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Abstract

In this paper we consider an initial-value problem for the nonlinear fourth-order partial
differential equation ut + uux + γ uxxxx = 0, −∞< x <∞, t > 0, where x and t
represent dimensionless distance and time respectively and γ is a negative constant.
In particular, we consider the case when the initial data has a discontinuous expansive
step so that u(x, 0)= u0(> 0) for x ≥ 0 and u(x, 0)= 0 for x < 0. The method of
matched asymptotic expansions is used to obtain the large-time asymptotic structure of
the solution to this problem which exhibits the formation of an expansion wave. Whilst
most physical applications of this type of equation have γ > 0, our calculations show
how it is possible to infer the large-time structure of a whole family of solutions for a
range of related equations.

2000 Mathematics subject classification: primary 35B40; secondary 34E10.

Keywords and phrases: partial differential equation, asymptotic analysis.

1. Introduction

In this article we are concerned with an initial-value problem for the fourth-order
evolution equation

ut + uux + γ uxxxx = 0, −∞< x <∞, t > 0, (1.1)

where γ < 0 is a constant, subject to the initial conditions

u(x, 0)=

{
u0, x ≥ 0,

0, x < 0,
(1.2)
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and boundary conditions

u(x, t)→

{
u0, x→∞,

0, x→−∞,
t ≥ 0. (1.3)

The initial distribution (1.2) is a discontinuous expansive step with u0 > 0 and in what
follows we shall refer to (1.1)–(1.3) as IVP.

Equation (1.1) can be regarded as a fourth-order viscosity extension of the first-
order conservation law

ut + uux = 0,

which is readily recognized as the inviscid Burgers’ equation. Then the solution of the
Riemann problem IVP takes the form of a shock wave (see [3] and the references
therein). Our objective in this work is to examine the large-time structure of the
solution of IVP when γ < 0. In this case the discontinuous initial data collapses into
the smooth expansion (rarefaction) wave for t > 0. The piecewise initial form of the
expansion wave is smoothed by the fourth-order derivative.

It is clear that our problem is technically ill-posed, in the sense that the solution
u = 0, for x < 0 when t = 0, is linearly unstable. However, our intention here is
to illustrate how the discontinuous jump in the initial profile at x = 0 develops as
t→∞. For this purpose, the exact form of the initial profile in x < 0 is only of
secondary importance, and to simplify the presentation the assumption of u(x, 0)= 0
for x < 0 has been made. Once the main ingredients of the solution procedure have
been appreciated, it is quite straightforward to adapt the arguments should some other
initial (linearly stable) profile be appropriate.

Although second-order diffusion occurs frequently within many problems in
applied mathematics, it has been recognized that fourth-order terms do appear in
several applications. Space precludes anything more than a cursory overview of some
of the instances in which fourth-order diffusion arises, but we mention the studies of
Broadbridge and Tritscher [1] who derived equations for the thermal grooving of
metals and the work of Kyrychko et al. [5] concerned with the existence of travelling
waves in higher-order biological problems. Higher-order diffusion methods are also
being increasingly used in modern computational fluid dynamics; see, for example, [2]
and the many references within. Our contribution here does not focus on such
complicated systems but rather is a first step in the analysis of Equation (1.1) that
promises to form the basis for addressing the generalized Kuramoto–Sivashinsky
equation

ut + uux + αuxx + βuxxx + γ uxxxx = 0, (1.4)

where α and β are constants.
Here the aim is to use the method of matched asymptotic expansions to develop

the large-time asymptotic structure of the solution to IVP when the initial data (1.2)
is a discontinuous expansive step. The monograph [7] shows that the evolution of
the solution is sensitive to the form of the initial condition and whether this profile
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is a continuous function of x or contains jumps. Hence our choice here is to focus
on the step-problem IVP and defer the consideration of the continuous initial profile
to future work. Throughout we use the nomenclature of the theory of matched
asymptotic expansions, as given in Van Dyke [10] (see also Hinch [4], Lagerstrom [6]
or Nayfeh [9] for an introduction to the theory of matched asymptotic expansions). We
shall see how it is possible to infer the t � 1 structure of the solution with minimal
computational effort. At face value, it is somewhat of a surprise that this can be done;
after all, it would be expected that part of the calculation to derive the large-time form
for all x would require consideration of the solution in the parameter space where
both x and t are O(1) and properties of the solution in this regime are only amenable
to numerical simulation.

