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1. Introduction. Let J be an integral domain (i.e., a commutative ring 
without divisors of zero) with unit element, F its quotient field and J[x] the 
integral domain of polynomials with coefficients from / . The domain / is 
called integrally closed if every root of a monic polynomial over / which is in F 
also is in J. If J has unique factorization into primes, a well-known lemma of 
Gauss asserts: "If p{x) is a polynomial in J[x] factoring over F, then p{x) 
factors over J" For proof see (2, p. 73). We shall show that if J is integrally 
closed but unique factorization is not assumed i n / a n d if p(x) = axm + . . . + am 

is in J[x] and p{x) = g(x) h(x) in F[x], then ap(x) factors in J[x]. The case 
a = 1, which asserts that the Gauss lemma holds for monic polynomials, is 
important in many applications. 

We show further a hereditary property of integral closure, namely, that 
J[x] is integrally closed if / is integrally closed. These two theorems permit us 
to generalize a theorem on the relation between the Galois group of a monic 
polynomial over / and the Galois group of the corresponding polynomial 
mod p where p is a prime ideal of / . 

2. Theorems on integral domains. An element f} algebraic over F is called 
an algebraic integer if p satisfies a monic equation (not necessarily irreducible) 
with coefficients in / . A well-known theorem on symmetric polynomials then 
shows that the algebraic integers form a ring J* and that this ring is integrally 
closed. Moreover if J is integrally closed and if an algebraic integer (3 lies in F, 
then it must lie in J. From our definition, it follows that the conjugates over F 
of an algebraic integer are also integral, and so the monic irreducible equation 
over F of an integer has its coefficients in J. 

THEOREM 1. Let J be an integrally closed integral domain with unit element, 
F its quotient field. Letf(x) Ç J[x] andf(x) = g(x) h(x) where g(x), h(x) G F[x]. 
Letf(x), g(x), h(x) have first coefficients a, &, c respectively. Then 

have integral coefficients. Hence 

*/(*) = (f«(*))(fft(*)) 
is a decomposition of af(x) in J[x]. 
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Proof. Let p be a root of fix). An argument completely analogous to that 
given in (1, p. 91) for the case that / is the domain of algebraic integers in the 
usual sense shows that 

/(*) 
x — p 

has integral coefficients. Applying this to all the roots p of A(x), we deduce that 

m- -*(*>-!«<*> 
has integral coefficients. For a = 1 we have: 

COROLLARY. If J is integrally closed and the monic polynomial fix) £ J[x] 
factors in F[x], then it also factors in J[x]. 

For the applications of Theorem 1 and its Corollary, it will be necessary to 
show that the property of algebraic closure carries over to the polynomial 
domain J[x], 

THEOREM 2. If J is integrally closed, then J[x] is integrally closed. 

Let fix)/gix) be a root of a monic polynomial with coefficients in J[x]. 
Since unique factorization holds in F[x], it follows that F[x] is integrally 
closed. Hence gix) must be an element of F and we can choose it in / . Let now 
fix)/a, fix) Ç J[x], a Ç J satisfy a monic equation with coefficients in J[x]. 
Since the domain of integers over J is integrally closed, /(£) /a must be integral 
for all integers 0. Let 

fix) = A0x
m + . . . , 

then 
fix) -f(P) _ (x-p)Mx) 

a a 

is integral valued for all integral values of x. Moreover the first coefficient of 
fiix) is A0. Suppose now that we have constructed a polynomial: 

, . _ jx - pi) . . . jx - ps)fsjx) 
a 

where the p* are integers such that <t>six) is integral, whenever x is integral 
and such that the first coefficient of f& (x) is A 0. Let p s + i be a root of the equation 

(x — pi) . . . (x — ps) = 1. 

Then ps+i is an integer and <£s(ps+i) = fsips+i)/a. Hence 

jx - pi) . . . jx - ps)fsjx) _ jx - pi) . . . jx - ps) fips+i) 
a a 

_ jx — pi) . . . jx - ps+i)fs+ijx) 
a 
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is integral whenever x is integral and/ s + i (x) has again Ao as first coefficient. 
Continuing in this manner, we arrive at a polynomial 

Ap (x - p i ) . . . (x - pm) 

a 

which is integral whenever x is an integer. Let 0 be a root of the equation, 

(x - pi) . . . (x - pm) = 1. 

Then fi is an integer and it follows that A 0 is divisible by a. We may therefore 
write : 

^ = kw + ^ , be /, g(x) e j[x], 
a a 

where g(x) is a polynomial of degree at most m — 1. Substituting in the 
equation for F(x)/a, we see that g(x)/a is also root of a monic polymonial 
with coefficients in J[x]. Theorem 2 now follows by induction. 

COROLLARY. If J is integrally closed, then J[x%, . . . , xn] is integrally closed. 

3. Application to Galois theory. The corollary can be used to generalize a 
theorem that has been known to hold for unique factorization domains (2, 
p. 190) as well as for algebraic number fields (3, p. 122, eq. 10.6). 

THEOREM 3. Let J be an integrally closed integral domain, p a prime ideal in 
J. Let J be the residue ring of J {mod p) and f(x) a monic polynomial in J(x), 
f(x) the corresponding polynomial in J(x). Let A, Â, be the quotient fields of J 
and J respectively. Iff(x) and f(x) do not have any double roots, then the roots of 
f(x) andf(x) can be so numbered that the Galois group off(x) is a subgroup of the 
Galois group of f(x). 

A study of the proof of this theorem in (2, p. 190), readily shows that the 
assumption of unique factorization in / made there is used only to establish 
the factorization of a monic polynomial over the ring J[u\, . . . , un] from its 
factorization in the quotient field of J[ui, . . . , un]. It can therefore be replaced 
by Theorem 1 coupled with the Corollary to Theorem 2. The proof itself is 
word by word the same as in (2). 
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