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Abstract

In an incomplete financial market in which the dynamics of the asset prices is driven
by a d-dimensional continuous semimartingale X, we consider the problem of pricing
European contingent claims embedded in a power utility framework. This problem
reduces to identifying the p-optimal martingale measure, which can be given in terms
of the solution to a semimartingale backward equation. We use this characterization to
examine two extreme cases. In particular, we find a necessary and sufficient condition,
written in terms of the mean–variance trade-off, for the p-optimal martingale measure to
coincide with the minimal martingale measure. Moreover, if and only if an exponential
function of the mean–variance trade-off is a martingale strongly orthogonal to the asset
price process, the p-optimal martingale measure can be simply expressed in terms of a
Doléans-Dade exponential involving X.
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1. Introduction and main results

We consider the problem of evaluating a derivative in a market in which the dynamics of
the discounted prices of traded assets is described by an R

d -valued continuous semimartingale
X = (Xt , t ∈ [0, T ]). We assume all processes to be defined on a probability space (�,F ,P),
equipped with a filtration F = (Ft , t ∈ [0, T ]) satisfying the usual conditions, where F = FT
and T < ∞ is a fixed time horizon. The filtration represents the information flows available to
the agents operating in the market and any European contingent claim will be a random value
η that will be observed only at the exercise time T . To avoid arbitrage in the market, the price
process X has to satisfy the structure condition; this means that it admits the decomposition

Xt = X0 +
∫ t

0
d〈M〉sλs +Mt, (1)

where M is a continuous local martingale and λ a predictable, R
d -valued process such that

KT = ∫ T
0 λ�

s d〈M〉sλs < ∞ almost surely (a.s.), ‘�’ denoting transposition. The so-called
mean–variance trade-off process ofX,K = ∫

0 λ
�
s d〈M〉sλs , turns out to be the key quantity: it

can be seen as the integrated squared market price of risk associated with X and, for instance,
in the well-known Black–Scholes model with drift b, volatility σ , and riskless interest rate r
it coincides with Kt = ((b − r)/σ )2t . Furthermore, the process K measures the extent to
which the price process deviates from being a martingale. In fact, the process X, admitting the
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Derivatives pricing via p-optimal martingale measures 635

decomposition (1), is a martingale if and only ifKT = 0, a.s. (see Schweizer (1994) for further
details).

The question is: How does an agent evaluate the random pay-off η? An ‘admissible’ price
can be the maximum value at which the agent agrees to buy or the minimum value at which she
agrees to sell, completely hedging the risk. The existence of such prices of general contingent
claims (and their dynamical counterpart) was proved in El Karoui and Quenez (1995), under
the hypothesis of Brownian dynamics of the price process. In this paper it is shown that the
maximal price of a contingent claim at time t can be expressed as a portfolio with an initial value
(the initial wealth of an investor) plus a stochastic integral with respect toX, which models the
gains or losses that she accumulates up to time t , and an increasing optional process modelling
her consumption. In Kramkov (1996), this representation, which is not obvious, was named
‘the optional decomposition theorem’ and extended to a rather general setting in which the
underlying assets are locally bounded semimartingales.

This approach to pricing leads us to determine an interval of arbitrage-free prices; in the
range of admissible prices the choice will depend on the risk aversion or utility preference.

The most significant contribution since the 1970s is the well-known Black–Scholes theory
of pricing, which provides the price as the expected value of the random pay-off with respect
to the unique martingale measure, i.e. a probability measure equivalent to P on FT and under
whichX is a martingale. This price is independent of agents’ preferences but the theory’s main
arguments, i.e. replicating claims and no arbitrage, are in general not realistic.

In fact, in general, markets are incomplete: mathematically, this corresponds to the fact that
the martingale measure is no longer unique. Instead, we have a set, Me, of probability measures
Q equivalent to P such that X is a Q-local martingale. Hence, any martingale measure leads to
a different arbitrage-free contingent claim price.

