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This study experimentally investigates the influence of structural damping on the
transverse flow-induced vibration (FIV) of an elastically mounted thin elliptical cylinder.
The cylinder tested has an elliptical ratio of ε = b/a = 5, where a and b are the streamwise
and cross-flow dimensions, respectively, and a mass ratio (i.e. the total oscillating mass/the
displaced fluid mass) of 17.4. The FIV response was characterised over a reduced velocity
range of 2.30 ≤ U∗ = U/( fnwb) ≤ 10.00 (corresponding to a Reynolds number range of
300 ≤ Re = (Ub)/ν ≤ 1300) and a structural damping ratio range of 3.62 × 10−3 ≤ ζ ≤
1.87 × 10−1. Here, U is the free stream velocity, fnw is the natural frequency of the system
in quiescent fluid (water) and ν is the kinematic viscosity of the fluid. The FIV response
was characterised by four wake–body synchronisation regimes (defined as the matching
of the dominant fluid forcing and oscillation frequencies, and labelled regime I, regime II,
regime III and the hyper branch) and a desynchronisation region, with the hyper branch
representing a high amplitude regime not observed for a circular cylinder. Interestingly, the
major vortex shedding mode was predominately two single opposite-signed vortices shed
per body vibration cycle. Moreover, hydrogen-bubble-based flow visualisations revealed a
secondary vortex street forming in the elongated shear layers associated with largest-scale
vibration amplitudes (A∗ = A/b up to 7.7) in the hyper branch and regime II. As the
structural damping ratio was increased beyond 1.92 × 10−2, the hyper branch was found
to be suppressed. The results have potential ramifications for the efficient extraction of
energy from free-flowing water sources, which has become increasingly topical over the
last decade.
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1. Introduction

Flow-induced vibration (FIV), arising from the coupled interaction between a fluid and a
structure (often termed fluid–structure interaction), is an important phenomenon prevalent
in a great variety of engineering areas. Often observed as the swaying of large structures,
such as bridges and high-rise buildings in strong winds as well as offshore platforms and
oil risers in ocean currents, FIV is both detrimental in applications where structural failure
or long-term fatigue is undesirable, and advantageous as a potential source of renewable
energy (e.g. Wang et al. 2017; Soti et al. 2018; Lv et al. 2021). As such, the importance of
FIV has motivated ongoing extensive research with the intention to characterise, predict
and control FIV (e.g. Khalak & Williamson 1996; Govardhan & Williamson 2000; Morse
& Williamson 2009; Wong et al. 2017).

The FIV response of an elastically mounted bluff body in a cross-flow can typically be
characterised by two distinct phenomena: vortex-induced vibration (VIV) and galloping.
The VIV occurs as a result of the periodic shedding of vortices from an elastic or
elastically mounted body in a pattern known as a vortex street, which in turn exerts
unsteady fluid forces to cause the structural vibration. In general, VIV is characterised
by its self-limited amplitudes due to the process of vortex shedding alternately from
both sides of the body. On the other hand, galloping is driven by a movement-induced
aerodynamic instability arising from the asymmetric pressure distribution caused by the
changes in the instantaneous flow incidence angle as the body translates in the fluid (see
Parkinson & Smith 1964; Naudascher & Rockwell 2005; Zhao et al. 2014b, 2018c). As
both manifestations of FIV are dependent on the properties of the flow and the cylinder
(e.g. flow velocity, Reynolds number, geometry, mass ratio, applied damping and structural
stiffness), many past studies have chosen parameters such that VIV and galloping occur
separately and can be individually investigated (Brooks 1960). However, more recent
studies (see Nemes et al. 2012; Zhao, Hourigan & Thompson 2018a) have shown that
profound and complex fluid–structure interactions can also be observed when both VIV
and galloping occur concurrently in an FIV system.

To date, while extensive investigations have been conducted on VIV of a circular
cylinder (see Bearman 1984; Sarpkaya 2004; Williamson & Govardhan 2004), much less
attention has been given to FIV of elliptical cylinders. Herein, the cross-sectional profile
of an elliptical cylinder is described by the elliptical ratio ε = b/a, where a and b are
the streamwise and cross-flow (transverse) dimensions, respectively. The circular cylinder,
which is considered a special case of the elliptical geometry (with ε = 1), exhibits a pure
VIV response in free stream flow due to the axial symmetry of the system; however,
when the axial symmetry is broken, i.e. when ε deviates from unity, the cylindrical body
may become potentially susceptible to a movement-induced instability like galloping (see
Naudascher & Rockwell 2005). Few studies have been conducted on FIV of elliptical
cylinders and even fewer on geometries with high ε. Leontini et al. (2018) numerically
investigated the influence of the angle of attack on both the FIV response and wake
modes of an ε = 1.5 elliptical cylinder at a low Reynolds number of Re = 100. Here,
the Reynolds number is defined by Re = Ub/ν, where U is the free stream velocity,
and ν is the kinematic viscosity of the fluid. Hall (1984) demonstrated that the flow
induced by a transversely oscillating elliptical cylinder is most unstable when b > a, in
line with the numerical study of Navrose, Sen & Mittal (2014) which showed maximum
vibration amplitude increases with ε for a mass ratio of m∗ = 10.00, and a Reynolds
number and elliptical ratio range of 60 ≤ Re ≤ 140 and 0.7 ≤ ε ≤ 1.43, respectively.
This also concurred with the results obtained by Zhao, Hourigan & Thompson (2019a)
who investigated the VIV of elliptical cylinders with mass ratio of m∗ = 6.00 for an
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elliptical ratio range of 0.67 ≤ ε ≤ 1.50 at moderate Reynolds numbers (860 ≤ Re ≤
8050). They found that the body vibration was enhanced, rather than attenuated, as
the elliptical ratio was increased to ε = 1.50; i.e. the afterbody was reduced for an
elliptical cylinder. Note that the afterbody is defined as the structural part of a bluff body
downstream of the flow separation points (see Brooks 1960; Bearman 1984; Zhao et al.
2018a).

More recently, Vijay et al. (2020) conducted a numerical study into the effect of the
elliptical ratio, over the range 1 ≤ ε ≤ 10, as well as mass ratio, on the FIV response
at low Reynolds number (Re = 100). In agreement with the results of Zhao et al.
(2019a), the largest elliptical ratio was found to incite the highest amplitude response,
approximately twice the amplitude observed for the case of the circular cylinder under
identical conditions.

In summary, studies in the literature have shown that the FIV behaviour of a bluff
body is strongly dependent on the geometric properties and flow conditions, such
as geometric shape, afterbody, structural damping ratio, reduced flow velocity and
Reynolds number. However, the effect of structural damping on the FIV response of
large-elliptical-ratio geometries at moderate Reynolds numbers that can sustain the
very large amplitude oscillations remains poorly understood. Filling this gap in the
literature could have profound implications in the field of renewable energy generation,
where the maximum amount of power extracted by the system can be considered
as an optimisation problem between two negatively correlated parameters: structural
damping and oscillation amplitude. A recent example is the VIVACE (VIV aquatic
clean energy) converter, pioneered by Bernitsas et al. (2008), which demonstrated
that VIV of a circular cylinder is a viable method of extracting renewable energy
from bodies vibrating naturally in flowing fluids. However, as a result of the circular
cylinder VIV being self-limited to one body diameter and within discrete ranges of flow
speeds, many studies have investigated optimal experimental parameters (e.g. surface
modifications (Ding et al. 2016), geometries that undergo galloping (Tamimi et al.
2019) and structural properties (Lee & Bernitsas 2011; Soti et al. 2018)) to maximise
the energy harvesting performance. Whilst the current progress on applying FIV for
hydrodynamic energy generation has been aptly reviewed by Lv et al. (2021), no study
on the utilisation of elliptical cylinders for power extraction to date has addressed flow
conditions and geometric parameters conducive to very high oscillation amplitudes. As
such, a further understanding of the impact of damping on the FIV of elliptical geometries,
especially one with unprecedented amplitudes at relatively low reduced velocities,
could pave the way for more efficient methods of energy generation based on this
approach.