We demonstrate how matched asymptotics can neatly side-step this difficulty. First,
we can use the initial data to calculate the small-time structure of the solution for
all x . Then, rather than develop the form of the solution where x = O(1), we instead
concentrate on the evolution of the solution in the far field |x | →∞ for t ≥ O(1).
This large-|x | structure for t � 1 can in turn be used to deduce the long-time form of
solution for all x . This strategy is not new and was originally developed in the context
of reaction–diffusion equations (see [7]).

We shall show in Section 2 how the t � 1 structure assumes the form of an
expansion wave. Specifically

u(x, t)∼
x

t
, 0< x < u0t as t→∞

and outside this range u(x, t) differs by only exponentially small quantities from the
respective far-field behaviours as x→±∞.

We note in passing that Equation (1.1) with γ < 0 can be reduced via the
transformation

u = (−γ )1/4ū, x = (−γ )1/4 x̄,

to the parameterless form
ūt + ūū x̄ − ū x̄ x̄ x̄ x̄ = 0.

However, as our future aim is to analyse the generalized Kuramoto–Sivashinsky
equation (1.4) it will be instructive in this paper to retain the parameter γ , particularly
since it adds no further complication, and will continue to work with Equation (1.1) in
what follows.

2. The asymptotic solution as t→∞

In this section we develop the asymptotic structure of IVP as t→∞ following the
approach outlined above. That is, the calculation proceeds through three key steps.
First we develop the small-time form of the solution, then consider the evolution of
this solution at |x | � 1 through to large times, and finally close the work by deducing
the large-time form for all x . We tackle the first stage next.
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2.1. Small-time solution The examination of the initial data (1.2) suggests that the
structure of the asymptotic solution to IVP as t→ 0 consists of three distinct zones.
Clearly there must be a rapid change in the solution around the step in the initial data
at x = 0 and this region, which we shall call Ia, is sandwiched between the two zones
x > 0 and x < 0. In summary, then, this small-time regime I is comprised of the three
sub-regions divided as

region Ia: x = o(1), u(x, t)= O(1)
region Ib: x > 0, u(x, t)= u0 − o(1)
region Ic: x < 0, u(x, t)= o(1)

 as t→ 0.

2.1.1. Region Ia: x = o(1) Here we introduce the scaled coordinate η = xt−λ =
O(1) as t→ 0, where λ > 0, and seek an expansion of the form

u(η, t)= ū(η)+ o(1). (2.1)

On substitution of expansion (2.1) into Equation (1.1) (rewritten in terms of η and t)
we find that the leading-order balance requires λ= 1/4. Then

ūηηηη −
η

4γ
ūη = 0, (2.2)

which must be solved subject to matching with regions Ib (as η→∞) and Ic (as
η→−∞) and initial condition (1.2) so that

ū(η) = u0 − o(1) as η→∞,
ū(η) = o(1) as η→−∞.

On writing ū(η)= u0/2+ û(η), Equation (2.2) becomes

ûηηηη −
η

4γ
ûη = 0, −∞< η <∞, (2.3)

and so we require the odd solution of (2.3) with

û(η)→±
u0

2
as η→±∞; (2.4)

this can be expressed as

û(η)=
∫ η

0
F(s) ds, (2.5)

where F(η) is a solution of the third-order linear equation

Fηηη −
η

4γ
F = 0. (2.6)

We see that F(η)= F(−η) and further note that (2.6) has a unique (within a
constant multiple) monotone decreasing solution on [0,∞). This Kneser-type solution
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has F(0)= A(>0) and F ′′(0)= 0 with F(η)>0, F ′(η)≤ 0 and F ′′(η)≥ 0 on [0,∞);
here A is a constant to be determined. Furthermore,

F(η)= O
[
η−1/3 exp

(
−3(−256γ )−1/3η4/3

)]
as η→∞ (2.7)

and then the boundary conditions (2.4) require that the constant A is fixed so that∫
∞

0
F(s) ds =

1
2

u0.

