A NOTE ON ORBITS OF SUBGROUPS OF THE PERMUTATION GROUPS

R. D. LEITCH

In [2] we studied Milgram's Complex, $C(n-1)$, which was first defined in [3], in the following manner. Let S_{n}, the permutation group of n symbols, act on \mathbf{R}^{n} in the obvious manner; put $\alpha(\mathbf{x})=(\mathbf{y})$, where $y_{i}=x_{\alpha^{-1}(i)}$. Let $\mathbf{s}=(1,2, \ldots, n)$, then $C(n-1)$ is the convex hull of the points $\alpha(\mathbf{s}), \alpha \in S_{n}$. Here we shall generalise this construction as follows. Let G be a subgroup of S_{n}, and let $\mathbf{v} \in \mathbf{R}^{n}$. Then $C(G, \mathbf{v})$ is the convex hull of $\alpha(\mathbf{v}), \alpha \in G$. We prove invariance over \mathbf{v} subject to certain restrictions, give counter-examples to shew lack of invariance if we alter G, discuss how we may describe $C(G, \mathbf{v})$, shew that the only "nice" case is essentially when G is S_{n}, and lastly give some examples.

We use the definition of a polygonal cell (which we call a p-cell) found in [1]; a p-cell is an intersection of a finite number of closed half spaces. We can talk of the faces of a p-cell, in particular the vertices and the k-skeleton X_{k} of the p-cell X. A p-map $f: X \rightarrow Y$ between two p-cells X and Y is a map taking vertices to vertices and which is linear, up to a translation, on the 1 -faces of X. If f is one to one it defines a p-inclusion, if one to one and onto, and hence with an inverse, we say that it is a p-isomorphism, and write

$$
X \underset{p}{\simeq} Y .
$$

Let \mathbf{x}, \mathbf{y} be vertices of the same 1 -cell in the boundary of a p-cell X. Then we say \mathbf{x} is adjacent to \mathbf{y}, and write $\mathbf{x} \sim \mathbf{y}$.

Theorem 1. Let $V(X), V(Y)$ be the vertices of the p-cells X, Y respectively, and let $f: V(X) \rightarrow V(Y)$ be a map which is one to one, onto and is such that $\mathbf{x} \sim \mathbf{y}$ if and only if $f(\mathbf{x}) \sim f(\mathbf{y})$. Then $X \underset{p}{\widetilde{p}} Y$.

Proof. We can extend f to $f_{1}: X_{1} \rightarrow Y_{1}$, and $f_{k}: X_{k} \rightarrow Y_{k}$ to f_{k+1} inductively over k, f_{k} being an extension of f_{k-1}, and unique up to homotopy. Then eventually $X_{k}=X$, and as a p-cell is the convex hull of its vertices, we have the theorem.

Corollary 2. Let $F(X), F(Y)$ be the faces of the p-cells, X, Y respectively, and let

$$
h: F(X) \rightarrow F(Y)
$$

be a map which is one to one, onto and preserves dimension and incidence. Then $X \underset{p}{\simeq} Y$.

Proof. $h \mid V(X)$ satisfies the conditions of 1.
Let \mathbf{x} be a vertex of X, and let H be a closed half space containing \mathbf{x} in its interior, but containing no other vertices of $X . H \cap X$ we call a p-nbd of \mathbf{x}. All the p-nbds of \mathbf{x} are p-isomorphic.

Definition 3. We say the vertices \mathbf{x}, \mathbf{y} of the p-cells X, Y are p-isomorphic if their p-nbds are p-isomorphic. If, further, we can find p-nbds X^{\prime}, Y^{\prime}, and a distance preserving map $f: X^{\prime} \rightarrow Y^{\prime}$ such that $f(\mathbf{x})=f(\mathbf{y})$, we say \mathbf{x}, \mathbf{y} are m-isomorphic.
(For example, if D is the 2 -simplex with vertices at $(0,0),(1,0),(0,1)$, then the three vertices are p-isomorphic, but the vertex at the origin is not m-isomorphic to the other two, which are in the same m-isomorphism class.)

Definition 4. If the vertices of the p-cell X are p-isomorphic, call X V-regular. Similarly, if the vertices of a p-cell are m-isomorphic, call $X M$-regular.

Theorem 5. Let $f: X \rightarrow Y$ be a p-inclusion, and suppose X, Y are M-regular, and their vertices are m-isomorphic. Then X, Y are p isomorphic.

