for general s ≥ 1, the existence and uniqueness of the solution of
a = as(γ ) of Cohen’s equation (14) in the Halfin–Whitt regime. See Figure 3. Furthermore,
Theorem 2 on the monotonicity and convexity of as(γ ) as a function of γ is shown from
Proposition 3. Next, Theorem 3 on the behavior of as(γ ) as γ ↓ 0 can be established from
Proposition 2; Theorem 4 on the behavior of as(γ ) as γ ↑ √

s follows from more elementary
considerations. The two bounds on as(γ ) in Proposition 1 follow from the two bounds on fs(δ)
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Figure 3: The function fs(γ − a) for s = 100 and γ = −1, 0, 1.

in Proposition 4. Finally, Theorem 5 on the monotonic dependence of as(γ ) on s is shown by
using Propositions 3 and 5.

For the proof of Theorem 1, which states that as(γ ) → a∞(γ ) as s → ∞ for any γ > 0,
Propositions 5 and 6 as well as the inequalities f ′

s (δ) > −1 and f ′∞(δ) > −1 are used. It also
follows from these results that as(γ ) = a∞(γ )+O(1/

√
s), uniformly in any compact set of

γ > 0, and that as(γ ) increases to a∞(γ ) for any γ > 0.
The details of the proofs for the above results on as and a∞ are given in Section 5, together

with the proofs of Propositions 2–6 for fs . The results and proofs of Propositions 2–4 are
strongly interrelated. The inequality fs(δ) < Us(δ) in (27) is equivalent to f ′

s (δ) > −1, see
(24), and the inequality fs(δ) > Ls(δ) in (27) is equivalent to f ′′

s (δ) > 0 in (24). A similar
situation occurs for the inequalities in (21) and (22) involving f∞. While the inequalities in
(22) follow rather easily from the inequalities in (21), see [11], it turns out that, for fs , one
better proceeds by proving Propositions 3–4 in a combined effort. In the latter approach, a
crucial role is played by the asymptotic result for fs(δ) as δ → −∞ in Proposition 2, yielding
validity of the bounds on fs in (27) for large negative δ. Hence, Section 5 starts with proving
Proposition 2; see Subsection 5.1. Next, in Subsection 5.2, the equivalence of the inequalities
on derivatives of fs in Proposition 3 with bounds on fs in Proposition 4 is shown, together with
validity of the bounds in (27) for large negative δ from Proposition 2. Finally, the proofs of
both Proposition 3 and 4 are completed by showing corresponding inequalities to (27) for the
derivatives of the occurring functions for all δ <

√
s.

In Section 5 we then proceed with establishing the properties of the retrial factors as given
in Subsection 3.2. Propositions 5 and 6 on the (monotonic) approximation of f∞(δ) by fs(δ)
as s → ∞ are shown, and for this the quasi-Gaussian representation (18) of fs is crucial.
Then the proof of the results in Theorem 6 on a∞(γ ) is briefly indicated, and, finally, we
show from Propositions 5–6 and the inequalities f ′

s (δ) > −1 and f ′∞(δ) > −1 that as(γ ) =
a∞(γ )+O(1/

√
s) as s → ∞, uniformly in any compact set of γ > 0.

4.3. Computation scheme for as(γ ) and a∞(γ )

For the computation of as(γ ) and a∞(γ ), a simple Newton iteration works quite well due
to convexity of f = fs and f∞; see Theorem 6 and (24). When γ > 0 is not too small,
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initialization can be done by setting a(0) = 0. When γ is close to 0, the initialization should
be done using (7) and (11) for the respective cases. In all cases, convergence is quadratic and
monotonic after one step. The Newton step

a(n+1) = a(n) − a(n) − f (γ − a(n))

1 + f ′(γ − a(n))

is implemented conveniently, using

f ′
s (δ) = −fs(δ)

1 − δ/
√
s

(
δ + 1√

s
+ fs(δ)

)
,

see (33) below, and
f ′∞(δ) = −f∞(δ)(δ + f∞(δ)),

respectively.