In this paper we concentrate on p-optimal martingale measures. These measures include
the variance-optimal martingale measure, which corresponds to p = 2, and the minimal-
entropy martingale measure, which arises as the limit as p tends to 1 (Grandits and Rheinländer
(2002), Santacroce (2005)). While the variance-optimal martingale measure plays a role
in determining the mean–variance hedging strategy, the latter is used to solve problems of
exponential hedging. In general,p-optimal martingale measures are related to power-law utility
maximization problems (see, e.g. Goll and Rüschendorf (2001) and Frittelli (2000)). The case
p < 0 corresponds to standard utility functions: functions strictly increasing, concave, and
defined on R

+. Nevertheless, the choice of p-optimal martingale measures makes sense for
any p �= 0, 1. Note that the case p < 1 (p �= 0) can be studied as in Santacroce (2005).

For any measure Q, let ZQ
t be the density process of Q relative to the basic measure P. For

any Q ∈ Me, there is a P-local martingale MQ such that

ZQ = E(MQ) = (Et (M
Q), t ∈ [0, T ]),

where E(M) is the Doléans-Dade exponential of M . If the local martingale

Ẑ = (Et (−λ ·M), t ∈ [0, T ])
is a strictly positive martingale, then dQmin / dP = ẐT defines an equivalent probability mea-
sure, Qmin, called the minimal martingale measure for X. We use the notation λ ·M to denote
the stochastic integral with respect to M . Let

Me
p =

{
Q ∈ Me : E

(
dQ

dP

)p
< ∞

}
, p > 1.
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Throughout the paper, we make the following assumptions.

Assumption 1. The minimal martingale measure Qmin exists and satisfies the reverse Hölder
inequality Rp(P), i.e. there is a constant C such that

E(EpτT (−λ ·M) | Fτ ) ≤ C

for any stopping time τ . We use the notation

EτT (M) = ET (M)

Eτ (M)
= ET (M −M·∧τ ).

Assumption 2. All P-local martingales are continuous.

Note both that Assumption 1 implies the existence of an equivalent martingale measure (Me
p

is not empty) and that, since X is continuous, the structure condition is automatically satisfied.
When X is continuous and Me

p is not empty, Grandits and Krawczyk (1998) showed that the
p-optimal martingale measure is equivalent to P; for p = 2 this fact was previously proved by
Delbaen and Schachermayer (1996).

Therefore, we consider the optimization problem

min
Q∈Me

p

E(EpT (M
Q)), p > 1,

and define the related value process as

Vt = ess inf
Q∈Me

p

E(EptT (M
Q) | Ft), p > 1. (2)

As stated before, for p = 2 the solution to the problem leads to the variance-optimal martingale
measure (see, e.g. Delbaen and Schachermayer (1996), Schweizer (1996), Gourieroux et al.
(1998), Laurent and Pham (1999), and Pham et al. (1998)). In Laurent and Pham (1999), a
characterization of the variance-optimal martingale measure was given in terms of the value
function related to a stochastic control problem in the case of Brownian filtration. In Mania
et al. (2002), a description of the p-optimal martingale measure was provided in terms of
the value process (2), and it was shown that V uniquely solves a semimartingale backward
equation. Moreover, Pham et al. (1998) stated a sufficient condition under which the minimal
martingale measure and the variance-optimal martingale measure coincide, and observed that
this condition typically fails if the mean–variance trade-off is not deterministic and includes
exogenous randomness not induced by X. Laurent and Pham (1999) explicitly characterized
the variance-optimal martingale measure in two opposite cases. In the first case the so-called
market price of risk does not depend on the exogenous randomness, which is represented in
their model by an untraded asset price process Y . In the opposite case the market price of risk
does not depend on the asset price process X. In their paper, Biagini et al. (2000) came to
similar conclusions for the variance-optimal martingale measure by exploiting their equation
involving exponential martingales.

The main contributions of this work are described in Theorems 1 and 2 and represent a
generalization to the semimartingale setting of the results obtained by Pham et al. (1998),
Laurent and Pham (1999), and Biagini et al. (2000). In particular, we give necessary and
sufficient conditions under which the p-optimal martingale measure can be expressed in two
specific forms, which in some sense represent two extreme cases. It is worth remarking that in
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the papers quoted above the respective authors supplied sufficient conditions, whereas we give
necessary and sufficient conditions for both cases.