This study presents a comprehensive investigation into the influence of structural
damping on FIV of a thin elliptical cylinder with an elliptical ratio of ε = 5. The study
aims to experimentally elucidate the FIV response of a thin elliptical cylinder as a function
of reduced velocity over a wide range of structural damping ratios (3.62 × 10−3 ≤ ζ ≤
1.87 × 10−1) at moderate Reynolds numbers.

The article proceeds by outlining the experimental method in § 2. The amplitude
response as well as frequency contours of the displacement and fluid forces are presented
in § 3.1. Section 3.2 describes the fluid forces and their phases relative to the body
displacement, followed by an analysis of the observed wake modes in § 3.3 to understand
the complex fluid–structure interaction that causes these substantially large oscillations.
Finally, the conclusions are drawn in § 4, highlighting the important findings and the
significance of the current study.
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Figure 1. (a) A schematic defining the problem of interest: an elastically mounted elliptical cylinder model
constrained to oscillated transverse (y) to the free stream flow of velocity U, which is in the positive x direction.
Here, the geometry is characterised by the elliptical ratio ε = b/a, where a and b are the streamwise and
cross-flow dimensions, respectively. Additionally, m is the oscillating mass, k denotes the spring constant, c is
the adjustable structural damping and Fx and Fy represent the drag and the transverse (lift) fluid forces acting
on the body, respectively. (b) A photograph showing the experimental set-up used in the present study.

2. Experimental method

2.1. Fluid–structure system modelling
Figure 1 depicts the schematic of an elliptical cylinder undergoing FIV, which is
constrained with one degree of freedom to oscillate transversely to the free stream flow.
The system dynamics can be described by a simplified second-order governing equation
for a linear mass–spring–damper oscillator,

mÿ(t) + cẏ(t) + ky(t) = Fy(t), (2.1)

where m is the total oscillating mass, c is the structural damping, k is the spring constant,
y is the cylinder displacement and Fy is the transverse fluid forcing term, noting that the
over-dot symbols represent derivatives with respect to time (t). Table 1 shows the relevant
non-dimensional parameters for the study.

The present experiments were undertaken in the free-surface recirculating water channel
of the Fluids Laboratory for Aeronautical and Industrial Research (FLAIR) at Monash
University. The water channel has a test section of 4000 mm in length, 600 mm in
width and 800 mm in depth. The mass–spring–damper system was modelled based on
a low-friction air-bearing rig, which was placed atop the water channel working section
and transverse to the free stream flow direction. Further details on the platform and
the air-bearing rig used in the current study can be found in Zhao et al. (2018a,b).
The test elliptical cylinder was manufactured from aluminium and had streamwise
and cross-flow (transverse) dimensions of a = 5 ± 0.10 mm and b = 25 ± 0.10 mm,
respectively, resulting in an elliptical ratio of ε = 5. The immersed length of the cylinder
was 614 ± 0.50 mm with an aspect ratio of AR = L/b = 24.6. To promote parallel
vortex shedding through the attenuation of end effects, an end-conditioning platform was
positioned approximately 1 mm (4 % of b) below the free end of the cylinder (see Khalak
& Williamson 1996). The use of the platform to reduce end effects has been validated and
utilised extensively by Zhao et al. (2014b, 2018b), Wong et al. (2017) and Soti et al. (2018).

The total oscillating system mass was m = 1046.4 g and the mass of the displaced water
was md = ρπabL/4 = 60.0 g, giving a mass ratio of m∗ = m/md = 17.4. The spring
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Amplitude ratio A∗ A/b
Elliptical ratio ε b/a
Fluid force coefficient Cy, Cv, Cx {Fy, Fv, Fx}/(ρU2bL/2)
(i.e. lift, vortex force, drag)
Frequency ratio f ∗

y , f ∗
Cy

, f ∗
Cv

, f ∗
Cx

{fy, fCy , fCv , fCx }/fnw

(i.e. displacement, lift, vortex force, drag)
Mass ratio m∗ m/md

Reduced velocity U∗ U/(fnwb)

Reynolds number Re (Ub)/ν

Strouhal number St fStb/U
Structural damping ratio ζ c/(2

√
k(m + mA))

Table 1. Relevant non-dimensional parameters. Here, A is the vibration amplitude in the y direction, md is the
displaced mass of the fluid, mA is the added mass, ν is the kinematic viscosity of the fluid, fnw is the natural
frequency of the system in quiescent water, fSt is the fixed-body vortex shedding frequency, L is the immersed
length, ρ is the fluid density and fy is the body oscillating frequency. Here Fy, Fv and Fx are the transverse lift,
vortex and streamwise drag forces, respectively, with the corresponding frequency for each term being fCy , fCv

and fCx .

constant was provided by a pair of precision extension springs. The structural damping
was controlled using an eddy-current magnetic damper mechanism developed by Soti et al.
(2018). The desired damping was achieved by adjusting the gap (G) between the magnet
and copper plate, via a microdrive stage with a resolution of 0.01 mm.

Free-decay tests were conducted individually in both air and quiescent water to
determine the natural frequency of the system and structural damping ratios. The system
characteristics were described using the structural damping ratio with added mass in
potential flow (mA) considerations, which is defined as ζ = c/(2

√
k(m + mA)). In practice,

this can be determined experimentally through the relationship mA = ((fna/fnw)2 − 1)m,
which in turn is dependent on the natural frequencies in both air (fna) and water (fnw). As
the damping force exerted by the damper mechanism is controlled by the gap, G, figure 2
shows the variations in ζ , fna and fnw with the gap distance.

It should be noted that in the present study, streamwise drag and the transverse
lift are described in dimensionless forms defined by Cx = Fx/(ρU2bL/2) and Cy =
Fy/(ρU2bL/2), respectively, where ρ is the fluid density, and L is the immersed length
of the cylinder. In addition, the dimensionless form of the vortex force is given by Cv =
Fv/(ρU2bL/2), which was computed through a decomposition of the total transverse
force into a vortex force component (Fv) and a potential force component (FP), namely
Fy = Fv + FP. Note that the potential force (in an inviscid fluid) is given by FP = −mAÿ,
with mA being the added mass (see Govardhan & Williamson 2000; Morse & Williamson
2009; Zhao et al. 2014a,b).

2.2. Data acquisition and processing
The control of the free stream velocity as well as data acquisition (DAQ) were automated
through customised LabVIEW (National Instruments, USA) software with measurements
taken using a USB DAQ device (model USB6218-BNC; National Instruments, US)
sampling at 100 Hz for 300 s. Transverse displacement was measured using a non-contact
digital optical linear encoder (model RGH24; Renishaw, UK) with a range of ±200 mm at
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Figure 2. (a) Structural damping ζ and (b) natural frequencies as a function of the gap (G) between the magnet
and copper plating of the electromagnetic damper system developed by Soti et al. (2018). Panels (bi) and (bii)
denote the respective natural frequencies in both air, fna, and water fnw.

a resolution of 1 μm, whilst the transverse force (Fy) was obtained based on (2.1) where
the first- and second-order derivatives were determined through numerical differentiation
of the displacement signal (see e.g. Sareen et al. 2018). The drag force (Fx) was directly
measured using a two-component force balance based on semiconductor strain gauges
arranged in a Wheatstone bridge configuration.

The fluid–structure interaction between the fluid flow and elliptical cylinder was
investigated over the structural damping ratio range 3.62 × 10−3 ≤ ζ ≤ 1.87 × 10−1,
encompassing a variation by a factor of ∼ 50, for reduced velocities of 2.3 ≤ U∗ =
U/(fnwb) ≤ 10. The free stream velocity range tested was 40 ≤ U ≤ 180 mm s−1,
corresponding to the Reynolds number range 980 ≤ Re ≤ 4410, where Re = Ub/ν with
ν being the kinematic viscosity of the fluid. The free stream turbulence level was
less than 1 % over the flow velocities of interest. To further test the mechanism of
movement-induced vibration as well as the hysteresis effect in transitions between different
FIV response regimes, experiments of both increasing and decreasing reduced velocities
were conducted.