5. Proofs

In this section we present the proofs of all the results of this paper, where we follow the
workplan as outlined in Subsection 4.2.

5.1. Proof of Proposition 2

With the substitution t = (λ′/λ)− 1, we have, from (2),

λB(s, λ) =
(∫ ∞

0
e−λt (1 + t)s dt

)−1

; (28)

see [8]. From (28) with λ = s − δ
√
s, we obtain

fs(δ) = 1√
s
(s − δ

√
s)B(s, s − δ

√
s) =

(√
s

∫ ∞

0
e−st+δt√s(1 + t)s dt

)−1

.

Next, with the substitution t = x/s, we obtain

(fs(δ))
−1 = 1√

s

∫ ∞

0
eδx/

√
se−x

(
1 + x

s

)s
dx. (29)

We expand

e−x
(

1 + x

s

)s
=

∞∑
j=0

cj (s)x
j , |x| < s.

On account of

e−x
(

1 + x

s

)s
=

J∑
j=0

cj (s)x
j +O(xJ+1), x > 0,

for any J = 0, 1, . . . , we then obtain

(fs(δ))
−1 = 1√

s

J∑
j=0

(−1)j+1j ! cj (s)
(√

s

δ

)j+1

+O

((
1

δ

)J+2)
as δ → −∞. (30)
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The cj (s) can be found in finite terms by multiplying the power series of exp(−x) and that
of (1 + x/s)s . Thus,

cj (s) =
∑

i,l≥0, i+l=j

(−1)i

i!
s(s − 1) · · · (s − l + 1)

l! sl .

The first few cj (s) are given by c0 = 1, c1 = 0, and

c2(s) = −1

2s
, c3(s) = 1

3s2 , c4(s) = 1

8s2 − 1

4s3 .

It then follows from (30) with J = 4 that

(fs(δ))
−1 = −1

δ
+ 1

δ3 + 2

δ4
√
s

−
(

3 − 6

s

)
1

δ5
+O

(
1

δ6

)
as δ → −∞.

Therefore,

fs(δ) = −δ
(

1 − 1

δ2 − 2

δ3
√
s

+
(

3 − 6

s

)
1

δ4 +O

(
1

δ5

))−1

as δ → −∞, (31)

and the results of Proposition 2 are obtained from (31) by expanding (1−x)−1 = 1+x+x2 +
O(x3), |x| < 1

2 .

5.2. Proofs of Propositions 3 and 4

We suppress s in fs(δ) andαs(δ) until Subsection 5.9. Let g(δ) = gs(δ) = f (δ)/(1−δ/√s).
Lemma 2. With the prime denoting differentiation with respect to δ, for δ <

√
s,

(− 1
2α

2(δ)
)′ = −δ

1 − δ/
√
s
, (32)

f ′(δ) = −g(δ)
(
δ + 1√

s
+ f (δ)

)
, (33)

g′(δ) = −g(δ)
(

δ

1 − δ/
√
s

+ g(δ)

)
,

f ′′(δ) = g(δ)

(
δ + 1√

s
+ f (δ)

)(
2g(δ)+ δ

1 − δ/
√
s

)
− g(δ). (34)

Proof. Straightforward verification from (17) and (18).

We have f (δ) > 0 ≥ −δ when δ ≥ 0 and, for δ < 0, we have

f (δ) > −δ ⇐⇒ −1

δ
e−α2(δ)/2

(
1 − δ√

s

)
> I (δ), (35)

where, see (18),

I (δ) =
∫ δ

−∞
e−α2(δ′)/2 dδ′, δ <

√
s. (36)

From Proposition 2, it is seen that f (δ) > −δ holds for large negative δ. We compute, using
(32), (

−1

δ
e−α2(δ)/2

(
1 − δ√

s

))′
=

(
1 + 1

δ2

)
e−α2(δ)/2 > e−α2(δ)/2 = I ′(δ).