We find that, under Assumptions 1 and 2, the p-optimal martingale measure coincides with
the minimal martingale measure if and only if

exp

{
p(p − 1)

2
〈λ ·M〉T

}
= c +

∫ T

0
φ�
s dXs(p),

where c is a constant, X(p) = M + p〈M〉 · λ, and φ is a X(p)-integrable process such
that (c + ∫ t

0 φ
�
s dXs(p), t ∈ [0, T ]) is a martingale with respect to the measure Qp min, whose

density, ET (MQp min
), onFT is defined by d(Qp min) = ET (−pλ ·M) dP. Moreover, still under

Assumptions 1 and 2, the p-optimal martingale measure, Q∗, satisfies

E
p−1
T (MQ∗

) = V0ET ((1 − p)λ ·X)
if and only if

exp

{
−p

2
〈λ ·M〉T

}
= c + m̂T ,

where m̂ is a martingale strongly orthogonal to M , i.e. 〈m̂,M〉 = 0.
In Section 2 the main results are presented in detail, while the diffusion case and the stochastic

volatility models are studied in Section 3 and Section 4, respectively. The results given in this
paper rely heavily upon the theory of backward stochastic differential equations. Here we just
mention that they were introduced by Bismut (1973) for the linear case, and by Chitashvili
(1983) and Pardoux and Peng (1990) for more general generators.

For all unexplained notation concerning martingale theory we refer to Jacod (1979), Del-
lacherie and Meyer (1980), and Liptser and Shiryaev (1989). For information about
BMO-martingales and reverse Hölder conditions, see Doléans-Dade and Meyer (1979) or
Kazamaki (1994).

2. Backward semimartingale equation for the value process

We now recall the definition of BMO-martingales and the reverse Hölder condition.
The square-integrable, continuous martingale M belongs to the class BMO if there is a

constant C > 0 such that

E1/2(〈M〉T − 〈M〉τ | Fτ ) ≤ C P -a.s.

for every stopping time τ . The BMO norm ofM , denoted by ‖M‖BMO, is the smallest constant
with this property (and takes the value +∞ if no such constant exists).

A strictly positive adapted processZ satisfies the reverse Hölder inequalityRp(P), 1 ≤ p <

∞, if there is a constant C such that

E

((
ZT

Zτ

)p ∣∣∣∣ Fτ
)

≤ C P -a.s.

for every stopping time τ .
We remark that, since X is continuous, any element Q of Me is given by the density Zt(Q),

which is expressed as an exponential martingale of the form

Et (−λ ·M +N),
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whereN is a local martingale strongly orthogonal toM . We observe that the problem of finding
the p-optimal martingale measure is in fact the problem of identifying the optimal martingale,
N∗, in a proper subclass of local martingalesN such that the corresponding martingale measure
is in Me

p.
Since Me

p �= ∅, the process V is a special semimartingale with respect to the measure P.
Let

Vt = V0 +mt + At, m ∈ M2
loc, A ∈ Aloc, (3)

whereM2
loc denotes the set of locally square-integrable martingales and Aloc the set of processes

of locally bounded variation, be the canonical decomposition of V , and let

mt =
∫ t

0
φ�
s dMs + m̃t , 〈m̃,M〉 = 0, (4)

be the Galtchouk–Kunita–Watanabe decomposition of m with respect to M . Any P-special
semimartingale Y admits a decomposition (similar to (3) and (4))

Yt = Y0 + Lt + Bt with Lt =
∫ t

0
ψ�
s dMs + L̃t ,

where L̃, L ∈ M2
loc, 〈L̃,M〉 = 0, and B ∈ Aloc is predictable.

Here, we restate the main result of Mania et al. (2002) (namely their Theorem 1(b) and
Corollary 2) in the form suitable for our purposes in which by the use of dynamic programming
techniques the value process V is characterized as the unique solution to a semimartingale
backward equation.