Therefore, in region Ia we have

u(η, t)=
1
2

u0 +

∫ η

0
F(s) ds + o(1) as t→ 0, (2.8)

with η = O(1). In particular, via (2.5) and (2.7), we note that (2.8) represents a
smoothed-out step approaching u0 as η→∞ and 0 as η→−∞ with

u(η, t)∼

{
u0 − Âη−2/3 exp

(
−3(−256γ )−1/3η4/3

)
as η→∞,

Â(−η)−2/3 exp
(
−3(−256γ )−1/3(−η)4/3

)
as η→−∞,

(2.9)

where Â > 0 is a constant.

2.1.2. Region Ib: x = O(1) > 0 As η→∞we move into Ib, where x = O(1)(>0)
as t→ 0. The form of expansion (2.8) for η� 1 given by the first relation in (2.9)
suggests that within Ib,

u(x, t)= u0 − e−φ(x,t) as t→ 0, (2.10)

with
φ(x, t)= φ0(x)t

−1/3
+ φ1(x) ln t + φ2(x)+ o(1), (2.11)

where x = O(1) (but �t1/4) as t→ 0 and φ0(x) > 0. On substituting (2.10)
and (2.11) into Equation (1.1) and solving at each order in turn, we find (after matching
with (2.8) as x→ 0+) that

u(x, t)= u0 − exp
(
−3(−256γ )1/3x4/3t−1/3

+
1
6

ln t +

[
ln Â −

2
3

ln x

]
+ o(1)

)
(2.12)

as t→ 0, with x = O(1).

2.1.3. Region Ic: x = O(1) < 0 Finally, we consider the region where x =
O(1) (<0) as t→ 0. The details in this case follow those given for Ib albeit with
some minor modification. Therefore in Ic it is sufficient to note that

u(x̂, t)= exp
(
−3(−256γ )1/3x4/3t−1/3

+
1
6

ln t +

[
ln Â −

2
3

ln(−x)

]
+ o(1)

)
as t→ 0.

The asymptotic structure as t→ 0 is now complete, with the expansions in regions
Ic, Ia and Ib providing a uniform approximation to the solution of IVP as t→ 0.
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2.2. Asymptotic solution to IVP as |x| →∞ for t ≥ O(1) The second stage of the
analysis necessitates the investigation of the solution to IVP as |x | →∞ for t = O(1).
We first examine the structure of the solution to IVP as x→+∞ with t = O(1). The
form of expansion (2.12) of region Ib for x � 1 as t→ 0 suggests that in this region,
which we label II,

u(x, t)= u0 − e−2(x,t) as x→∞, (2.13)

with

2(x, t)=20(t)x
4/3
+21(t)x

1/3
+22(t) ln x +23(t)+ o(1) as x→∞ (2.14)

and t = O(1). On substituting (2.13) and (2.14) into Equation (1.1) and solving at
each order in turn, we find (after matching with (2.12) as t→ 0) that

u(x, t) = u0 − exp

[
−

3t−1/3

44/3(−γ )1/3
x4/3
+

u0t2/3

41/3(−γ )1/3
x1/3
−

2
3

ln x

+

[
1
6

ln t + ln Â

]
+ o(1)

]
(2.15)

as x→∞ with t = O(1). Expansion (2.15) will remain uniform for t � 1 provided
that x � t , but it fails when x ≤ O(t).

We note the structure of the solution to IVP as x→−∞with t = O(1). The details
in this case follow, subject to a few changes, those given above for region II and the
results are summarized below. In region III,

u(x, t)= exp

(
−

3t−1/3

44/3(−γ )1/3
(−x)4/3 −

2
3

ln(−x)+

[
1
6

ln t + ln Â

]
+ o(1)

)
(2.16)

as x→−∞ with t = O(1). As t→∞, the asymptotic expansion (2.16) in region III
continues to remain uniform for (−x)� t . However, as already noted in the context
of II, a nonuniformity develops when x = O(t).