Therefore, the two inequalities in (35) hold for all δ < 0.
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We next show that f ′(δ) > −1. Using g(δ) = f (δ)/(1 − δ/
√
s) and (33), we have, for

δ <
√
s,

f ′(δ) > −1 ⇐⇒ f (δ)

(
δ + 1√

s
+ f (δ)

)
< 1 − δ√

s
. (37)

The inequality in the second statement in (37) can be written as

∣∣∣∣f (δ)+ 1

2

(
δ + 1√

s

)∣∣∣∣ <
(

1 + 1

4

(
δ − 1√

s

)2)1/2

.

Now f (δ) > 0 and − 1
2 (δ + 1/

√
s)− (1 + 1

4 (δ − 1/
√
s)2)1/2 < 0 for δ <

√
s, and so we have,

for δ <
√
s,

f ′(δ) > −1 ⇐⇒ f (δ) <

(
1 + 1

4

(
δ − 1√

s

)2)1/2

− 1

2

(
δ + 1√

s

)
. (38)

The inequality in the second member of (38) is the second inequality in Proposition 4 which
will be proved below. Therefore, f ′(δ) > −1 holds for all δ <

√
s. The inequality f ′(δ) < 0

follows from (33), and so we have shown that −1 < f ′(δ) < 0 for δ <
√
s.

We finally show that f ′′(δ) > 0. It follows from (34), the positivity of g(δ) when δ <
√
s,

and g(δ) = f (δ)/(1 − δ/
√
s) that, for δ <

√
s,

f ′′(δ) > 0 ⇐⇒
(
δ + 1√

s
+ f (δ)

)
(2f (δ)+ δ) > 1 − δ√

s
. (39)

The second inequality in (39) can be written as

∣∣∣∣f (δ)+ 3

4
δ + 1

2
√
s

∣∣∣∣ > 1

4

((
δ − 2√

s

)2

+ 8

)1/2

. (40)

Now f (δ) > −δ > − 3
4δ − 1/2

√
s − 1

4 (δ − 2/
√
s)2 for δ <

√
s, and so we have, for δ <

√
s,

f ′′(δ) > 0 ⇐⇒ f (δ) >
1

4

((
δ − 2√

s

)2

+ 8

)1/2

− 3

4
δ − 1

2
√
s
. (41)

The inequality in the second member of (41) is the first inequality in Proposition 4 which will
be proved below. Hence, (40) holds for δ <

√
s and so f ′′(δ) > 0 for δ <

√
s. This completes

the proof of Proposition 3.
We now turn to the proof of Proposition 4. We first show that, for δ <

√
s,

f (δ) < −1

2

(
δ + 1√

s

)
+ 1

2

((
δ − 1√

s

)2

+ 4

)1/2

=: F(δ). (42)

From (18) we have

f (δ) < F(δ) ⇐⇒ I (δ) >
(1 − δ/

√
s)e−α2(δ)/2

F(δ)
=: S(δ), (43)

where I is the integral in (36). From (32) we compute

S′(δ) = −δ
F (δ)

e−α2(δ)/2 − F(δ)/
√
s + (1 − δ/

√
s)F ′(δ)

F 2(δ)
e−α2(δ)/2. (44)
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We will show that I ′(δ) = exp(− 1
2α

2(δ)) > S′(δ), and this is equivalent to

F 2(δ) > −
(
δ + 1√

s

)
F(δ)−

(
1 − δ√

s

)
F ′(δ) (45)

by (44). Now, from the definition of F(δ) given in (42), we have

F 2(δ)+
(
δ + 1√

s

)
F(δ) = F(δ)

(
F(δ)+ δ + 1√

s

)
= 1 − δ√

s
,

and so (45) is equivalent to F ′(δ) > −1. We compute

F ′(δ) = −1

2
+ 1

2

δ − 1/
√
s

((δ − 1/
√
s)2 + 4)1/2

> −1, δ ∈ R,

and so I ′(δ) > S′(δ) for all δ <
√
s. Therefore, it is enough to show that I (δ) > S(δ) for large

negative δ. From (42), (43) and (38), (37), we have, for δ <
√
s,

I (δ) > S(δ) ⇐⇒ ϕ(δ) := f (δ)

