Erratum to: An Exactly Solved Model for Recombination, Mutation and Selection

Michael Baake and Ellen Baake

The proof of Lemma 5 in reference [1] implicitly uses a property that is not stated as an assumption. Namely, even if the totally positive operator W satisfies $W = W_{<\alpha} \otimes W_{>\alpha}$, the relations

$$W_{lpha}\circ\pi_{>lpha}=\pi_{>lpha}\circ W$$

can only hold if both $W_{<\alpha}$ and $W_{>\alpha}$ are separately norm-preserving, at least for the positive measures. If one needs these relations for all links α , each W_m in $W = \bigotimes_{m=0}^n W_m$ must be norm-preserving on $\mathcal{M}_+(X_m)$, which was not stated and went unnoticed for a while.

A correct formulation of Lemma 5 thus reads as follows.

Lemma 5 Let W be a strictly positive bounded linear operator on \mathfrak{M}^{\otimes} which has a complete tensor product structure, so that $W = W_0 \otimes \cdots \otimes W_n$. Then, given $\alpha \in L$, the elementary recombinator R_α commutes with W on $\mathfrak{M}_+(X)$, if $W_{<\alpha}$ and $W_{>\alpha}$ are norm-preserving on $\mathfrak{M}_+(X_{<\alpha})$ and $\mathfrak{M}_+(X_{>\alpha})$. When all W_m are separately norm-preserving on $\mathfrak{M}_+(X_m)$, one has $WR_\alpha = R_\alpha W$ on $\mathfrak{M}_+(X)$ for all $\alpha \in L$.

This has no further consequence for Section 4 of the paper, because the mutation operator Q is assumed to be a complete product of site-wise Markov generators, so that $\exp(tQ)$ is automatically norm-preserving on each site space separately.

Unfortunately, this is not so for Section 6 on the combination with a selection operator, as additive selection does *not* imply this additional property. Imposing sitewise norm-preservation to the semigroup generated by P, for instance in Lemma 6, removes the interesting degrees of freedom and brings the lemma back to the case of a Markov semigroup, up to free normalization constants per site. Theorem 6 suffers the same fate — and this part of the paper thus does not cover interesting cases of additive fitness.

Received by the editors November 14, 2007.

AMS subject classification: Primary: 92D10, 34L30; secondary: 37N30, 06A07, 60J25. ©Canadian Mathematical Society 2008.

We thank Nick Barton, Matthias Steinrücken, and Yun Song for alerting us to the problem with Theorem 6.

References

 M. Baake and E. Baake, An exactly solved model for mutation, recombination and selection. Canad. J. Math. 55(2003), no. 1, 3–41;

Fakultät für Mathematik Universität Bielefeld Box 100131 33501 Bielefeld Germany e-mail: mbaake@math.uni-bielefeld.de Technische Fakultät Universität Bielefeld Box 100131 33501 Bielefeld Germany e-mail: ebaake@techfak.uni-bielefeld.de