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A NOTE ON ORBITS OF SUBGROUPS OF THE 
PERMUTATION GROUPS 

R. D. LEITCH 

In [2] we studied Milgram's Complex, C(n — 1), which was first defined 
in [3], in the following manner. Let Sn, the permutation group of n 
symbols, act on Rn in the obvious manner; put a(x) = (y), where 
yt = xa-i(/). Let s = (1, 2 , . . . , n), then C(n — 1) is the convex hull of the 
points a(s), a G. Sn. Here we shall generalise this construction as follows. 
Let G be a subgroup of Sn, and let v e R". Then C(G, v) is the convex hull 
of a(v), a e G. We prove invariance over v subject to certain restrictions, 
give counter-examples to shew lack of invariance if we alter G, discuss how 
we may describe C(G, v), shew that the only "nice" case is essentially 
when G is Sn, and lastly give some examples. 

We use the definition of a polygonal cell (which we call a p-cell) found 
in [1]; a/?-cell is an intersection of a finite number of closed half spaces. 
We can talk of the faces of a /?-cell, in particular the vertices and the 
/^-skeleton Xk of the/?-cell X. A/?-map/:X—> y between two/?-cells Xand 
y is a map taking vertices to vertices and which is linear, up to a 
translation, on the 1-faces of X. If / i s one to one it defines a/?-inclusion, if 
one to one and onto, and hence with an inverse, we say that it is a 
/^-isomorphism, and write 

X ~ Y. 
p 

Let x, y be vertices of the same 1-cell in the boundary of a^-cell X. Then 
we say x is adjacent to y, and write x — y. 

THEOREM 1. Let V(X\ V(Y) be the vertices of the p-cells X, Y 
respectively, and letf:V(X) —> V(Y) be a map which is one to one, onto and 
is such that x ~ y if and only iff(x) ~ f(y). Then X ^ Y. 

p 

Proof We can extend f to fx\Xx —> Yj, and f/c:Xk —> Yk to fk + x 

inductively over k, fk being an extension of fk-\9 and unique up to 
homotopy. Then eventually Xk = X, and as a /?-cell is the convex hull of 
its vertices, we have the theorem. 

COROLLARY 2. Let F(X), F(Y) be the faces of the p-cells, X, Y 
respectively, and let 
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h:F(X)^F(Y) 

be a map which is one to one, onto and preserves dimension and incidence. 
Then X ~ Y. 

p 

Proof. h\V(X) satisfies the conditions of 1. 
Let x be a vertex of X, and let H be a closed half space containing x in 

its interior, but containing no other vertices of X. H n X we call a /?-nbd 
of x. All the /?-nbds of x are /^-isomorphic. 

Definition 3. We say the vertices x, y of the/?-cells X, Y 2S^p-isomorphic 
if their/7-nbds are/^-isomorphic. If, further, we can find/?-nbds X', Y', and 
a distance preserving map/:X' —> Y such that / (x) = / (y) , we say x, y are 
m-isomorphic. 

(For example, if D is the 2-simplex with vertices at (0, 0), (1, 0), (0, 1), 
then the three vertices are /?-isomorphic, but the vertex at the origin is not 
m-isomorphic to the other two, which are in the same m-isomorphism 
class.) 

Definition 4. If the vertices of the /?-cell X are p-isomorphic, call X 
V-regular. Similarly, if the vertices of a /?-cell are m-isomorphic, 
call X M-regular. 

THEOREM 5. Let f.X —» Y be a p-inclusion, and suppose X, Y are 
M-regular, and their vertices are m-isomorphic. Then X, Y are p-
isomorphic. 

We leave the proof to the reader. Observe that the vertices must be 
m-isomorphic (not just /^-isomorphic), for we can find, for example, a 
distance preserving map taking a regular tetrahedron into a regular 
cube. 

THEOREM 6. C(G, v) is a polygonal cell of dimension at most n — \. 

G acts on C(G, v) on the left giving 

THEOREM 7. C(G, v) is M-regular. 