(
δ + 1√

s
+ f (δ)

)
< 1 − δ√

s
. (46)

Using f (δ) = −δ − δ−1 − 2δ−2s−1/2 +O(δ−3), see Proposition 2, we obtain

ϕ(δ) = 1 − δ√
s

+ 1

δ
√
s

+O(δ−2) < 1 − δ√
s

for large negative δ. Hence, the two statements in (46) hold for large negative δ and the proof
of (42) is complete.

We next show that, for δ <
√
s,

f (δ) > −
(

3

4
δ + 1

2
√
s

)
+ 1

4

((
δ − 2√

s

)2

+ 8

)1/2

=: E(δ). (47)

From (18) we have

f (δ) > E(δ) ⇐⇒ I (δ) <
(1 − δ/

√
s)e−α2(δ)/2

E(δ)
=: R(δ). (48)

We will show that I ′(δ) < R′(δ). As above, we have

I ′(δ) < R′(δ) ⇐⇒ E2(δ) < −
(
δ + 1√

s

)
E(δ)−

(
1 − δ√

s

)
E′(δ).

We now compute

E2(δ)+
(
δ + 1√

s

)
E(δ) = −1

8
δ2 − 3δ

4
√
s

+ 1

2
− 1

8
δ

((
δ − 2√

s

)2

+ 8

)1/2

.

Then using the fact that

E′(δ) = −3

4
+ 1

4

δ − 2/
√
s

((δ − 2/
√
s)2 + 8)1/2

,

https://doi.org/10.1239/aap/1363354111 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1363354111


288 F. AVRAM ET AL.

we find that

I ′(δ) < R′(δ) ⇐⇒ − 1

8
δ2 − 3δ

4
√
s

+ 1

2
− 1

8
δ

((
δ − 2√

s

)2

+ 8

)1/2

< −
(

1 − δ√
s

)(
−3

4
+ 1

4

δ − 2/
√
s

((δ − 2/
√
s)2 + 8)1/2

)
.

With some algebra, this becomes

I ′(δ) < R′(δ) ⇐⇒ (δ2 + 2)

((
δ − 2√

s

)2

+ 8

)1/2

> −δ3 + 2√
s
δ2 − 6δ − 4√

s
. (49)

Setting x = −δ and taking squares, the inequality in the second proposition of (49) is implied
by

(x2 + 2)2
((
x + 2√

s

)2

+ 8

)
>

(
x3 + 2√

s
x2 + 6x − 4√

s

)2

.

Working this out and simplifying finally leads to the condition (x + √
s)2 > 0, which obviously

holds. Hence, I ′(δ) < R′(δ) holds for all δ <
√
s. Therefore, it is enough to show that

I (δ) < R(δ) for large negative δ. From (47), (48) and (41), (39), we have, for δ <
√
s,

I (δ) < R(δ) ⇐⇒ ψ(δ) :=
(
δ + 1√

s
+ f (δ)

)
(2f (δ)+ δ) > 1 − δ√

s
. (50)

Now using the full strength of Proposition 2, we obtain

ψ(δ) =
(

−1

δ
+ 1√

s
− 2

δ2
√
s

+
(

2 − 6

s

)
1

δ3 +O(δ−4)

)(
−δ − 2

δ
− 4

δ2
√
s

+O(δ−3)

)

= 1 − δ√
s

+ 2

sδ2 +O(δ−3)

> 1 − δ√
s

for large negative δ. Hence, the two statements in (50) hold for large negative δ, and the proof
of (47) is complete. This completes the proof of Proposition 4.