Proposition 1. If Assumptions 1 and 2 hold, then the value process V is the unique solution to
the semimartingale backward equation

Yt = Y0 − p(p − 1)

2

∫ t

0
Ys d〈λ ·M〉s + p〈λ ·M,ψ ·M〉t

+ p

2(p − 1)

∫ t

0

1

Ys
d〈L̃〉s +

∫ t

0
ψ�
s dMs + L̃t , t < T , (5)

with the boundary condition
YT = 1, (6)

in the class of semimartingales Y satisfying the two-sided inequality

c ≤ Yt ≤ C for all t ∈ [0, T ], a.s., (7)

for some constants c < 1 and C > 1.
Moreover, the martingale measure Q∗ is p-optimal if and only if it is given by the density

dQ∗ = ET (M
Q∗
) dP, where

M
Q∗
t = −

∫ t

0
λ�
s dMs − 1

p − 1

∫ t

0

1

Vs
dm̃s . (8)

Corollary 1. The martingale measure Q∗ is p-optimal if and only if its densityZ∗ = ET (M
Q∗
)

is expressed as

E
p−1
T (MQ∗

) = V0

(
1 +

∫ T

0
Es

([
ψ

V
+ (1 − p)λ

]
·X

)[
ψ�
s

Vs
+ (1 − p)λ�

s

]
dXs

)
.
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Let us introduce the process X(p) = M + p〈M〉 · λ. It is not difficult to verify that Propo-
sition 1 can be formulated in exponential form as follows.

Proposition 2. Equations (5) and (6) are equivalent to the equation

ET (ψ̄ ·X(p))
E
p−1
T (L̄)

= c̄ exp

{
p(p − 1)

2
〈λ ·M〉T

}
, (9)

i.e. if Y is a solution to (5) and (6), then the triple (c̄, ψ̄, L̄), where

c̄ = 1

Y 0
, ψ̄ = ψ

Y
, L̄ = − 1

p − 1

∫ t

0

1

Ys
dL̃s,

will be a solution to (9). Conversely, if (c̄, ψ̄, L̄) solves (9), then Y defined by

Yt = 1

c̄
exp

{
−p(p − 1)

2
〈λ ·M〉t

}
Et (ψ̄ ·M + p〈λ ·M,ψ ·M〉)E1−p

t (L̄)

satisfies (5) and (6).

Remark 1. Note that, for p = 2, (9) coincides with Equation (2.2) of Biagini et al. (2000).

Let us call Qp min the measure whose density E(MQp min
) is defined by d(Qp min) =

ET (−pλ ·M) dP. It is evident that, for any p > 1, we have

Et (−pλ ·M) ≤ E(EpT (−λ ·M) | Ft).
Therefore, if Qmin is in Me

p then Qp min is a probability measure equivalent to P. In fact,
Et (−pλ ·M) > 0 and

E(EpT (−λ ·M)) < ∞,

which implies that (Et (−pλ ·M), t ∈ [0, T ]) is a uniformly integrable martingale, since it is
bounded from above by a uniformly integrable martingale.

In the next two theorems we use the previous characterization of the value process to examine
two opposite cases. In each we give a necessary and sufficient condition for the p-optimal
martingale measure to assume two special forms.

Theorem 1. Let Assumptions 1 and 2 hold. Then the minimal martingale measure is p-optimal
if and only if

exp

{
p(p − 1)

2
〈λ ·M〉T

}
= c +

∫ T

0
ϕ�
s dXs(p) (10)

for an X(p)-integrable process ϕ, such that the process (c + ∫ t
0 ϕ

�
s dXs(p), t ∈ [0, T ]) is a

Qp min-martingale, and a constant c.

Proof. Let us start by proving the sufficiency. We define the process Y by

Yt = E(EptT (−λ ·M) | Ft) = EQp min
(

exp

{
p(p − 1)

2
〈λ ·M〉tT

} ∣∣∣∣ Ft
)
.