2.3. Asymptotic solution as t→∞ We are now able to fit the final piece into our
puzzle by using the asymptotic expansions (2.15) and (2.16) for the solution in II and
III to deduce the large-time solution for all x .

We begin by considering the asymptotic structure as t→∞ for x > 0. To proceed
it is helpful to consider a new region, which we denote by IV, in which the scaled
coordinate y = x/t is O(1) as t→∞. (The reader may find it helpful to refer to
Figure 1 which shows the positioning in parameter space of IV and the additional
zones introduced below.) Within IV, the form of (2.15) suggests that

u(y, t)= u0 − e−tF(y,t) as t→∞, (2.17)

with

F(y, t)= f0(y)+ f1(y)t
−1 ln t + f2(y)t

−1
+ o

(
t−1

)
as t→∞, (2.18)
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with y = O(1) and positive as t→∞ and f0(y) > 0. It is instructive to consider first
the leading order problem in region IV. On substituting (2.17) and (2.18) into (1.1) we
obtain the zeroth-order equation

γ
(

f ′0
)4
+ (y − u0) f ′0 − f0 = 0, (2.19)

for y > 0 together with the asymptotic behaviour

f0(y)=
3

44/3(−γ )1/3
y4/3
−

u0

41/3(−γ )1/3
y1/3
+ o

(
y1/3

)
as y→∞. (2.20)

Condition (2.20) arises by matching expansion (2.17) with y� 1 to the
solution (2.15). Equation (2.19) admits a one-parameter family of linear solutions

f0(y)= α
(

y −
[
(−γ )α3

+ u0

])
, y > 0, (2.21)

for any α ∈ R as well as the associated envelope solution

f0(y)=
3

44/3(−γ )1/3
(y − u0)

4/3. (2.22)

Combinations of (2.21) and (2.22) which remain continuous and differentiable are
additional candidates as relevant solutions of (2.19) (these are the envelope touching
solutions). If we recall that f0(y) > 0 then the condition (2.20) requires either

f0(y)=

{
3(−256γ )−1/3(y − u0)

4/3, y > u0 + 4(−γ )α3,

α
(
y −

[
(−γ )α3

+ u0
])
, u0 + (−γ )α

3 < y ≤ u0 + 4(−γ )α3,

(2.23)
where α > 0, or

f0(y)= 3(−256γ )−1/3(y − u0)
4/3, y > u0. (2.24)

We conclude that a nonuniformity occurs in expansion (2.17) as y→ y+c (≥u0);
if f0(y) satisfies (2.23) then yc = u0 + (−γ )α

3, but if f0(y) is given by (2.24) then
yc = u0. More precise locations of the nonuniformity can be deduced by considering
further terms in expansion (2.17), and this leads to the conclusion that nonuniformity
occurs at y = yc + O(1(t)) as t→∞, where

1(t)=

{
t−1, if yc = u0 + (−γ )α

3,

t−3/4, if yc = u0.

We remark that although f0(y) and f ′0(y) are continuous over the range of definition
of solution (2.23), the second derivative f ′′0 (y) is discontinuous at the point at which
the linear solution meets the envelope solution. This indicates that a thin transition
region must surround the point of contact of the linear solution and the envelope in
which these discontinuities in curvature are smoothed. We have two cases to examine,
depending on whether f0(y) is given by (2.23) or (2.24).
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2.3.1. Transition zone structure if f0(y) is given by (2.23) In this case the
nonuniformity occurs when y = yc + O(t−1) so we introduce the transition region
denoted TW. Here

y = yc + zt−1,

where yc = u0 + (−γ )α
3 with z = O(1) and t→∞. In TW the expansion (2.17)

demonstrates that u = O(1) as t→∞, and so we seek

u(z, t)=U (z)+ o(1), z = O(1) as t→∞. (2.25)