For a G Sn letfa:Sn —> Sn be the inner automorphism (1 —> a _ 1 ^ a , and 
let Ga be the image of G under fa. Now recall the following definition from 
[2]. Suppose 

P\ + Pi + • • • + Pk = n-

Then we include Sp X Sp X . . . X Sp in Sn by having Sp act on the first 
px elements, Sp act on the next/?2 elements, and so on, Sp acting on the 
last/^. We call this inclusion the canonical inclusion, and its image S(p)-
If G = S(p)a for some a G Sn, call G a c-subgroup of Sn, or simply a 
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c-group. Clearly G is a c-group if and only if it is generated by 2-cycles. If 
G is the c-group S(p), then Sp acts on the symbols nx, n2,. . . , np (in 
ascending order). Consider the subgroup of G which acts as Sm on the 
symbols nx, n2,...,nm and as Sp_m on nm+x, nm+2,..., nP[, and as G 
otherwise. Denote it Gim. Clearly Gim is a c-group, we say it is properly 
included (or /7-included) in G. We extend this term to include a subgroup 
Gr or G such that 

Gr c Gr_x c . . . c G 1 c G 0 = G, 

where G is /7-included in G _ l 5 j = 1, 2 , . . . , r. If H is /?-included in G, 
call H a/7-subgroup of G. Then we can generalise 2.2 of [2]. 

THEOREM 8. If G is a c-group, all the entries of v are distinct and in 
ascending order, then the cells of the boundary C(G, v) are in one to one 
correspondence with the left cosets of the p-subgroups of G. Further, two cells 
have a proportion of their boundary in common if and only if the 
corresponding cosets have a non-empty intersection, and two cells are 
incident, i.e., one is contained in the boundary of the other, if and only if the 
coset corresponding to the one is contained in the coset corresponding to 
the other. 

Proof If G = S(p)a, then as in [2] it will be sufficient to show that 
C(Gim, v) lies in the hyperplane Him, and C(G, v) lies entirely to one side 
of it, Ht m being the hyperplane 

2 cijX: = 0, 

where 

a,; = v„ + v„ + . . . + v„ = A, if / = «,, n0, . . . , nm 

= ~(\ + % + . . . + vnJ = -B, if y = #im+1, nm+2, ..., nPi 

= 0 otherwise. 

Then clearly, 

2 ajVa-\j) = ° i f a G H 

(so a(v) G Him if a e / / ) 

^ - i / a - 2 ^ 

otherwise 

But clearly, 

2 (va-l(„)- v) = 0 « e G,A 
j^m > 0 otherwise J 
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j>m J J > 0 otherwise ) 

as the entries of v are in ascending order. Hence 

2 û/Va-ia) > 0 if a <£ Gim 

i.e., C(G, v) lies entirely to one side of the hyperplane, and so C(H, v) is a 

face of C(G, v) and we have proved the theorem. 

THEOREM 9. If the entries of v are not in ascending order, suppose 
v = a(u), and ut < ty + i, f/je« 

C(G, v) ~ C(Ga> u). 
P 

Proof The set (Ga(u) } = {Gv}, and a - 1 acting on the left is a 
/^-isomorphism (as it preserves distance). 

While we have these isomorphisms if we vary v (up to a simple 
restriction), if we vary G, up to isomorphism, we need not produce 
isomorphic /?-cells, as the following examples show. 

Example 1. Let 

G = {/, (1 2)(3 5)(4 6), (1 3)(2 6)(4 5), (1 4)(2 5)(3 6), (1 6 5)(2 3 4), 
(1 5 6)(2 4 3) }, 

where / is the identity. Then G ^ *S3. 
The vertices of C(G, s) are (1, 2, 3, 4, 5, 6)(2, 1, 5, 6, 3, 4)(3, 6, 1, 

5, 4, 2)(4, 5, 6, 1, 2, 3)(5, 4, 3, 2, 6, 1)(6, 3, 4, 2, 1, 5). If we subtract s where 
s = (1, 2, 3, 4, 5, 6) from each of the other vertices we find the rank of 
these five vectors is five, so C{G, s) must have dimension 5, and so is 
isomorphic to A5. 