To visualise the wake structures responsible for the oscillations of the elliptical
bluff body, particle image velocimetry (PIV) was employed to image through the
cross-sectional plane of the cylinder. After seeding the flow with hollow microspheres
(model Sphericel 110P8; Potters Industries Inc.) of normal diameter 13 μm and specific
weight 1.10 g cm−3, the images were captured with a high-speed camera (Dimax S4;
PCO AG, Germany) with resolution 2016 × 2016 pixel2 and equipped with a 50 mm
lens (Nikon Corporation, Japan). The optical magnification factor was approximately
6.23 pixel mm−1. Illumination was provided by a 3 mm thick laser sheet from a 5 W
continuous laser (model MLL-N-532 nm-5W; CNI). For each trial, a set of 3100 image
pairs was recorded at a sampling rate of 10 Hz. Validated in-house software, originally
developed by Fouras, Jacono & Hourigan (2008), was then used to correlate 32 × 32 pixel2
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interrogation windows with 50 % window overlap to obtain the time-dependent vector
fields of the wake flow. Finally, the resultant fields were phase averaged by dividing them
into 48 phases based on the cylinder displacement and velocity, and averaging over each
bin (see Zhao et al. 2018b).

3. Results and discussion

3.1. Structural vibration response
Figure 3 shows the normalised amplitude response of the elliptical cylinder of ε = 5 as
a function of reduced velocity for a range of structural damping ratios. Note that the
normalised amplitude is defined by A∗ = A/b, with A being the dimensional vibration
amplitude for a given reduced velocity, and A∗

10 represents the mean of the top 10 %
of amplitude peaks (see Nemes et al. 2012; Zhao et al. 2014b, 2019a). In this study,
measurements with increasing and decreasing U∗ are displayed by unfilled and solid
markers, and denoted by U∗ ↑ and U∗ ↓, respectively. In this figure, the amplitude
responses are plotted in two subplots: figure 3(a) for responses displaying a hyper branch
(i.e. ζ ≤ 1.88 × 10−2) and figure 3(b) for responses without the appearance of a hyper
branch.

It should also be noted that the vibration amplitude would exceed the limit of the
air-bearing rig (A∗ ≈ 8) for ζ ≤ 1.88 × 10−2 when U∗ was increased beyond 8. To prevent
the growing amplitude cylinder from hitting the physical limit of the air-bearing rig, the
flow was set to zero velocity when the vibration amplitude was close to the limit (at
U∗ ≈ 7.6) via the LabVIEW data acquisition program. After this temporary stop, the
flow velocity was resumed from rest to sweep through the rest of the programmed U∗
values (in an increment of 0.05 or 0.1). This procedure could prevent the occurrence of
‘hard’ movement-induced FIV response (one that requires a ‘hard’ trigger, as discussed in
Zhao et al. (2018a)), and thus the FIV responses in figure 3(a) fall onto a lower branch
for U∗ � 7.6. Thus, it is not clear how much further the hyper branch response would
continue beyond this water-channel based U∗ limit.

3.1.1. The FIV response regimes
For increasing and decreasing U∗ trends, figures 4 and 5, respectively, present the
normalised power spectral density (PSD) contours of the body vibration frequency ( f ∗

y )
and transverse lift frequency ( f ∗

Cy
) as a function of U∗ for selected ζ values. Note that the

frequency components are normalised by fnw; i.e. f ∗
y = fy/fnw and f ∗

Cy
= fCy/fnw. Further

details of the construction method for the PSD contours can be found in Zhao et al.
(2014b). Whilst the vortex-force frequency responses appeared identical to those of f ∗

Cy
in the present experiments, their PSD contours are not provided in our current study.

As shown in figures 4 and 5, the FIV response can be categorised by four distinct
synchronisation (or ‘lock-in’) regimes and a desynchronised region. These domains were
classified based on an overall evaluation of the amplitude and frequency responses, as well
as the fluid forces and their phases relative to the body displacement. The lock-in regions
are labelled I, II, H (hyper branch) and III, according to the characteristics of the response
at low damping. As discussed in detail below, these labels are drawn from commonality in
both the amplitude response, and the displacement and lift coefficient frequency response
across damping ratios. Sample time traces of the body displacement (y∗), the fluid forces
(represented by their coefficients Cx and Cy), and the total phase (φt) selected from each
synchronisation regime are also shown in figure 6 to illustrate the periodic dynamics.
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Figure 3. Normalised amplitude response (A∗
10) for the elliptical cylinder of ε = 5 as a function of reduced

velocity for various structural damping ratios (ζ ). The cases with the presence of hyper branch are plotted
in (a), whilst the other cases with the absence of hyper branch are shown in (b). Note the difference in the
ranges of A∗

10 for the two subfigures.

To quantify the effect that hysteresis and damping have on the FIV of the elliptical
cylinder, the response at the minimal damping ratio tested (ζ = 3.62 × 10−3) for
increasing U∗ will be described in detail here and used as a baseline in later parts of
the section to highlight the effects of U∗ direction and increased ζ values on the resultant
dynamic responses.
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Figure 4. (ai–aii) The normalised amplitude response (increasing U∗) and logarithmic-scale PSD contours
of the (bi–gi) normalised vibration ( f ∗

y ), and (bii–gii) transverse fluid force ( f ∗
Cy

) frequencies as a function
of U∗ for selected ζ values from figure 3. In (b–g), the horizontal dashed line highlights the frequencies at
f ∗ ∈ {1, 2, 3}; the vertical dashed lines represent the boundaries of different response regimes (i.e. I, II, hyper
branch (H), III and desynchronisation (D)); and the dot–dashed line represents the Strouhal frequency measured
for a stationary cylinder.
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Figure 5. (ai–aii) The normalised amplitude response (decreasing U∗) and logarithmic-scale PSD contours of
the (bi–gi) normalised vibration ( f ∗

y ) and (bii–gii) transverse fluid force ( f ∗
Cy

) frequencies as a function of U∗

for selected ζ values from figure 3. More details can be found in the caption of figure 4.
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Figure 6. Sample time traces of the cylinder vibration for the minimum damping ratio tested (ζ = 3.62 ×
10−3) at different reduced velocities selected from the four synchronisation regimes: (a) U∗ = 3.0 (I); (b) U∗ =
4.0 (II); (c) U∗ = 6.0 (hyper branch); and (d) U∗ = 8.0 (III). Note that the total phase φt (the relative phase of
Cy with respect to y∗) is shown in degrees, and the time is normalised fnw, namely τ = tfnw.

In the present study for the baseline case (figure 4b), the first regime (regime I)
occurs over a reduced velocity range of U∗ � 3.2, where a wake–body synchronisation
(represented by the matching of the dominant frequencies of f ∗

y and f ∗
Cy

) is clearly present,
occurring at fnw. It should be noted that the fluid forcing frequency also sees a weak second
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harmonic component (i.e. f ∗
Cy


 2). In this regime, the amplitude response A∗
10 exhibits an

almost linear growth with increasing U∗. In regime II (over 3.2 � U∗ � 4.8), the A∗
10

response continues the linear growth trend as in regime I. However, in addition to a second
harmonic in f ∗

Cy
, a third harmonic also develops as shown in figure 4(bii).

As U∗ is further increased to regime H (the hyper branch regime over 4.8 � U∗ � 7.05),
the beginning of the hyper branch is marked by a sudden jump in A∗

10 but with a small
step-like decrease in the third harmonic of f ∗

Cy
. Similar to the upper branch of the VIV

response for a circular cylinder, the hyper branch regime is featured by the largest-scale
body oscillation amplitudes for this damping case (A∗

10 up to 7.7 at U∗ = 7.05 prior to a
temporary reset of the flow velocity to zero). It is important to highlight that the upper
limit of this regime is artificial since the flow velocity was deliberately reset to zero when
the body vibration approached the limit of the experimental rig, as discussed above. Due to
the largest-scale amplitudes in this regime being driven by the ‘hard’ movement-induced
instability, allowing the cylinder to return to rest before the flow was restarted causes the
premature onset of regime III (lower branch). This sees its A∗

10 value decreasing to 0.967,
12.6 % of the peak value of hyper branch (figure 3a). As such, the onset of ‘true’ transition
from hyper branch to lower branch, which is solely dependent on the ‘natural’ response of
the FIV system alone, will occur at higher U∗.