5.3. Solving (14): existence and uniqueness

Assume that γ ≤ 0. We have, from Proposition 3,

f (γ − a) > −(γ − a) ≥ a

for any a > 0. Hence, (14) does not have a solution.
Next assume that γ ≥ √

s. Since f (δ) = 0, δ ≥ √
s, we have f (γ − a) = 0 at a = 0 while

df (γ − a)/da < 1 for all a > 0. Again, it follows that (14) has no solution.
Finally, assume that 0 < γ <

√
s. It follows from Proposition 2 that

f (γ − a) = −(γ − a)+O(a−1) < a

for large positive a. Also, f (γ − a) > 0 at a = 0. Therefore, (14) has at least one solution.
This solution is unique since df (γ − a)/da < 1 by Proposition 3. See also Figure 3.
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We further note the following. When 0 < γ <
√
s and a > 0, a − a(γ ) and a − f (γ − a)

have the same sign. Thus, a < a(γ ) implies that a < f (γ − a), and vice versa; see Figure 3.
Indeed, we have, by the mean-value theorem,

a − f (γ − a) = a − f (γ − a)− (a(γ )− f (γ − a(γ ))) = (a − a(γ ))(1 + f ′(γ − b))

for some b between a and a(γ ). Hence, a − f (γ − a) and a − a(γ ) have the same sign since
1 + f ′(γ − b) > 0 by Proposition 3.

5.4. Proof of Theorem 2

Positivity is clear. From (14), by implicit differentiation with respect to γ , we compute

a′(γ ) = f ′(γ − a(γ ))

1 + f ′(γ − a(γ ))
< 0, 0 < γ <

√
s, (51)

since f ′(δ) ∈ (−1, 0) for δ <
√
s by Proposition 3. Hence, a(γ ) is strictly decreasing in

γ ∈ (0,√s), and so γ − a(γ ) is strictly increasing in γ ∈ (0,√s). By the convexity of f , see
Proposition 3, f ′(γ−a(γ )) is strictly increasing in γ ∈ (0,√s). Since f ′(γ−a(γ )) ∈ (−1, 0)
and x/(1+x) is strictly increasing in x ∈ (−1, 0), it then follows from (51) that a′(γ ) is strictly
increasing in γ ∈ (0,√s). That is, a(γ ) is strictly convex.

5.5. Proof of Theorem 3

We first show that b := limγ↓0 a(γ ) = ∞ (from Theorem 2 we know that b indeed exists).
Indeed, if b < ∞, we would have, by continuity, b = limγ↓0 f (γ − a(γ )) = f (−b),
contradicting Proposition 3. Hence, since γ −a(γ ) → −∞ as γ ↓ 0, we can use Proposition 2
to see that

a = f (γ − a) = −(γ − a)− 1

γ − a
− 2

(γ − a)2
√
s

+
(

2 − 6

s

)
1

(γ − a)3
+O

(
1

(γ − a)4

)

as γ ↓ 0, in which we have temporarily written a = a(γ ). Thus,

γ = 1

a − γ
− 2

(a − γ )2
√
s

−
(

2 − 6

s

)
1

(a − γ )3
+O

(
1

(γ − a)4

)

= 1

a − γ
(1 + o(1)) as γ ↓ 0. (52)

Multiplying the first and last members of (52) by a− γ and dividing them by γ , it follows that
a = γ−1(1 + o(1)) as γ ↓ 0. We now write the first line of (52) as

a − γ = 1

γ

(
1 − 2

(a − γ )
√
s

−
(

2 − 6

s

)
1

(a − γ )2
+O

(
1

(γ − a)3

))
, (53)

noting that (a − γ )−1 = O(γ ) as γ ↓ 0. The form (53) is appropriate for getting ever more
precise asymptotic information on a − γ by iteration. Thus, we find first that

a − γ = 1

γ

(
1 +O

(
γ√
s

)
+O(γ 2)

)

and then from (53) that

a − γ = 1

γ

(
1 − 2γ√

s
+O(γ 2)

)
.

https://doi.org/10.1239/aap/1363354111 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1363354111


290 F. AVRAM ET AL.

One more iteration yields

a − γ = 1

γ

(
1 − 2γ√

s
−

(
2 − 2

s

)
γ 2 +O(γ 3)

)
,

and this is (7).