Example 2. Let 

H ={(I, (1, 2, 3)(4 6 5), (1 3 2)(4 5 6), (1 4)(2 5)(3 6), (1 5)(2 6)(3 4), 
(16)(2 4)(3 5 )} . 

Then H ~ S3. The dimension of C(H9 s) is 3, by similar reasoning to that 
used in Example 1, and in fact C(H,s) is an octahedron. 

Observe that not only are H and G isomorphic subgroups of S6, but the 
elements of the one are obtained from those of the other by interchanging 
the roles of 1 and 4, i.e., H = G(1 4). The effect of the automorphism is to 
collapse the A5 ^ C(G, s) into 3 dimensions to give an octahedron. This 

p 

means that there is no canonical isomorphism 

C(S(p), v) ~ C(S(p)a, v). 
We do however have the following cases. 
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THEOREM 10. Let G c S', H c S are subgroups, then we can include 
G X H in Sp+ in a canonical manner. 

G X H c Sp X Sq c Sp+q 

and we have 

C(G X G, s) ~ C(G, s) X C(H, s). 
p 

Proof. Consider the map 

f.W X R« X R'+« 

given by 

(x, y) -> (xu x2, • • •, xp, yx + p, y2 + p,... ,yq + p). 

Then/ |C(G, s) X C(H, s) maps onto C(G X 77, s) and is clearly an 
isomorphism. 

COROLLARY 11. If all the entries of M are distinct, 

c(s(Pl\ u) - n c(A - i). 

8 does not generalise to an arbitrary group G, as the following counter
example shows. 

Example 3. Let 

G = {/, (1 2 3), (1 3 2) } c S39 

then G ^ Z3 • C(G, s) is the triangle with vertices (1, 2, 3), (3, 1, 2), 
(2, 3, 1). The subsets of G corresponding to the faces of C(G) are 
{/, (1 2 3) } and {/, (1 3 2)} . The third face corresponds to 

{ (1 2 3), (1 3 2) } = (1 3 2){/, (1 2 3) } = (1 2 3){/, (1 3 2) }. 

We have, in fact, the worst possible case, in the following sense. 

THEOREM 12. Suppose G c Sn9 and the entries ofw are distinct. Then the 
faces of C(G) are in a one to one, incidence preserving, correspondence, in 
the sense of Theorem 8, with the left cosets of a collection of subgroups Gt of 
G if and only if G is a c-group. 

Proof. Theorem 8 is one half of our proof. 
Let L be a one face of C(G, u) such that u is a vertex of L, and suppose 

a(u) is the other vertex of L. Then clearly {/, a} is a group (as it is a coset 
and contains the identity). Then a2 = I, so a is a 2-cycle. Let H be the 
subgroup of G generated by all such a. Then H is a c-group. 

Consider the inclusion 

I:C(H,u) c C(G, u) 
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given by I(a(u) ) = a(u) on the vertices of H, and extended linearly over 
all of H as in 1. Then this map satisfies the condition of 5, and so 

C(H, u) ~ C(G, u). 
p 

In particular, they have the same number of vertices, and so H and G have 
the same number of elements, and as H c G, then H = G. 

We now give some further examples of C(G, s). In [2] and [3] 

C(m - 1) = C(Sm9 s) 

is examined. Now (1 2 . . . n) e Sn generates Zn c Sn, and we have in this 
case. 

Example 4. Consider the embedding 

E:Zn c S„, E(g) = (1 2 3 . . . ») 

where g is a generator of Z„. Then 

C(Z„, s) ^ A„_,. 

Clearly the vertices of C(G, s) are (A:, /c + \, k + 2, . . . , n, 1, . . . , 
k — 1), k = 1, 2 , . . . , «, and as this gives a linearly independent set, 
C(G, s) must be n — 1 dimensional, and as it has n vertices can only be 

We now make two observations; the first that C(G, s) is not entirely 
regular, as the edges are not all the same length. The other is that we 
identified Zn with a particular embedding. If we put 

Zn+m — Zn X Zm c Sn X Sm c Sn+m 

(assume n, m coprime) then 

C(Zn+m, s) j A„_, X Am_,. 