Occurring over 7.05 � U∗ � 8.10 with a maximum amplitude of A∗
10 
 0.967,

regime III is analogous to the lower branch in VIV of the circular cylinder response and
corresponds to a monotonically decreasing A∗

10 trend with increasing U∗. The fall in body
vibration amplitude also coincides with an increase in the body and transverse fluid force
frequencies to 1.06fnw (figure 4b). Meanwhile, the contribution of the second and third
harmonics to the frequency response of the y-direction fluid force becomes negligible in
this regime. Unlike the frequency response in the hyper branch, the harmonic frequency
in regime III gradually increases with U∗.

Outside the four synchronisation regimes, the fluid–structure interaction becomes
desynchronised as the frequency response of the transverse lift becomes a broadband
centred about a main signal at the Strouhal vortex shedding frequency, fSt (figure 4b).
The same contribution was also observed in the body vibration PSD contours, as well as
an additional broadband signal close to the natural frequency of the system in water. Note
that the Strouhal number was experimentally measured to be St = fStb/U = 0.169 for the
stationary cylinder case.

3.1.2. Hysteresis effects in the amplitude response
We will now address the effect of changing the direction of the U∗ increments on the
amplitudes and lock-in response regimes (see figure 5 for PSD contours). In relation
to the baseline case (U∗ is increased, ζ = 3.62 × 10−3), the hysteretic nature of the
observed FIV phenomena can be investigated through comparisons with data obtained for
the same damping ratio but with decreasing U∗ increments. Whilst the peak amplitude
over the tested U∗ range for both increment directions follows a typical three-branch
response, the reduced velocity ranges in which these regions occupy differ. This is most
apparent in the transition between the hyper branch and regime III, which occurs at
a lower value of U∗ = 6.15 for decreasing increments as compared with 7.05 for the
baseline case. As such, the reduced U∗ value results in a smaller maximum hyper branch
response (A∗

10 
 5.99) and an increased maximum lower branch-like (regime III) response
(A∗

10 
 2.42) relative to the baseline. Therefore, the hysteretic behaviour indicates that
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the hyper branch regime is dependent on the initial state of the elliptical cylinder system
(i.e. the oscillation amplitude), and explains why the direction of the U∗ increment will
determine the manifestation of either regime III or the hyper branch for intermediate
reduced velocities (U∗ = 6.2–7.05). The movement-induced nature of the hyper branch,
which is the cause of this hysteresis, will be further discussed in § 3.3. Furthermore, the
presence of a weak second-harmonic component, undetected when U∗ was increased and
the strength of which increases as the transition to the hyper branch is approached, was
also observed in the transverse fluid forces of regime III (figure 5bii).

Aside from the aforementioned aerodynamic instability regime, hysteresis was also
present in the boundary between the desynchronisation and third regimes, with the onset
of the former region occurring for a lower reduced velocity of U∗ = 7.8. Regime III can
be considered predominantly VIV in nature due to its similarities to the lower branch
of the circular cylinder amplitude response, as well as an absence of higher harmonic
contributions to the Cy frequency contours in this region (refer to § 3.2 for further
justification). As such, the observed hysteresis phenomenon can be attributed to the effect
of transverse cylinder oscillations on the after-body wake structure (Blevins 1990). In the
case when U∗ was increased, the amplitude response of regime III likely prolonged the
synchronisation of the wake and body to the natural frequency and hence delayed the
desynchronisation to higher reduced velocities as compared with the reverse U∗ direction.

3.1.3. Impact of structural damping on the overall dynamic response
The question now arises as to how increasing ζ from the minimum value tested (baseline
case) affects the FIV characteristics of the elastically mounted elliptical cylinder. Figure 7,
a two-dimensional contour plot of figure 3, indicates the variation of the synchronisation
regimes in the U∗–A∗ parameter space as a function of ζ . This effect can be categorised
into two ζ domains: ζ ≤ 1.88 × 10−2 where the hyper branch regime is present (figure 3a);
and ζ ≥ 1.92 × 10−2 with the absence of the hyper branch response (figure 3b). Though
not the focus of this study, the boundaries of the FIV response regimes shown in figure 7
can also be affected by the value of the Reynolds number.

As indicated by figure 3(a), increasing the structural damping of the system results in
an overall delay in the onset of all four lock-in regimes to higher U∗ values. An additional
desynchronisation region for which the U∗ range expands with ζ , emerged on the left
of regime I. Hysteresis, due to the same reasoning applied to the VIV-dominated regime
III, also occurs to the transition between the desynchronisation region and regime I. As
such, the U∗ value for which the transition occurs increases with ζ for both U∗ increment
directions.

Whilst the damping-induced delaying effect is especially noticeable in the onset of
regimes I and II as well as in the hyper branch, the same retardation in U∗ with increased
ζ is minimal for regime III as evidenced by the general concurrence in amplitude across
all damping ratios below ζ = 1.88 × 10−2 (figure 3a). The main source of deviation was
observed near the boundary between regime III and the hyper branch for decreasing U∗,
with higher ζ resulting in the curvature of the lower branch-like amplitude response being
less pronounced. Along with the delay in the onset of the hyper branch regime, the increase
in damping ratio for decreasing U∗ increments also leads to a reduction of the maximum
amplitude in the regime.

For the third harmonic components in the transverse fluid forces observed for regime II
of the baseline case, increasing the damping ratio caused an overall decrease in both
the strength of the harmonics (see figures 4b, 4c, 5b and 5c) as well as the overall
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Figure 7. The normalised amplitude contours plotted in U∗–ζ space. Based on an overall examination of the
vibration amplitude and frequency responses as well as fluid forcing phases, the FIV response is characterised
by five different regimes: regime I; regime II; hyper branch; regime III; and the desynchronised region. The
approximate boundaries of each region are marked by the dashed lines. The overlaid crosses denote the damping
and reduced velocity values at which spot PIV measurements were taken, with the red crosses representing the
locations of the PIV contours as further discussed in § 3.3. Panel (a) corresponds to U∗ increasing, and panel
(b) to U∗ decreasing.

U∗ range of the lock-in region (figure 7). As this decrease in higher-order frequency
components also corresponds to the delay of the amplitude response of the four lock-in
regions (i.e. a higher U∗ value required to attain a given A∗

10), the presence of the harmonic
components may be important in the development of large transverse oscillations in the
system. This conclusion concurs with the suggestions made by Zhao et al. (2014b) and
Wang et al. (2017) for transverse FIV, and Zhao et al. (2018b) for in-line FIV, where
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large-scale body vibrations were attributed to the harmonic synchronisations in the fluid
forces. However, an exception to the above generalisations was observed during the
transition from regime III to the hyper branch for decreasing U∗, where the f ∗ = 3
contribution to f ∗

Cy
and f ∗

Cv
both increases with damping. The effect of wake modes and

flow structures downstream of the cylinder on higher-order frequencies will be discussed
in § 3.3.

3.1.4. Hyper branch suppression for ζ ≥ 1.92 × 10−2

After examining low-damping cases where the hyper branch is present, we will now
consider ζ ≥ 1.92 × 10−2. With this degree of damping, regime II and the hyper branch
are completely suppressed, and non-negligible amplitudes are only observed in regimes
I and III. As such, the amplitude response changes drastically from the cases detailed
in § 3.1.1 and can be considered a predominantly one-branch response (figure 3b). The
transition between regimes I and III can be defined by the value of U∗ at which
the wake–body synchronisation deviates from the f ∗

y = 1 natural frequency. Since this
divergence away from fnw occurs with no noticeable jump, the point of deviation stated in
this study can only be taken to be an approximate location. Nonetheless, a clear trend is
observed where increasing ζ both delays the onset and restricts the domain of regime II.
Correspondingly, the deferment of the lock-in region leads to an expansion of the initial
desynchronisation region to higher reduced velocities.