On substituting into Equation (1.1) we obtain the leading order problem

γUzzzz − ycUz +UUz = 0, −∞< z <∞, (2.26)

with U (z) > 0 and

U (z)→ u0 as z→∞, (2.27)

U (z) bounded as z→−∞. (2.28)

Condition (2.27) arises from matching (2.25) as z→∞ to (2.17) as y→ yc.
On integrating Equation (2.26) and applying the boundary conditions as z→∞,

we find that
γUzzz − ycU + 1

2U 2
=

1
2 u2

0 − ycu0

and if U (z)→ K as z→−∞ (where K 6= u0 is some constant) we can replace
condition (2.28) by

U (z)→ 2yc − u0 as z→−∞. (2.29)

We now demonstrate that there cannot be bounded solutions to (2.26)–(2.28). For on
writing

U =−(yc − u0)2+ yc, z =
21/3(−γ )

yc − u0
ξ,

with 2, ξ = O(1), boundary value problem (2.26), (2.27) and (2.29) becomes

2ξξξ = 1−22, −∞< ξ <∞, (2.30)

2(ξ) >−1, −∞< ξ <∞, (2.31)

2(ξ)→±1 as ξ →±∞. (2.32)

We note that Equation (2.30) preserves its form under the transformation 2→−2,
ξ →−ξ and therefore the solutions 2 either are anti-symmetric or occur in pairs.
Without loss of generality we can choose the anti-symmetry point to be ξ = 0.
Clearly, there is no odd solution to (2.30)–(2.32) with 2(0)= 0 and 2(±∞)=±1
since any such solution would have a discontinuity in the second derivative at ξ = 0
(2′′(0) 6= 0). Moreover, it has been established in [8] that (2.30) has a unique bounded
solution, corresponding to a hetroclinic solution linking the fixed points 2=±1,
with2(±∞)=∓1,2(0)=2ξξ (0)= 0 and2ξ (0) < 0, with all other solutions being
unbounded and tending to infinity.

We conclude therefore that f0(y) cannot be given by (2.23) and so presumably
satisfies (2.24) instead.
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2.3.2. Transition zone when f0(y) is given by (2.24) The substitution of (2.17)
and (2.18) into Equation (1.1) gives, after solving order by order and matching to
expansion (2.15) as y→∞, that

u(y, t)= u0 − exp

(
−

3(y − u0)
4/3

44/3(−γ )1/3
t −

1
2

ln t + H(y)+ o(1)

)
as t→∞ (2.33)

with u0 + o(1) < y <∞. The function H(y) cannot be tied down at this order,
although matching to (2.15) requires that

H(y)∼− 2
3 ln y + ln Â as y→∞.

As y→ u+0 we move from region IV into the localized region, we which call A.
An examination of (2.33) as y→ u+0 reveals that in region A, y = u0 + O(t−3/4)

as t→∞. Within A we introduce the scaled coordinate ζ = (y − u0)t3/4 and make
the assumption (which we will later verify as consistent) that

H(y)∼ ln(y − u0)
1/3
+ ln D as y→ u+0 , where D > 0

is some constant. Guided by (2.33) we expand

u(ζ, t)= u0 + G(ζ )t−3/4
+ o

(
t−3/4

)
as t→∞ (2.34)

with G(ζ ) < 0 and ζ = O(1). Substitution of (2.34) into Equation (1.1) gives

γGζ ζ ζ ζ + GGζ −
ζ

4
Gζ −

3
4

G = 0, (2.35)

which is to be solved subject to matching with region IV as ζ →∞; hence

G(ζ )∼−Dζ 1/3 exp
(
−3(−256γ )−1/3ζ−4/3

)
as ζ →∞. (2.36)

Finally, for u to be bounded as t→∞ when y = u0 + O(1), we require

ζ−1G(ζ ) bounded as ζ →−∞. (2.37)

We note that G(ζ )= ζ is a simple solution of (2.35), and further that if G(ζ ) is a
solution of (2.35) then so is −G(−ζ ).