5.6. Proof of Proposition 1

Let L = Ls and U = Us as in (25) and (26). We have aL(γ ) < a(γ ) < aU(γ ) when aL(γ )
and aU(γ ) are the solutions a > 0 of a = L(γ − a) and a = U(γ − a), respectively. Indeed,
from (14) and (27), we have

aL(γ )− f (γ − aL(γ )) < aL(γ )− L(γ − aL(γ ))

= 0

= aU(γ )− U(γ − aU(γ )) < aU(γ )− f (γ − aU(γ )),

and so aL(γ ) < a(γ ) < aU(γ ) follows from the comment at the end of Subsection 5.3.
Solving the equations a = L(γ − a) and a = U(γ − a) gives γ aL(γ ) = 1 − 2γ /

√
s − γ 2

and γ aU(γ ) = 1 − γ /
√
s, respectively. This shows (8).

We have, from (33) and (51),

a′(γ ) = −a(γ )(γ + 1/
√
s)

1 − γ (a(γ )+ 1/
√
s)
, 0 < γ <

√
s,

where the facts that f (δ) = (1 − δ/
√
s) g(δ) and f (γ − a) = a have been used. Therefore,

(γ a(γ ))′ = a(γ )+ γ a′(γ ) = a(γ )

(
1 − γ (γ + 1/

√
s)

1 − γ (a(γ )+ 1/
√
s)

)
.

From (8), it is then seen that a′(γ ) and (γ a(γ ))′ are positive.

5.7. Proof of (9)

From f (0) = f (f (0)− f (0)), it is seen that a = f (0) solves the equation a = f (γ − a)

when γ = f (0). Hence, a(f (0)) = f (0).

5.8. Proof of Theorem 4

Let c := limγ↑√
s a(γ ) (from Theorem 2 we know that c indeed exists). We will show that

c = 0. From c = f (
√
s − c), we obtain, for some d,

√
s − c ≤ d ≤ √

c, by the mean value
theorem,

c = f (
√
s − c) = f (

√
s)− cf ′(d) = 0 − cf ′(d).

Now f ′(d) > −1 by Proposition 3, and so c = 0.
Next, we have, from (2) and (15),

f (δ) = ss+1/2(1 − δ/
√
s)s+1/s!∑s

k=0 s
k(1 − δ/

√
s)k/k!

= ss+1/2

s!
(

1 − δ√
s

)s+1(
1 +O

(
1 − δ√

s

))
, δ ≤ √

s. (54)
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The first form for f in (54) shows that f has a zero of order s+ 1 at δ = √
s, and so f ′(δ) → 0

as δ ↑ √
s. Writing, temporarily, a = a(γ ), we see, from a = f (γ − a), by the mean value

theorem, that there exists a ξ ∈ [γ − a, γ ] such that

a = f (γ )− af ′(ξ). (55)

Since f ′(ξ) → 0 as γ ↑ √
s (which follows from ξ ≥ γ − a and a → 0 as γ ↑ √

s), we thus
see from (54)–(55) that

a = f (γ )

1 + f ′(ξ)
= O

((
1 − γ√

s

)s+1)
as γ ↑ √

s.

It then follows from a = f (γ − a) and (54) that

a = ss+1/2

s!
(

1 − γ√
s

+O

((
1 − γ√

s

)s+1)s+1)(
1 +O

(
1 − γ√

s

))
,

and this gives (10).

5.9. Proofs of Propositions 5 and 6

We have from (29), by the substitution x = y
√
s,

1

fs(δ)
=

∫ ∞

0
eδye−y√s

(
1 + y√

s

)s
dy.