For ζ = 4.98 × 10−2, the amplitude curve begins to split from a mainly one-branch
response into multiple distinct branches as categorised by the sudden drop in A∗

10 at U∗ =
6.60 in figure 3(b). Regime II becomes completely suppressed when structural damping
is increased to ζ = 6.30 × 10−2 (figures 4f and 5f ), and the third region (regime III)
becomes the only region of synchronisation. The reduced velocity range of the latter
lock-in region will shrink with further increases in damping, resulting in the gradient
of the vibration and transverse fluid force frequencies as a function of U∗ becoming
steeper. The multibranched amplitude response collapses back into a single branch when
the applied damping reaches ζ = 1.40 × 10−1, with complete desynchronisation observed
for ζ = 1.87 × 10−1. The FIV response for the latter damping ratio is characterised by the
suppression of all four lock-in regimes, resulting in the main frequency contribution now
following the Strouhal frequency across the reduced velocity range of interest (figures 4f
and 5f ). It should be noted that there was significantly less contribution by the second
and third harmonics to the frequency response of the transverse fluid forces ( f ∗

Cy
, f ∗

Cv
) after

the suppression of the hyper branch oscillation, further supporting the conclusion that
harmonic synchronisation plays an important part in the development of large oscillation
amplitudes. An exception to this generalisation is the strengthening of the third harmonic
on the right-hand side of the transition between regime I and III (see figures 4eii, 5dii and
5eii), which is only suppressed when ζ ≥ 2.16 × 10−2. With the hyper branch response
being absent in the response, hysteresis effects were mainly observed in the transition
between the lock-in (either regime II or III) and the desynchronisation regions. In general,
decreasing U∗ increments will reduce the range of the initial desynchronised regime and
cause the onset of the final desynchronisation regime to occur at lower reduced velocities
when compared with the increasing U∗ case. However, this does not apply to the cases
where ζ = 6.30 × 10−2 (figure 5f ) and 8.10 × 10−2 since vibrations in regime III can be
excited for higher reduced velocity compared with other damping values (see figure 3b)
when U∗ was decreased.
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Figure 8. Maximum amplitude, as a function of damping, observed for FIV responses where the hyper branch
is suppressed (ζ ≥ 1.92 × 10−2). Mean of the data collected for both increasing and decreasing U∗ increments
was utilised in the plot. The red dotted line denotes the inverse function (with the equation shown in the legends)
fitted over the data points, resulting in a fit with R-squared value of 0.987.

Interestingly, when plotting the maximum amplitude for both increasing and decreasing
U∗ directions as a function of the applied structural damping (figure 8), the curve was
found to be well approximated by an inverse fit. However, a similar relationship could not
be found when the hyper branch was present in the amplitude response.

3.2. Damping effects on fluid forcing and phase angles
An important component of the fluid–structure interaction is the transverse fluid force
exerted by the flow on the elastically mounted elliptical cylinder, as well as the relative
phase to the body displacement. Shown in figure 9, the r.m.s. of the fluid force coefficient
in the y direction is highest in the hyper branch regime, exceeding values of Cy

rms ≈
1. Whilst Cy

rms generally decreases with increased structural damping over the tested
reduced velocity range, the general shape of the plotted curves within each subplot of
figure 9 remains relatively consistent. Exceptions to this trend, however, were observed
in regime III for 6.30 × 10−2 � ζ � 1.40 × 10−1. Instead of the bell-shaped trend of
lower damping values in figure 9(b), Cy

rms increases with U∗ before decreasing in a
discontinuous step-like manner until the onset of desynchronisation. This deviation could
explain why the initially single-branch amplitude response of the figure breaks up into
multiple branches with increasing damping. For all lock-in regions as shown in figure 6, the
transverse fluid forces were strongly periodic, with deviation away from a pure sinusoid for
regime II and the hyper branch alluding to the presence of harmonic components observed
in the frequency contours of figures 4 and 5.

In terms of the phase response, figure 10 shows the phase difference (φt) between the
total transverse fluid force and the body displacement for the various structural damping
ratios tested. The mean phase and its variant were calculated following the method used in
McQueen et al. (2021) and Zhao, Thompson & Hourigan (2022). Taken as the average of
the instantaneous phases (φtotal, j) over the recording period consisting of N samples, the
circular nature of this quantity means that the arithmetic mean cannot be used. Instead, φt
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Figure 9. The root mean square (r.m.s.) value of the total transverse fluid force (Cy
rms) as a function of U∗

for a range of fixed ζ values. The structural damping values where the hyper branch is present and absent are
separately shown in (a,b), respectively.

is found by first calculating the mean vector of the total phase distribution, expressed as

Φ̄ = 1
N

n∑

j=1

eiφtotal, j . (3.1)

The resultant vector can then be used to obtain both a mean and variation of the phase
angles,

φt = Arg(Φ̄), (3.2)

Var(φt) = 1 − |Φ̄| ∈ [0, 1]. (3.3)

The variant value Var(φt) can be used as the index of phase synchronisation: the
minimum possible value 0 indicates that all phase angles are equal (i.e. perfect phase
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Figure 10. The relative phase between the total transverse fluid force and body displacement (φt) as a function
of U∗ for a range of fixed ζ values. Here the phase values are reported in degrees. The structural damping values
where the hyper branch is present and absent are separately shown in (a,b), respectively, whilst increasing and
decreasing U∗ increments are presented in (i) and (ii), respectively.

synchronisation), whereas the maximum possible value 1 indicates that phase angles are
spread uniformly over the circular space (i.e. no phase synchronisation or uncorrelated
phase differences) (Zhao et al. 2022).

As shown in figure 10, for the minimum damping case (ζ = 3.62 × 10−3) with
increasing U∗ increments, the total phase φt in both regimes I and II peaks at ζ ≈
17.8◦ approximately U∗ = 3.9, whilst the onset of the hyper branch corresponds to a
discontinuous drop in φt. The hyper branch regime can be categorised as an asymptotic
curve plateauing towards an almost constant value of φt ≈ 7.5◦ at U∗ ≈ 7. Moreover, the
total phase in the hyper branch being close to 0◦ is indicative of the cylinder oscillation
being mostly in-phase with the fluid forcing, potentially leading to positive feedback
between the two quantities (i.e. a self-reinforcing process where a positive increase in
displacement leads to an increase in transverse fluid force, which in turn amplifies the
displacement). Whilst this in-phase relationship extends to regimes I and II as well,
the fluid forcing in regime III is nearly in constant antiphase to the cylinder motion
(φt ≈ 177◦).

974 A5-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

77
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.776


Damping effects on the FIV of a thin elliptical cylinder

2 4 6 8 10

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

V
ar

(φ
t)

V
ar

(φ
t)

U∗U∗ζ = 1.92 × 10–2,

ζ = 2.16 × 10–2,

ζ = 2.61 × 10–2,

ζ = 3.20 × 10–2,

ζ = 3.58 × 10–2,

ζ = 4.98 × 10–2,
ζ = 6.30 × 10–2,

ζ = 8.10 × 10–2,

ζ = 1.07 × 10–1,

ζ = 1.40 × 10–1,
ζ = 1.87 × 10–1,

U∗U∗
U∗U∗
U∗U∗
U∗U∗
U∗U∗
U∗U∗
U∗U∗
U∗U∗
U∗U∗
U∗U∗

ζ = 3.62 × 10–3,

ζ = 6.91 × 10–3,

ζ = 9.38 × 10–3,

ζ = 1.26 × 10–2,

ζ = 1.49 × 10–2,

ζ = 1.85 × 10–2,

ζ = 1.88 × 10–2,

U∗U∗
U∗U∗
U∗U∗
U∗U∗
U∗U∗
U∗U∗
U∗U∗

(b)

(a)

(i) (ii)

(i) (ii)

2 4 6 8 10

2 4 6 8 10 2 4 6 8 10

U∗U∗

Figure 11. The circular variance of total phase between the total transverse fluid force and body displacement
(φt) as a function of U∗ for a range of fixed ζ values. The organisation of subplots follow figure 10.

Furthermore, the effect of increasing ζ on the phase response in figure 10 can be
characterised by the respective increases and decreases of the lower (regimes I, II and
hyper branch) and upper (regime III) phase plateaus towards φt ≈ 90◦. In figures 10(aii),
10(bi) and 10(bii), the transition between the two plateaus becomes increasingly less abrupt
and follows a more continuous curve over a range of intermediate phase values. The
presence of a phase jump between the two phase plateaus coincides with third harmonic
frequency components in f ∗

Cy
and f ∗

Cv
at the regime III to hyper branch transition (as

previously discussed in § 3.1). As such, the disappearance of the harmonics for damping
ratios ζ ≥ 2.16 × 10−2 could be linked to the phase response becoming completely
continuous.