Example 5. Let Aw_ ! be the regular «-simplex with vertices vl5 v2, . . . , \n 

such that 

(i.e., the centroid is at the origin). Then — vl5 — v2, . . . , — \n is a second 
such simplex. Put A^_j the convex hull of vl5 . . . , \n, — v1? . . . , \n. 

Consider the subgroup of Sn generated by (1 2 3 . . . n) and (1 n) 
(2 n — 1)(. . .) (ab) where the last two-cycle in the second element is 
In n + 2 \ .e . In - 1 n + 2 \ r , , T . ,.,,. , 
I I if n is even I I for n odd. It is not difficult to 
V2 2 / V 2 2 / 
see that this subgroup is isomorphic with Dn, the dihedral group. Call it 
Dn j . Then 
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THEOREM 13. 

c(Dnl, S )^A;_ , . 
P 

Proof. The vertices of C{Dn l5 s) consist of the vectors u^, uk, where 

u^.= (k,k + l,...,k - 1) 

u'k = (n — k + 1, n — k,.. . 9n — k 4 2) 

put 

c = — £ 

_ (n 4 1 w 4 1 AZ -h 1 \ 

~ \ 2 ' 2 ' " " 2 / 

\xk — c = Vi(2k — n — \, 2k — n + 1, 2k — n 4 3 , . . . , 

2Jfc - /t - 3 ) 

c - u'k = Vi(2k - n - l92k - n + 1, 2A: - w + 3 , . . . , 

2A: - /i - 3) 

so clearly the map û , <H> v^, u^ <H> — \k, induces a /^-isomorphism between 
C(Z)W ï l , s )andA^ 1 . 

Example 6. Let Dn2 be the subgroup of S2n generated by 

a = (1 2 3 . . . W)(JI 4 1 In 2n - 1 . . . n 4 2) 

j8 = (1 /i + 1)(2 « 4- 2)(. . .)(w 2/i). 

Then once more, Dn 2 — Dn, and this time 

C(A,,2. S) =* A„_, X / 

for the vertices of C(Dn2, s) consist of the vectors u^, \k, where 

u^ = (k, k 4 1, . . . , « , 1, . . ., k — \, 2n — k + 2, 2n — k + 3, 

t | 
w — fc + 1 « 

. . .2n, n 4 1, . . . , 2 « - A: 4- 1) 

Î 
/i 4- A: - 1 
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\k = (n + k, n + k + 1 , . . . , 2n, n .+ 1 , . . . , n + k — 1, 

t f 
n — k + 1 n 

n — k + 2, n — k + 3, . . . , « , 1 , . . . , « — k + 1, 

t 
« + A: - 1 

k = 1, 2, . . . , / w 

u^ — Uj = (k — I, k — I, . . . ,k — 1, A: — 1 — n, . . . ,k — 1, 

t I 
w — fc + 1 « 

« - A: + 1, . . . , « - Jk -f 1,1 - Jt, . . . , 1 - k) 

n + k - 1 

v* ~ v i = u* ~ u i 

so that 

p 

where U, V are the convex hull of {uz-}, {v,} respectively, u^ — iij are 
linearly independent, k = 2, 3, . . . , «, and so [/ ~ A„_j. 

Î 
u — u, = (s — £, 5 — /, . . . , s — t, s — t — n, . . . , s — t — n, 

\ \ 
n — s 4- t n — t + \ 

s — / , . . . , s — t, t — s, . . . , t — s, n + t — s, . . . , 

î I 
n n + t — \ 

n 4- / — s, / — s, . . . , / — s) 

î 
n + s — \ 

for 5 > t. 
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Then 

K ~ tk) ' K - u,) = o 

and similarly 

K ~ yk) ' <ys ~ vt) = 0 

and so (uk — vk)is perpendicular to U and V, C(Dm2, s) then is a prism, 
and hence the result. 
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