The leading order problem is now complete, and is governed by (2.35) and (2.37).
This boundary-value problem is both nonlinear and nonautonomous, although, apart
from D > 0, it is parameter-free (the nature of the solution is qualitatively independent
of γ < 0).

Equation (2.35) was investigated numerically by applying asymptotic condi-
tions (2.36) and then shooting towards ζ =−∞. Experiments proved that there
is a crucial value D = D∗(γ ) for which a solution which satisfies (2.37) exists.
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FIGURE 1. The solid line represents the numerically computed solution G∗(ζ ) to (2.35) and (2.36) when
γ =−1, while the dashed line represents the solution G(ζ )= ζ .

If either D < D∗ or D > D∗ then the solution of (2.35) which satisfies the asymptotic
condition (2.36) blows up at a finite point ζ = ζ0(D) according to

G(ζ )= O
[
(ζ − ζ0)

−3
]

as ζ → ζ0.

This suggests that the boundary-value problem (2.35)–(2.37) has a unique solution for
D = D∗, say G = G∗(ζ ); this function is shown in Figure 1. G∗(ζ ) is monotonic
increasing so that, in particular, G∗(ζ ) < 0 for all ζ and it can be shown that

G∗(ζ )∼ ζ + O
(
(−ζ )−1/3

)
as ζ →−∞. (2.38)

As ζ →−∞ we leave the localized region A and enter a new regime in which
y < u0 − o(1). If this zone is designated region V, the form of solution here follows
from (2.34) and (2.38). In particular,

u(y, t)= F̂(y)+ O
(

t−1
)

as t→∞ (2.39)

with F̂(y) > 0 and where y < u0 − O(t−3/4) as t→∞. The substitution of (2.39)
into Equation (1.1) leads to F̂y(F̂ − y)= 0, for y < u0. Moreover, we need F̂(y) > 0
for y < u0 and expansion (2.39) will match to (2.34) for (−ζ )� 1 only if F̂(y)∼ y
as y→ u−0 . This then forms an easy problem with solution simply F̂(y)= y for
0< y < u0. The upshot is that in region V we have

u(y, t)= y + O
(

t−1
)
, (2.40)

as t→∞ where 0< y < u0.

https://doi.org/10.1017/S1446181110000015 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181110000015


188 J. A. Leach and A. P. Bassom [11]

Expansion (2.40) clearly becomes nonuniform as y→ 0+ and this points to the
need for a further localized region, region B, in which y = o(1) and u(y, t)= o(1) as
t→∞.

2.3.3. The localized region B To examine B, we introduce the scaled coordinate
ξ = ytσ = O(1) as t→∞, where σ > 0, and look for an expansion of the form (as
suggested by (2.40))

u(ξ, t)= ū(ξ)t−σ + o
(
t−σ

)
, (2.41)

as t→∞ with ū = O(1). On substitution of expansion (2.41) into Equation (1.1) we
find that σ = 3/4 and then

γ ūξξξξ + ūūξ −
ξ

4
ūξ −

3
4

ū = 0 (2.42)

which is to be solved subject to matching with region V, that is,

ū(ξ)∼ ξ as ξ →∞, (2.43)

together with the need for ξ−1ū(ξ) to be bounded as ξ →−∞. This problem is just
a repeat of the key equation (2.35) that governed the solution structure in A. Since
we note that if G(ζ ) is a solution of (2.35) then so is −G(−ζ ), we can be assured
of the existence of a positive, monotone increasing solution to (2.42) that satisfies the
matching condition (2.43) and which has the asymptotic form

ū(ξ)∼ D∗(−ξ)1/3 exp
(
−3(−256γ )−1/3(−ξ)4/3

)
as ξ →−∞.