Outside of the synchronisation regimes, the desynchronisation region is also clearly
observed in the phase responses by the large spread in variance values shown in figure 11.
While desynchronisation is present at high U∗ values and at low U∗ for the damping
ratios above the minimum value tested, the phase response between these two scenarios
differs. For ζ = 1.87 × 10−1, where all synchronisation regimes are not present, the phase
smoothly transitions from φt ≈ 11◦ to φt ≈ 158◦, and reaches 90◦ at approximately U∗ =
1/St ≈ 6.
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Figure 12. Evolution of phase-averaged vorticity contours for structural damping of ζ = 1.49 × 10−2 at U∗ =
3.0 (regime I), with the flow moving from left to right. The normalised vorticity field is ω∗

z = ωzb/U , where ωz
is the vorticity out of the x–y plane. The blue and red contours represent clockwise and anticlockwise vorticity,
respectively. The black dot at the far left denotes the body centre position of the cylinder and the black vertical
line between two horizontal bars indicates the peak-to-peak vibration amplitude. A single vortex is shed every
half-cycle as part of the observed 2S wake mode.

Whilst not presented here, the vortex phase (φv), defined as the phase angle between the
vortex force and the cylinder movement (see Govardhan & Williamson 2000), generally
behaves in a manner similar to the total phase, albeit with a larger magnitude. As such, the
above arguments are equally valid for both phases.

3.3. Wake modes
To extend the description of the FIV response for the elliptical cylinder, the dynamics can
be further characterised through PIV measurements to visualise the wake structures in
different regimes. The measurement locations in the U∗–ζ parameter space are marked on
the contour plot (figure 7). Figures 12–15 show the phase-averaged vorticity contours at
U∗ ∈ {3.0, 4.8, 5.2, 7.0}, respectively, for ζ 
 1.49 × 10−2 to illustrate the wake patterns
for the four synchronisation regimes. Not shown are the wake–body interactions in the
desynchronisation region, with no discernible regular wake structure observed.

The major wake structure encountered in all the synchronisation regimes is the 2S
mode (Williamson & Roshko 1988), which consists of two large counter-rotating vortices
shed per body oscillation cycle. These large vortices are responsible for the dominant
frequency component of both the vortex shedding process and the body vibration (see
the PSD contours of f ∗

Cy
and f ∗

y ). However, the second and third harmonic components
of f ∗

Cy
observed for all synchronisation regimes aside from regime I (figure 12) can
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Figure 13. Evolution of phase-averaged vorticity contours for structural damping of ζ = 1.49 × 10−2 at U∗ =
5.2 (regime II). More details can be found in the caption of figure 12. Along with the 2S wake mode that was
previously found in regime I, additional vorticity was also observed in the region between the counter-rotating
vortex pair forming a zigzag pattern.

be attributed to additional vortical structures, which appear as elongated shear layers
between the two major opposite-signed single vortices shed from either side of the cylinder
(see figure 13). As shown in the cases of regime II (figure 13) and the hyper branch
(figure 14), the elongated shear layers form a zigzag-like structure in the near-wake
(i.e. x/b < 4), whose strength and definition are found to increase with the body vibration
amplitude. However, the ‘zigzag’ structure dissipates into an inner much weaker vortex
street travelling downstream. Corresponding to a weak harmonic component in f ∗

Cy
, the

ancillary wake structure in regime III (figure 15) consists of a thin shear layer that forms
a tail that connects the major vortices to the elliptical cylinder. This feature is short-lived
and is quickly dissipated by the free stream flow.

While previous studies of VIV of circular cylinders (e.g. Govardhan & Williamson
2000; Zhao et al. 2014a) have shown that changes in wake modes could be associated with
jumps in the total and vortex phases from 0◦ to 180◦, it is observed in the present study that
the major 2S wake pattern in all synchronisation regimes is independent of the jumps from
0◦ to 180◦ in φt or φv . This behaviour is similar to that observed by Zhao et al. (2018a) for
a reverse D-section cylinder (orientated with its flat surface facing downstream), where a
strong 2S wake mode was also consistently observed through all synchronisation regimes.
The results from the present study and Zhao et al. (2018a) suggest that the relation of wake
mode changes to the fluid forcing phases (i.e. φt and φv) may depend on the presence of an
appreciable afterbody, such as for circular or ‘diamond-shaped’ (a square cylinder oriented
at 45◦ incident angle) geometries (Zhao et al. 2014b).
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Figure 14. Evolution of phase-averaged vorticity contours for structural damping of ζ = 1.49 × 10−2 at U∗ =
5.6 (hyper branch). More details can be found in the caption of figure 12. With the exception of the zigzag
pattern being more well-defined, the wake structure is almost identical to that found in regime II.

It is interesting to note that, relative to the free stream, the angle of the zigzag-like
wake structure is equivalent to the maximum angle of the relative flow Urel = Ui + ẏj
(where i and j are unit vectors in the x and y directions, respectively) experienced by the
elliptical cylinder during its oscillation cycle. The angle was calculated by fitting linear
functions over the contour plots as illustrated in figure 16. As the peak in the angle of
attack occurs at y∗ = 0, an accurate comparison can be achieved by only measuring the
angle of the zigzag-like wake structure over the domain y∗ ∈ [−1, 1]. Care was taken to
choose a PIV contour frame just after the ellipse crosses the zero-displacement line and
when the zigzag-like structure was clearly visible. For instance, the averaged angle with
respect to the two fitted lines was found to be approximately θc = 81.14◦, a difference of
3.1 % compared with the maximum relative flow angle (with respect to the free stream
velocity) of 78.67◦ for ζ = 1.49 × 10−2 at U∗ = 6.20.

The equivalence of the two angles can be explained by using hydrogen-bubble-based
flow visualisations taken for the hyper branch at U∗ = 5.60, as shown in figure 17 with
the corresponding video also provided in supplementary movie 1. As can be seen, the
zigzag-like structure consists of a coalescence of vortices that resemble a von Kármán
vortex street (or SVS). As a result of the high elliptical ratio (i.e. resulting in a thin
elliptical shape) as well as the large instantaneous relative flow angle (with respect to
the free stream velocity) experienced by the cylinder, the body essentially acts as an airfoil
with a small angle of attack (relative to the semimajor axis of the cylinder in motion). Due
to the conservation of vorticity, changes in the circulation around the elliptical cylinder,
resulting from changes in the body velocity or the relative angle of attack during an
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Figure 15. Evolution of phase-averaged vorticity contours for structural damping of ζ = 1.49 × 10−2 at U∗ =
7.0 (regime III). More details can be found in the caption of figure 12. Whilst still predominantly a 2S wake
mode, the zigzag pattern of regime II and the hyper branch are replaced by a quickly dissipating tail-like shear
layer that connects the shed vortex to the elliptical cylinder.
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Figure 16. The phase-averaged vorticity contour for structural damping of ζ = 1.49 × 10−2 at U∗ = 6.2
(hyper branch). The black dotted lines are the linear fits used to approximate the angle of the secondary vortex
street (SVS) relative to the free stream velocity over the domain y∗ ∈ [−1, 1] for a single oscillation cycle,
which was found to be θc ≈ 81.14◦. More details about the contour can be found in the caption of figure 12.

oscillation cycle, must be offset by the shed SVS. As the cylinder accelerates in the
cross-flow direction, the SVS grows in length as the cylinder moves forward whilst being
transported by the free stream flow U, and thus the resultant angle (relative to the free
stream velocity) appears to be approximately equal to θc. Furthermore, the placement
of vortices within the elongated shear layers indicates that the zigzag structure is a
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�τ = 0.262�τ = 0.239�τ = 0.191�τ = 0.167

�τ = 0.119�τ = 0.048 �τ = 0.072 �τ = 0.095�τ = 0.024�τ = 0(a)