We leave the proof to the reader. Observe that the vertices must be m-isomorphic (not just p-isomorphic), for we can find, for example, a distance preserving map taking a regular tetrahedron into a regular cube.

Theorem 6. $C(G, \mathbf{v})$ is a polygonal cell of dimension at most $n-1$.
G acts on $C(G, \mathbf{v})$ on the left giving
Theorem 7. $C(G, \mathbf{v})$ is M-regular.
For $\alpha \in S_{n}$ let $f_{\alpha}: S_{n} \rightarrow S_{n}$ be the inner automorphism $\beta \rightarrow \alpha^{-1} \beta \alpha$, and let G_{α} be the image of G under f_{α}. Now recall the following definition from [2]. Suppose

$$
p_{1}+p_{2}+\ldots+p_{k}=n
$$

Then we include $S_{p_{1}} \times S_{p_{2}} \times \ldots \times S_{p_{k}}$ in S_{n} by having $S_{p_{1}}$ act on the first p_{1} elements, $S_{p_{2}}$ act on the next p_{2} elements, and so on, $S_{p_{k}}$ acting on the last p_{k}. We call this inclusion the canonical inclusion, and its image $S(\mathbf{p})$. If $G=S(\mathbf{p})_{\alpha}$ for some $\alpha \in S_{n}$, call G a c-subgroup of S_{n}, or simply a
c-group. Clearly G is a c-group if and only if it is generated by 2 -cycles. If G is the c-group $S(\mathbf{p})$, then $S_{p_{i}}$ acts on the symbols $n_{1}, n_{2}, \ldots, n_{p_{i}}$ (in ascending order). Consider the subgroup of G which acts as S_{m} on the symbols $n_{1}, n_{2}, \ldots, n_{m}$ and as $S_{p_{i}-m}$ on $n_{m+1}, n_{m+2}, \ldots, n_{p_{i}}$, and as G otherwise. Denote it $G_{i, m}$. Clearly $G_{i, m}$ is a c-group, we say it is properly included (or p-included) in G. We extend this term to include a subgroup G_{r} or G such that

$$
G_{r} \subset G_{r-1} \subset \ldots \subset G_{1} \subset G_{0}=G
$$

where G_{j} is p-included in $G_{j-1}, j=1,2, \ldots, r$. If H is p-included in G, call H a p-subgroup of G. Then we can generalise 2.2 of [2].
Theorem 8. If G is a c-group, all the entries of \mathbf{v} are distinct and in ascending order, then the cells of the boundary $C(G, \mathbf{v})$ are in one to one correspondence with the left cosets of the p-subgroups of G. Further, two cells have a proportion of their boundary in common if and only if the corresponding cosets have a non-empty intersection, and two cells are incident, i.e., one is contained in the boundary of the other, if and only if the coset corresponding to the one is contained in the coset corresponding to the other.

Proof. If $G=S(\mathbf{p})_{\alpha}$, then as in [2] it will be sufficient to show that $C\left(G_{i, m}, \mathbf{v}\right)$ lies in the hyperplane $H_{i, m}$, and $C(G, \mathbf{v})$ lies entirely to one side of it, $H_{i, m}$ being the hyperplane

$$
\sum a_{j} x_{j}=0
$$

where

$$
\begin{aligned}
a_{j} & =v_{n_{m+1}}+v_{n_{m+2}}+\ldots+v_{n_{p_{1}}}=A, \text { if } j=n_{1}, n_{2}, \ldots, n_{m} \\
& =-\left(v_{n_{1}}+v_{n_{2}}+\ldots+v_{n_{m}}\right)=-B, \text { if } j=n_{m+1}, n_{m+2}, \ldots, n_{p_{i}} \\
& =0 \text { otherwise. }
\end{aligned}
$$

Then clearly,

$$
\begin{aligned}
& \sum a_{j} v_{\alpha}-1 \\
& \text { (so } \alpha(\mathbf{v}) \in H_{i, m}=0 \quad \text { if } \alpha \in H \\
&=a_{j} v_{\alpha}-1(j) \\
& \text { (so }-\sum a_{j} v_{j}
\end{aligned}
$$

otherwise

$$
=A \sum_{j \leqq m}\left(v_{\alpha}^{-1}\left(n_{j}\right)-v_{n_{j}}\right)-B \sum_{j>m}\left(v_{\alpha}^{-1}\left(n_{j}\right)-v_{n_{j}}\right) .
$$