Our task is now nearly complete. All that remains is to develop the asymptotic
structure as t→∞ for x < 0. Earlier we derived the form of the solution (2.16)
corresponding to x→−∞ with t = O(1) (region III). It was noted that this
asymptotic expression remains uniform for (−x)� t but that a disordering occurs
when (−x)= O(t). To resolve this nonuniformity we must consider one last zone,
region VI, in which the coordinate y = x/t is O(1) as t→∞. The structure of (2.16)
suggests that within VI,

u(y, t)= e−tφ(y,t) (2.44)

where

φ(y, t)= φ0(y)+ φ1(y)t
−1 ln t + φ2(y)t

−1
+ o

(
t−1

)
as t→∞, (2.45)

with y = O(1) (<0) and φ0(y) > 0. The leading order problem in region VI is then

γ
(
φ′0
)4
+ yφ′0 − φ0 = 0, y < 0,

with φ0(y) > 0 and matching with regions III and B requires

φ0(y)∼ 3(−256γ )−1/3(−y)4/3 ≡80(y)
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VI

V

B

A

IV

FIGURE 2. A schematic representation of the asymptotic structure of u(y, t) in the (y, u) plane, as
t→∞. Here (EXP) denotes terms exponentially small in t as t→∞.

both as y→ 0− and y→−∞. The solution then is simply φ0 ≡80(y) for all y < 0.
The substitution of (2.44) and (2.45) into Equation (1.1) gives that

u(y, t)= exp

(
−

3(−y)4/3

44/3(−γ )1/3
t −

1
2

ln t + Ĥ(y)+ o(1)

)
as t→∞

where −∞< y < 0− o(1). The function Ĥ(y) is indeterminate at this order but
matching to region B (as y→ 0−) and to the far field (as y→−∞) implies that

Ĥ(y)∼

{
−

2
3 ln(−y)+ ln Â, as y→−∞,

1
3 ln(−y)+ ln D, as y→ 0−.

The asymptotic structure to the solution of IVP as t→∞ is now complete. A
uniform approximation has been derived through regions III, VI, B, V, A, IV and II.
A sketch of the overall asymptotic structure of u(x, t) as t→∞ is given in Figure 2.

3. Discussion

In this paper we have obtained, via the method of matched asymptotic coordinate
expansions, the large-t solution to IVP who principal feature is the formation of an
expansion wave. This large-t structure has been derived by a careful combination of
the asymptotic structures as t→ 0 for |x |<∞ and of the |x | →∞ form appropriate
to t ≥ O(1). The large-t structure consists of five main regions, shown in terms of the
coordinate y (where y = x/t) in Figure 2.
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Regions IV and VI allow the transfer of information from the far field |y| � 1 to
the near field y = O(1). At leading order in region IV the solution to IVP is O(1)
and is given by the constant value u0 (the value of u ahead of the expansion wave).
The correction to this value is only exponentially small in t as t→∞. As y→ u+0
so the solution in IV becomes nonuniform and this is resolved within a localized
region A which is centred around y = u0. This localized region then connects to V
when 0< y < u0 as t→∞, where u = O(1) and is given by the expansion wave at
leading order. In VI, where y < 0, the solution is exponentially small in t . As y→ 0−

the relevant expansion again becomes nonuniform and it is only within B that this
disordering can be resolved.

We reiterate that the initial value problem solved here is ill-posed inasmuch as the
part of the profile where u = 0 is linearly unstable. In any practical application we
would expect u(x, 0) 6= 0 for all x , but the basic ideas of tracking the development
of an initial profile containing a discontinuous expansive step remain unaltered.
Moreover, in most fourth-order diffusion problems γ > 0 but, once again, the
fundamental concepts of exploring the long-time development of such a system are
well illustrated by our considerations. In summary, then, this work, although very
much a first study of IVP, opens up a number of avenues for possible extension.
First, given that previous studies have shown how the evolution of reaction–diffusion
equations is crucially dependent on the nature of the initial profile, it would be of
interest to see how the predictions made above need to be modified should u(x, 0)
be a continuous function with compact support. There is also clearly the need for
further work on advanced numerical methods in order to simulate our model equation
accurately through all times. Finally, the outcomes of these studies will inform the
application of matched asymptotic expansions to the physically significant Kuramoto–
Sivashinsky equation. We hope to explore some of these issues in future work.
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