(b) �τ = 0.143 �τ = 0.215

SVS

Main vortex

Figure 17. Temporal evolution of the wake, visualised using hydrogen bubbles, for U∗ = 5.6 and ζ = 3.64 ×
10−3. The cylinder travels from the bottom to the top of the image frame with the free stream flowing from
left to right. The single main vortex (part of the 2S wake structure) located at the bottom of the frame grows
and advects downstream. Additional vortex shedding from the back (relative to the cylinder motion) of the
elliptical cylinder resembles a von Kármán vortex street (or SVS), and forms the zigzag structure observed
in the PIV contours of figure 14. The dashed line indicates the y = 0 position of the cylinder, with the time
elapsed since the first frame (when the cylinder is at the peak negative displacement or τ = 3T/4) scaled by
the natural system frequency such that 
τ = 
tfnw. For the video of the hydrogen bubble visualisation, see
supplementary movie 1 available at https://doi.org/10.1017/jfm.2023.776.

drag-inducing vortical signature (Freymuth 1988). During the upwards movement of the
elliptical cylinder (figures 14iv–14vi and 16), it is found that the vortices on the left and
right of the cylinder are anticlockwise and clockwise, respectively, thereby inducing upon
each other a jet-like flow with a velocity component in the upwards direction (Biot–Savart
law, which is used in aerodynamic theory to calculate the velocity induced by a vortex
filament) as well. Through conservation of momentum, the coalescence of vortices within
the shear layers is indicative of a ‘drag’-like force that impedes the motion of the cylinder
along the y-axis.

Furthermore, it is also interesting to note that the SVS is similar to the alternating
vortex-pair shedding mode observed in the numerical study by Kurtulus (2016) for
NACA0002 and NACA0012 airfoils over angles of attack from 0◦ to 180◦ at Re = 1000,
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(a) (b)

Figure 18. A side-by-side comparison between (a) the secondary vortex street of figure 17 and (b) the
time-averaged wake pattern observed by Gupta et al. (2023) for a NACA0012 airfoil with an angle of attack of
8.0◦ and a Reynolds number of 2000. Note that the free stream is moving downwards in the right image. More
details about the flow conditions and structural damping of (a) can be found in figure 17.

and Gupta et al. (2023) for a NACA0012 airfoil over angles-of-attack from 0◦ to 20◦ and
500 ≤ Re ≤ 5000. For a clear comparison between our results and that of the literature
on airfoils, we will be characterising the flow in the following discussion based on the
angle of attack α = tan−1(abs(U/ẏ)), which is equivalent to the angle of attack for an
airfoil and defined as the acute angle between the relative flow (Urel) and the semimajor
axis, and Rerel = Re(Urel/U) = Re(

√
1 + (ẏ/U)2), the Reynolds number with respect to

the relative flow (analogous to the Reynolds number in the airfoil literature).
A side-by-side comparison between the SVS visualised in the present study and the

most alike wake pattern observed by Gupta et al. (2023) is presented in figure 18. The
similarity between these cases is perhaps unsurprising given the thin elliptical shape of
the cylinder and the small relative angle of attack α. However, whilst there are differences
in both the geometric and flow conditions (i.e. angle of attack and Reynolds number for
Kurtulus (2016) and Gupta et al. (2023) whereas both analogous parameters, α and Rerel,
are constantly varying in our study), the similarity between the cases means a qualitative
analysis appears warranted given that, as far as the authors are aware, there are no studies
on the wake structure of elliptical airfoils undergoing FIV over identical experimental
conditions.

Figure 19 shows the time variation of the relative Reynolds number (Rerel) and α under
the same experimental conditions as in figure 17. As expected, α = 90◦ occurs every τ =
T/4 and 3T/4 (where T = 1/fnw is an oscillation period) and corresponds to the cylinder
reaching its peak displacement with zero body movement velocity (ẏ = 0) and a minimum
relative Reynolds number of Rerel ≈ 2500. Similarly, the lowest α ≈ 10.5◦ and highest
Rerel ≈ 13 400 values similarly occur every τ = T/2 and T when the cylinder has zero
displacement and maximum movement velocity. Although Gupta et al. (2023) were able
to further distinguish between the different subtypes of the vortex-pair shedding mode, the
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Figure 19. Time trace of the relative Reynolds number and the α angle (presented in degrees) experienced by
the cylinder under the same experimental conditions as in the flow visualisation experiment of figures 17 and
18. The time axis is scaled by the natural system frequency such that τ = tfnw.

aforementioned time-varying nature of both Rerel and α means that the exact configuration
of the vortex pairs within the SVS will evolve over an oscillation period as well.

Noting that the range of Rerel = 11 000–13 500 and α = 13◦–10.5◦ values corresponding
to the stable formation of vortex pairs in the SVS occupy the top side of the wake regime
map presented by Gupta et al. (2023), it agrees well with the conclusion that the SVS in
the present study is primarily a non-chaotic vortex-pair shedding mode. The stability of
the vortex formation is due to the narrow range of α and Rerel values caused by the vortex
shedding occurring over the turning point of the two time-dependent parameters. Since the
experimental parameters do not vary much over this turning point region, the vortex pairs
are similar in nature as evidenced by the standard deviation of the vortex pairs being only
5.5 % of the mean spacing of 0.48b for the experimental conditions in figure 17.

Whilst vortex formation outside of the above ranges (i.e. Rerel < 11 000 and α > 13◦)
does occur, the vortices are shed irregularly and become much smaller and difficult to
detect (
τ = 0.167 in figure 17) due to the chaotic nature of the shedding where both
unpaired and paired vortices were being generated. Gupta et al. (2023) also observed
chaotic alternating vortex pair formation as well over similar flow conditions as this
study (i.e. the upper right-hand side of the wake regime map in figure 7a of their study),
thereby further indicating that the wake dynamics of the cylinder in motion bears a marked
resemblance to that of an airfoil.

Building upon these observations, the presence of this secondary vortex street (and
in turn, the harmonics in f ∗

Cy
) indicates the existence of flow attachment around the

elliptical cylinder as it moves in the y direction. This flow attachment is an important
feature that allows the elliptical cylinder to reach vibrational amplitudes unattainable for
other common geometries in FIV research (e.g. circular, D-section, square, etc.). For
example, the hyper branch was not observed by Zhao, Hourigan & Thompson (2019b) for
a rectangular cross-section with side-ratio σ = h/b = 5 (where h and b are the respective
cross-flow and streamwise side widths) even though the dimensions when projected to
the x and y axes are identical to the ε = 5 elliptical geometry of interest. As the lowest
angle of attack for oscillations in the hyper branch regime is near 0◦ for the elliptical
cylinder, it indicates the importance of the cross-flow profile of the cylinder, especially for
large-scale oscillations that are ‘fast’ (i.e. vibrating at near the natural frequency). As the
flat rectangular geometry in the cross-flow direction provides greater drag to transverse
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Figure 20. Schematics showing the flow around the elliptical cylinder for two different α angles: (a) with a
large α (i.e. 45◦) and hence substantial flow separation; and (b) with a small α (i.e. 10.5◦) and flow attachment.
The cylinder is not at its peak displacement, where it is assumed that the contributions of the 2S wake to the
flow around the body are negligible. The cylinder induces a lift (CL,rel) and drag force (CD,rel) with respect to
the relative flow (Urel), where the net fluid force acting in the y direction denoted by Fy. The shading represents
regions of vorticity, with the secondary vortex street shown in (b). Note that the vectors are not drawn to scale.

movements than an elliptical cross-section, this resistive force scaling with the second
power of body speed ẏ2 could explain why the galloping response of the σ = 5 rectangular
cylinder cannot reach the transverse velocities and oscillation amplitudes observed by the
elliptical cylinder when undergoing oscillations in the hyper branch regime.

To further investigate the aerodynamic properties of the ε = 5 elliptical cylinder,
figure 20 schematically describes the forces that act on the elliptical cylinder for two α

values as the cylinder travels between the points of peak displacement. The following
discussion will first ignore the contribution made by the main 2S wake mode to the
vibrational dynamics and instead focus on the forces produced by the cylinder movement
only.