Therefore, it suffices to show that, for y > 0,

e−y√s
(

1 + y√
s

)s
= exp

(
−y√s + s ln

(
1 + y√

s

))

decreases in s ≥ 1. We have

d

ds

[
−y√s + s ln

(
1 + y√

s

)]
= −1

2

(
y√
s

+ y/
√
s

1 + y/
√
s

)
+ ln

(
1 + y√

s

)
, (56)

and we will show that this is negative for y > 0. With a = y/
√
s > 0, we have, from (u ln u)′ =

1 + ln u,

(1 + a) ln(1 + a) =
∫ a

0
(1 + ln(1 + v)) dv <

∫ a

0
(1 + v) dv = a + 1

2
a2,

i.e. that

ln(1 + a) <
a + a2/2

1 + a
= 1

2

(
a + a

1 + a

)
.

This implies negativity of (56), and Proposition 5 is proved.
For the proof of Proposition 6, we start by analyzing the function

Js(δ) :=
∫ δ

−∞
e−(δ′)2/2 dδ′ −

∫ δ

−∞
e−α2

s (δ
′)/2 dδ′, δ ≤ √

s,
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where we recall the quasi-Gaussian representation of fs(δ) in (18). We have αs(0) = 0 and
αs(δ) > δ, 0 �= δ <

√
s, and so e−α2

s (δ)/2 > e−δ2/2, δ < 0, e−α2
s (δ)/2 < e−δ2/2, 0 < δ ≤ √

s.

It follows that Js(δ) decreases from the value 0 at δ = −∞ to its minimum value

1

2

√
2π − (fs(0))

−1 = −2

3
√
s

+O

(
1

s

)
(57)

at δ = 0. Here we have used the fact thatfs(0) = √
sB(0, 0) and [9, Theorem 11]. Furthermore,

Js(δ) increases from value (57) at δ = 0 to the value

Js(
√
s) =

∫ √
s

−∞
e−(δ′)2/2 dδ′ −

∫ √
s

−∞
e−α2

s (δ
′)/2 dδ′

=
∫ ∞

−∞
e−(δ′)2/2 dδ′ −

∫ ∞
√
s

e−(δ′)2/2 dδ′ −
∫ √

s

−∞
eδ

′√s
(

1 − δ′√
s

)
dδ′

= √
2π +O(e−s)− √

s

∫ ∞

0
e(1−t)s t s dt

= √
2π +O(e−s)− es
(s + 1)

ss+1/2 .

Here, the definition of αs given in (17) has been used and subsequently the substitution δ′ =
(1 − t)

√
s has been used to write the integral involving αs in terms of the gamma integral. By

Stirling’s formula, 
(s + 1) = ss+1/2e−s√2π(1 +O(1/s)), it is seen that Js(
√
s) = O(1/s).

It follows that Js(δ) = O(1/
√
s) uniformly in δ ≤ √

s.
Now let −∞ < δ0 < δ1 <

√
s. Both

∫ δ
−∞ e−(δ′)2/2 dδ′ and

∫ δ
−∞ e−α2

s (δ
′)/2 dδ′ are bounded

away from 0 when δ0 ≤ δ ≤ δ1, while their difference Js(δ) = O(1/
√
s) uniformly on [δ0, δ1].

From (18) and (19), considered on the compact interval [δ0, δ1], we see that f∞(δ)− fs(δ) =
O(1/

√
s) uniformly in δ ∈ [δ0, δ1]. This proves Proposition 6.

5.10. Proof of Theorem 5

Let γ ∈ (0,√s) be fixed. By implicit differentiation of the equation as(γ ) = fs(γ −as(γ ))
with respect to s, we obtain

∂

∂s
(as(γ )) = ∂fs(γ − as(γ ))/∂s

1 + ∂fs(γ − as(γ ))/∂γ
> 0, 0 < γ <

√
s,

by Proposition 3 and Proposition 5.

5.11. Proof of Theorem 6

The matter of existence and uniqueness of solutions of (5) is settled in a similar way as was
done for (14); see Subsection 5.3.