But clearly,

$$
\left.\begin{array}{rl}
\sum_{j \leqq m}\left(v_{\alpha}-1\left(n_{j}\right)-v_{n_{j}}\right) & =0 \quad \alpha \in G_{i, m} \\
>0 \text { otherwise }
\end{array}\right\}
$$

$$
\left.\begin{array}{rl}
\sum_{j>m}\left(v_{\alpha}-1\left(n_{j}\right)-v_{n_{j}}\right) & =0 \quad \alpha \in G_{i, m} \\
>0 \text { otherwise }
\end{array}\right\} .
$$

as the entries of \mathbf{v} are in ascending order. Hence
$\sum a_{j} v_{\alpha}{ }^{-1}(j)>0 \quad$ if $\alpha \notin G_{i, m}$
i.e., $C(G, \mathbf{v})$ lies entirely to one side of the hyperplane, and so $C(H, \mathbf{v})$ is a face of $C(G, \mathbf{v})$ and we have proved the theorem.

Theorem 9. If the entries of \mathbf{v} are not in ascending order, suppose $\mathbf{v}=\alpha(\mathbf{u})$, and $u_{i}<u_{i+1}$, then

$$
C(G, \mathbf{v}) \underset{p}{\simeq} C\left(G_{\alpha}, \mathbf{u}\right)
$$

Proof. The set $\{G \alpha(\mathbf{u})\}=\{G \mathbf{v}\}$, and α^{-1} acting on the left is a p-isomorphism (as it preserves distance).

While we have these isomorphisms if we vary \mathbf{v} (up to a simple restriction), if we vary G, up to isomorphism, we need not produce isomorphic p-cells, as the following examples show.

Example 1. Let

$$
G=\{I,(12)(35)(46),(13)(26)(45),(14)(25)(36),(165)(234),
$$ (156)(243)\},

where I is the identity. Then $G \simeq S_{3}$.
The vertices of $C(G, \mathbf{s})$ are $(1,2,3,4,5,6)(2,1,5,6,3,4)(3,6,1$, $5,4,2)(4,5,6,1,2,3)(5,4,3,2,6,1)(6,3,4,2,1,5)$. If we subtract s where $s=(1,2,3,4,5,6)$ from each of the other vertices we find the rank of these five vectors is five, so $C(G, \mathbf{s})$ must have dimension 5 , and so is isomorphic to Δ_{5}.

Example 2. Let

$$
H=\{(I,(1,2,3)(465),(132)(456),(14)(25)(36),(15)(26)(34),
$$ (16)(24)(35) \}.

Then $H \simeq S_{3}$. The dimension of $C(H, \mathbf{s})$ is 3 , by similar reasoning to that used in Example 1, and in fact $C(H, \mathbf{s})$ is an octahedron.

Observe that not only are H and G isomorphic subgroups of S_{6}, but the elements of the one are obtained from those of the other by interchanging the roles of 1 and 4, i.e., $H=G_{(14)}$. The effect of the automorphism is to collapse the $\Delta_{5} \underset{p}{\widetilde{\sim}} C(G, \mathbf{s})$ into 3 dimensions to give an octahedron. This means that there is no canonical isomorphism

$$
C(S(\mathbf{p}), \mathbf{v}) \simeq C\left(S(p)_{\alpha}, \mathbf{v}\right)
$$

We do however have the following cases.

Theorem 10. Let $G \subset S_{p}, H \subset S_{q}$ are subgroups, then we can include $G \times H$ in S_{p+q} in a canonical manner.

$$
G \times H \subset S_{p} \times S_{q} \subset S_{p+q}
$$

and we have

$$
C(G \times G, \mathbf{s}) \underset{p}{\simeq} C(G, \mathbf{s}) \times C(H, \mathbf{s}) .
$$

Proof. Consider the map

$$
f: \mathbf{R}^{p} \times \mathbf{R}^{q} \times \mathbf{R}^{p+q}
$$

given by

$$
(\mathbf{x}, \mathbf{y}) \rightarrow\left(x_{1}, x_{2}, \ldots, x_{p}, y_{1}+p, y_{2}+p, \ldots, y_{q}+p\right) .
$$

Then $f \mid C(G, \mathbf{s}) \times C(H, \mathbf{s})$ maps onto $C(G \times H, \mathbf{s})$ and is clearly an isomorphism.

Corollary 11. If all the entries of \mathbf{u} are distinct,

$$
C\left(S\left(p_{i}\right), \mathbf{u}\right) \underset{p}{\simeq} \Pi C\left(p_{i}-1\right)
$$

8 does not generalise to an arbitrary group G, as the following counterexample shows.