In figure 20(a), the case for a large α value (corresponding to a small ẏ with relative
to the free stream velocity) is shown and it is representative of regimes I and III where
large elongated shear layers do not appear in the wake. This absence indicates that the
dynamics for the above regimes are dominated by the separated flow and the elliptical
cylinder can hence be treated as a bluff body. As illustrated in figure 20(a), when the ellipse
is equivalent to an airfoil stalling due to flow separation at a large angle of attack (α),
the corresponding lift (CL,rel) and drag (CD,rel) with respect to the relative flow will be
small and large, respectively. This resultant force experienced by the cylinder in the y
direction (i.e. the axis of motion) will be opposite to the motion and hence resists the body
oscillations. However, at a low α value (see figure 20b due to a large ẏ relative to the free
stream velocity), as is the case for parts of the oscillation cycle in regime II and the hyper
branch regime (figure 19), α will be small enough so that the ellipse acts like an airfoil
with the flow largely attached. Although the ellipse does experience drag with respect to
the relative flow (which includes contributions by the SVS that make up the zigzag flow
structure), the increased relative lift results in either a reduction in the resistant force or
in some cases, a thrust in the y direction. This would explain why the elliptical geometry
can oscillate at the natural frequency with amplitudes significantly greater than the body
diameter, a phenomenon unseen for the other geometries.
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Figure 21. Phase-averaged vorticity contours from the PIV measurements in figure 14 when the bottom
anticlockwise vortex (bounded by the black dashed rectangle box) of interest is detached from the cylinder
and has been shed into the free stream.

The above conclusion is further supported by analysing the contribution that the 2S wake
mode makes to the total fluid forces experienced by the elliptical cylinder. As a result of
the inherent symmetry of the problem, the following discussion will focus on the structural
motion as a major vortex is being shed at the bottom shown in figure 14 and the body is
moving upwards from its maximum negative displacement. Note that the same arguments
are equally applicable when the cylinder is moving downwards from its maximum positive
displacement. Since the system is similar/equivalent to an airfoil accelerating from rest, the
main vortex is analogous to a starting vortex with circulation that is equal in magnitude but
opposite in sign to that enveloping the airfoil. To measure the contribution to this ‘bound’
vorticity and hence the fluid forcing that is attributed to the shedding of the main vortex,
the Kutta–Joukowski theorem is employed to approximate the fluid forces based on the
circulation around the elliptical cylinder that is explained by the main vortex.

From figure 21, which is a frame selected from the PIV measurements in figure 14,
the circulation of the main near-body anticlockwise vortex (positive) is extracted from
the area enclosed by a rectangle box. From Stokes’ theorem, the magnitude of the
‘bound’ vorticity about the cylinder attributed to the circulation of the shed vortex
is hence Γ ≈ 9.85 × 10−3 m2 s−1. Note that the dimensionless circulation is given
by Γ ∗ = Γ/(bUrel) = CL,rel/2. As such, the coefficients of lift and drag with respect
to the relative flow direction are found to be CL,rel = ρUrelΓ/(1

2ρU2
relb) ≈ 2.81 and

CD,rel = ρ(ẏ sin (α))Γ/(1
2ρU2

relb) ≈ 0.94, respectively. As α ≈ 21◦ at the instant the main
vortex is completely detached from the cylinder, the transverse lift coefficient is found to
be Cy = (Urel/U)2(CL sin (α) − CD cos (α)) ≈ 1.01. Comparing this value with the total
peak value of Cy = 2.26 experienced by the cylinder, the maximum force accounted for
by the main vortex alone only contributed to 44 % of the total transverse lift. This result
agrees well with the study by Chang, Hsiau & Chu (1993), where it was shown that the
starting vortex was not the only source of lift for a NACA0012 airfoil that was impulsively
started from rest to a constant speed, and that the other regions of vorticity attached to the
airfoil must also be accounted for. Since the generation of vorticity occurs at the cylinder
surface due to adverse pressure gradients and the acceleration of the bluff body, the main
contribution of the large main vortices (i.e. 2S wake mode) to the transverse fluid forces
occurs when the cylinder is near the point of peak displacement and the flow is largely
unattached due to the large α angle. As such, it can be concluded that the 2S wake mode
does not fully explain the transverse fluid force acting on the cylinder, with the remaining
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dynamics arising from a movement-induced instability that is characterised by additional
transverse fluid forces due to the body motion promoting attached flow over both lateral
sides of the elliptical cylinder.

A more holistic understanding of the structural dynamics can now be reached
by considering both the contributions of VIV and movement-induced instability
(i.e. galloping) to the body motion in the hyper branch and regime II. When the cylinder
approaches its maximum positions, the α angle becomes large enough (i.e. when ẏ is
small relative to the free stream velocity) to cause large flow separations. This yields
a strong 2S wake mode, where each main vortex generates an impulse that propels the
body in the opposite direction to its motion. As the cylinder accelerates away from its
maximum displacements, the decreased α angle promotes flow attachment, generating a
relative lift (CL,rel) that reduces the resistant force or even provides a thrust in the y axis.
By minimising the fluid forcing that impedes the body motion during an oscillation cycle,
the additional contribution of the movement-induced instability to the structural vibration
allows the strong 2S wake pattern to be sustained at large-scale oscillations (i.e. A∗ > 4)
previously unseen for other geometries. An absence of this contribution, as in VIV of a
circular cylinder, results in the same 2S pattern only existing for self-limiting amplitudes
(e.g. A∗ ≈ 0.8 in Blevins (1990)). As such, the above arguments support our conclusion
that the FIV behaviour of the elliptical cylinder in the hyper branch can be attributed to
the combined effect of VIV and movement-induced instability.

4. Conclusions

The transverse FIV of an elastically mounted elliptical cylinder with an elliptical ratio of
ε = 5 and a mass ratio of m∗ = 17.4 has been experimentally investigated over a wide
parameter space across the structural damping ratio range of 3.62 × 10−3 ≤ ζ ≤ 1.87 ×
10−1 and reduced velocity range of 2.30 ≤ U∗ ≤ 10.00. The FIV response was extensively
characterised through a detailed examination of the vibration amplitude and frequency
responses, the fluid forces and their phases, as well as the wake structures.

Four synchronisation regimes (I, II, hyper branch, and III) were observed for low
structural damping ratios, ζ ≤ 1.88 × 10−2. Generally, increasing ζ reduces the amplitude
for a given reduced velocity, resulting in the delayed onset of the synchronisation regimes.
Of particular interest, the hyper branch was found to be a result of the combined effect of
VIV and movement-induced instability. The results also showed that the hyper branch and
regime II were suppressed for ζ ≥ 1.92 × 10−2. Moreover, for 1.92 × 10−2 ≤ ζ ≤ 1.40 ×
10−1, the amplitude response was found to be typically a single branch, with the peak value
following an approximately inverse relationship with ζ (figure 8). The highest structural
damping ratio where regime I was still present in the FIV response was ζ = 4.98 ×
10−2, and beyond ζ = 1.87 × 10−1 the fluid–structure interaction becomes completely
desynchronised (with vortex shedding frequency following the Strouhal frequency of a
fixed body).

Furthermore, the major wake structure was found to be a predominately 2S mode for
all the synchronisation regimes regardless of the structural damping ratio tested. The 2S
mode was found to be responsible for the dominant component in both f ∗

y and f ∗
Cy

in
all synchronisation regimes. Of particular interest, a secondary vortex street in a zigzag
configuration was detected for the hyper branch regime as well as regime II, where the SVS
was found to be associated with the second and third harmonic components of the fluid
forcing (i.e. f ∗

Cy
and f ∗

Cv
) in these regimes. The presence of the SVS indicates that the flow

remains attached as the elliptical cylinder translates in the y direction, which arises due to
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the small induced angle of attack α when ẏ is large relative to the free stream flow. The
role of the attached flow in maximising the net transverse fluid force acting on the cylinder
explains why the elliptical geometry can oscillate at the natural frequency with amplitudes
significantly greater than the body diameter, whilst the dependence of flow attachment on
the body velocity elucidates the movement-induced nature of the substantially large body
vibration in the hyper branch.

The present study has demonstrated that structural damping does have a profound
effect on the synchronisation regimes in FIV of an elliptical cylinder of ε = 5.
Future work is warranted to understand how other parameters of the system (such as mass
ratio, angle of attack, elliptical ratio, etc.) can impact the transverse FIV response regimes
and mechanisms of fluid–structure interaction of elliptical cylinders.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2023.776.
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