By [1, Item 7.2.14, p. 300], case n = 0, we have the asymptotic expansion∫ δ

−∞
e−(δ′)2/2 dδ′ =

√
π

2
erfc

(
− δ√

2

)

∼ −e−δ2/2
∞∑
m=0

(−1)m(2m)!
m! 2mδ2m+1

= −e−δ2/2
(

1

δ
− 1

δ3 + 3

δ5
− 15

δ7 + 105

δ9 +O

(
1

δ11

))
as δ → −∞.

(58)
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Then (20) follows from (58) and some additional computations; cf. end of Subsection 5.1. Next,
(20) is used for the proof of (11) in a similar way as (23) was used to prove (7) in Subsection 5.5
(this requires including an additional term −945/δ11 in the expansion in (58)).

Next, the inequalities in (12) follow from the inequality (22) in a similar way as (8) follows
from (25) and (26); see Subsection 5.6.

Finally, we have, from a = a∞(γ ) < 1/γ ,

a = exp(−(γ − a)2/2)∫ γ−a
−∞ e−(δ′)2/2 dδ′

<
exp(−γ 2/2 + 1)∫ 0
−∞ e−(δ′)2/2 dδ′

, γ ≥ 1,

and this shows (13).

5.12. Proof of Theorem 1

We will show that a∞(γ )− as(γ ) = O(1/
√
s) uniformly in γ ∈ [γ0, γ1] when 0 < γ0 <

γ1 < ∞. We start by noting that 0 < as(γ ) < a∞(γ ) when 0 < γ <
√
s. Indeed, as(γ ) > 0

when 0 < γ <
√
s. Moreover, fs(γ ) < f∞(γ ) by Propositions 5 and 6, and so a∞(γ ) −

fs(γ − a∞(γ )) > a∞(γ ) − f∞(γ − a∞(γ )) = 0. Therefore, see the end of Subsection 5.3,
we have a∞(γ ) > as(γ ).

Take s ≥ γ 2
1 , and let

δ0 = γ0 − α∞(γ0), δ1 = γ1 − as(γ1).

Since γ − as(γ ) and γ − a∞(γ ) are increasing in γ by Theorem 2 and Theorem 6, we have
−∞ < δ0 < δ1 < γ . By Propositions 5 and 6, there exists a K > 0 such that

0 < f∞(δ)− fs(δ) <
K√
s
, s ≥ γ 2

1 , δ ∈ [δ0, δ1]. (59)

Also, for any δ ∈ [δ0, δ1], by Proposition 3 and (21),

f ′
s (δ) ≥ f ′

s (δ0) > −1, f ′
s (δ0) → f ′∞(δ0) > −1 as s → ∞. (60)

It follows from (60) that there exists a ε > 0 such that

f ′
s (δ) ≥ −(1 − ε), s ≥ γ 2

1 , δ ∈ [δ0, δ1]. (61)

Now take any γ ∈ [γ0, γ1], and let

hs(a) := a − fs(γ − a), h∞(a) := a − f∞(γ − a), γ − δ1 ≤ a ≤ γ − δ0.

Then as(γ ), a∞(γ ) ∈ [γ − δ1, γ − δ0], and

hs(as(γ )) = 0 = h∞(a∞(γ )), (62)

while

0 < hs(a)− h∞(a) <
K√
s
, γ − δ1 ≤ a ≤ γ − δ0 (63)

by (59). Furthermore, by (61),

h′
s(a) ≥ ε, h′∞(a) ≥ ε, γ − δ1 ≤ a ≤ γ − δ0. (64)
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By the mean value theorem, there exists a b ∈ [as(γ ), a∞(γ )] such that

hs(a∞(γ ))− hs(as(γ )) = (a∞(γ )− as(γ ))h
′
s(b).

Since
hs(a∞(γ ))− hs(as(γ )) = hs(a∞(γ ))− h∞(a∞(γ ))

by (62), it follows from (63) with a = a∞(γ ) that

(a∞(γ )− as(γ )) h
′
s(b) <

K√
s
.

Then, finally, from as(γ ) < a∞(γ ) and (64) with a = b, we obtain

0 < a∞(γ )− as(γ ) <
K

ε
√
s
,

as required.
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