Example 3. Let

$$
G=\left\{I,\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\} \subset S_{3},
$$

then $G \simeq Z_{3} \cdot C(G, \mathbf{s})$ is the triangle with vertices $(1,2,3),(3,1,2)$, $(2,3,1)$. The subsets of G corresponding to the faces of $C(G)$ are $\left\{I,\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}$ and $\left\{I,\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$. The third face corresponds to

$$
\left\{\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\}=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\left\{\begin{array}{ll}
I
\end{array},\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right\}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left\{I,\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\} .
$$

We have, in fact, the worst possible case, in the following sense.
Theorem 12. Suppose $G \subset S_{n}$, and the entries of \mathbf{u} are distinct. Then the faces of $C(G)$ are in a one to one, incidence preserving, correspondence, in the sense of Theorem 8, with the left cosets of a collection of subgroups G_{i} of G if and only if G is a c-group.

Proof. Theorem 8 is one half of our proof.
Let L be a one face of $C(G, \mathbf{u})$ such that \mathbf{u} is a vertex of L, and suppose $\alpha(u)$ is the other vertex of L. Then clearly $\{I, \alpha\}$ is a group (as it is a coset and contains the identity). Then $\alpha^{2}=I$, so α is a 2-cycle. Let H be the subgroup of G generated by all such α. Then H is a c-group.

Consider the inclusion

$$
I: C(H, \mathbf{u}) \subset C(G, \mathbf{u})
$$

given by $I(\alpha(\mathbf{u}))=\alpha(\mathbf{u})$ on the vertices of H, and extended linearly over all of H as in 1. Then this map satisfies the condition of 5 , and so

$$
C(H, \mathbf{u}) \underset{p}{\simeq} C(G, u) .
$$

In particular, they have the same number of vertices, and so H and G have the same number of elements, and as $H \subset G$, then $H=G$.

We now give some further examples of $C(G, s)$. In [2] and [3]

$$
C(m-1)=C\left(S_{m}, \mathbf{s}\right)
$$

is examined. Now $(12 \ldots n) \in S_{n}$ generates $Z_{n} \subset S_{n}$, and we have in this case.

Example 4. Consider the embedding

$$
E: Z_{n} \subset S_{n}, \quad E(g)=(123 \ldots n)
$$

where g is a generator of Z_{n}. Then

$$
C\left(Z_{n}, \mathbf{s}\right) \underset{p}{\simeq} \Delta_{n-1} .
$$

Clearly the vertices of $C(G, \mathbf{s})$ are $(k, k+1, k+2, \ldots, n, 1, \ldots$, $k-1), k=1,2, \ldots, n$, and as this gives a linearly independent set, $C(G, \mathbf{s})$ must be $n-1$ dimensional, and as it has n vertices can only be Δ_{n-1}.

We now make two observations; the first that $C(G, \mathbf{s})$ is not entirely regular, as the edges are not all the same length. The other is that we identified Z_{n} with a particular embedding. If we put

$$
Z_{n+m} \simeq Z_{n} \times Z_{m} \subset S_{n} \times S_{m} \subset S_{n+m}
$$

(assume n, m coprime) then

$$
C\left(Z_{n+m}, \mathbf{s}\right) \underset{p}{\simeq} \Delta_{n-1} \times \Delta_{m-1}
$$

Example 5. Let Δ_{n-1} be the regular n-simplex with vertices $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ such that

$$
\sum \mathbf{v}_{i}=\mathbf{0}
$$

(i.e., the centroid is at the origin). Then $-\mathbf{v}_{1},-\mathbf{v}_{2}, \ldots,-\mathbf{v}_{n}$ is a second such simplex. Put Δ_{n-1}^{\prime} the convex hull of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n},-\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.

Consider the subgroup of S_{n} generated by (123 $2 \ldots n$) and (1n) $(2 n-1)(\ldots)(a b)$ where the last two-cycle in the second element is $\left(\frac{n}{2} \frac{n+2}{2}\right)$ if n is even $\left(\frac{n-1}{2} \frac{n+2}{2}\right)$ for n odd. It is not difficult to see that this subgroup is isomorphic with D_{n}, the dihedral group. Call it $D_{n, 1}$. Then

Theorem 13.

$$
C\left(D_{n, 1}, \mathbf{s}\right) \underset{p}{\simeq} \Delta_{n-1}^{\prime} .
$$

Proof. The vertices of $C\left(D_{n, 1}, \mathbf{s}\right)$ consist of the vectors $\mathbf{u}_{k}, \mathbf{u}_{k}^{\prime}$, where

$$
\begin{aligned}
& \mathbf{u}_{k}=(k, k+1, \ldots, k-1) \\
& \mathbf{u}_{k}^{\prime}=(n-k+1, n-k, \ldots, n-k+2)
\end{aligned}
$$

put

$$
\begin{aligned}
\mathbf{c} & =\frac{\sum \mathbf{u}_{k}}{n} \\
& =\frac{\sum \mathbf{u}_{k}^{\prime}}{n} \\
& =\left(\frac{n+1}{2}, \frac{n+1}{2}, \ldots, \frac{n+1}{2}\right) \\
\mathbf{u}_{k} & -\mathbf{c}=1 / 2(2 k-n-1,2 k-n+1,2 k-n+3, \ldots,
\end{aligned}
$$

$$
2 k-n-3)
$$

$$
c-\mathbf{u}_{k}^{\prime}=1 / 2(2 k-n-1,2 k-n+1,2 k-n+3, \ldots,
$$

$$
2 k-n-3)
$$

so clearly the map $\mathbf{u}_{k} \leftrightarrow \mathbf{v}_{k}, \mathbf{u}_{k}^{\prime} \leftrightarrow-\mathbf{v}_{k}$, induces a p-isomorphism between $C\left(D_{n, 1}, \mathbf{s}\right)$ and Δ_{n-1}^{\prime}.

Example 6. Let $D_{n, 2}$ be the subgroup of $S_{2 n}$ generated by

$$
\begin{aligned}
& \alpha=(123 \ldots n)(n+12 n 2 n-1 \ldots n+2) \\
& \beta=(1 n+1)(2 n+2)(\ldots)(n 2 n) .
\end{aligned}
$$

Then once more, $D_{n, 2} \simeq D_{n}$, and this time

$$
C\left(D_{n, 2}, \mathbf{s}\right) \underset{p}{\widetilde{p}} \Delta_{n-1} \times I
$$

for the vertices of $C\left(D_{n, 2}, \mathbf{s}\right)$ consist of the vectors $\mathbf{u}_{k}, \mathbf{v}_{k}$, where

$$
\mathbf{u}_{k}=(k, k+1, \ldots, n, 1, \ldots, k-1,2 n-k+2,2 n-k+3,
$$

$$
\begin{aligned}
& \mathbf{v}_{k}=(n+k, n+k+1, \ldots, 2 n, n+1, \ldots, n+k-1, \\
& n-k+2, n-k+3, \ldots, n, 1, \ldots, n-k+1, \\
& k=1,2, \ldots, m \\
& \mathbf{u}_{k}-\mathbf{u}_{1}=(k-1, k-1, \ldots, k-1, k-1-n, \ldots, k-1, \\
& n-k+1, \ldots, n-k+1,1-k, \ldots, 1-k) \\
& \mathbf{v}_{k}-\mathbf{v}_{1}=\mathbf{u}_{k}-\mathbf{u}_{1}
\end{aligned}
$$

so that

$$
U \underset{p}{\simeq} V,
$$

where U, V are the convex hull of $\left\{\mathbf{u}_{i}\right\},\left\{\mathbf{v}_{i}\right\}$ respectively. $\mathbf{u}_{k}-\mathbf{u}_{1}$ are linearly independent, $k=2,3, \ldots, n$, and so $U \simeq \Delta_{n-1}$.

for $s>t$.

Then

$$
\left(\mathbf{u}_{k}-\mathbf{v}_{k}\right) \cdot\left(\mathbf{u}_{s}-\mathbf{u}_{t}\right)=0
$$

and similarly

$$
\left(\mathbf{u}_{k}-\mathbf{v}_{k}\right) \cdot\left(\mathbf{v}_{s}-\mathbf{v}_{t}\right)=0
$$

and so $\left(u_{k}-v_{k}\right)$ is perpendicular to U and $V, C\left(D_{m, 2}, \mathbf{s}\right)$ then is a prism, and hence the result.

References

1. S. S. Cairns, Introductory topology (Ronald Press Co., N.Y., 1961).
2. R. D. Leitch, The homotopy commutative cube, J. Lon. Math. Soc. (2)(1974), 23-29.
3. R. J. Milgram, Iterated loop spaces, Ann. Math 84 (1966), 386-403.

Royal Military College of Science, Shrivenham, England