The above-defined process Y satisfies the two-sided inequality 1 ≤ Yt ≤ C; one side follows
from Jensen’s inequality and the other from Assumption 1, i.e. because the minimal martingale
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measure satisfies the reverse Hölder inequalityRp(P). It is easy to see that Y can be represented
as the product of a decreasing process J and a Qp min-martingale ¯̄m:

Yt = Jt ¯̄mt = exp

{
−p(p − 1)

2
〈λ ·M〉t

}
EQp min

(
exp

{
p(p − 1)

2
〈λ ·M〉T

} ∣∣∣∣ Ft
)
.

Keeping (10) in mind, we have

Yt = exp

{
−p(p − 1)

2
〈λ ·M〉t

}(
c +

∫ t

0
ϕ�
s dXs(p)

)
.

If we write the Itô formula for the product Jt ¯̄mt , we find that

Yt = Y0 +
∫ t

0
exp

{
−p(p − 1)

2
〈λ ·M〉s

}
ϕ�
s dXs(p)− p(p − 1)

2

∫ t

0
Ys d〈λ ·M〉s

= Y0 +
∫ t

0
ψ�
s dMs + p〈ψ ·M,λ ·M〉t − p(p − 1)

2

∫ t

0
Ys d〈λ ·M〉s , (11)

where we denote exp{−[p(p−1)/2]〈λ ·M〉}ϕ byψ . Observe that (11) coincides with (5) when
L̃ = 0 and, moreover, that 1 ≤ Yt ≤ C and YT = 1. Thus, Y is a solution to (5) satisfying the
two-sided inequality (7). Proposition 1 implies that Y = V and, therefore, that Q∗ = Qmin.

On the other hand, if the p-optimal martingale measure coincides with the minimal martin-
gale measure, from (8) we have

m̄t = − 1

p − 1

∫ t

0

1

Vs
dm̃s = 0

and, from (9), we have

exp

{
p(p − 1)

2
〈λ ·M〉T

}
= V0ET (ψ̄ ·X(p)) = c +

∫ T

0
ϕ�
s dXs(p),

where c = V0 and ϕ = V0E(ψ̄ ·X(p))ψ̄ . Thus, (10) holds.
We will show now that the process (c + ∫ t

0 ϕ
�
s dXs(p), t ∈ [0, T ]) is a Qp min-martingale

or, equivalently, that (Et (ψ̄ ·X(p)), t ∈ [0, T ]) is a Qp min-martingale.
According to Theorem 2.3 of Kazamaki (1994), it will be enough to prove that ψ̄ ·X(p)

is in BMO(Qp min). For this purpose, it is sufficient that ψ̄ ·M is in BMO(P). In fact, from
Theorem 3.6 of Kazamaki (1994), if MQp min

is in BMO(P), as in our case, then the Girsanov
transformation (see, e.g. Kazamaki (1994, paragraph 3.3)) is an isomorphism of BMO(P) onto
BMO(Qp min). We should see now that MQp min

and ψ̄ ·M are in BMO(P); we recall that
ψ̄ = ψ/Y and that Y ≥ 1. On the one hand, we have

E(〈MQp min〉T − 〈MQp min〉τ | Fτ ) = p2 E(〈λ ·M〉T − 〈λ ·M〉τ | Fτ )
≤ p2‖λ ·M‖2

BMO (12)

and, since, by Assumption 1, the minimal martingale measure satisfies the reverse Hölder
inequality Rp(P), the minimal martingale measure is, by Theorem 3.4 of Kazamaki (1994), in
BMO(P). On the other hand,

E(〈ψ̄ ·M〉T − 〈ψ̄ ·M〉τ | Fτ ) ≤ E(〈ψ ·M〉T − 〈ψ ·M〉τ | Fτ )
≤ ‖L‖2

BMO (13)

and, as has been shown in the proof of Proposition 1 (Theorem 1(b) of Mania et al. (2002)),
L is actually in BMO(P). Thus, (12) and (13) complete the proof.
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Theorem 2. Let Assumptions 1 and 2 hold. Then the p-optimal martingale measure satisfies

E
p−1
T (MQ∗

) = V0ET ((1 − p)λ ·X) (14)

if and only if

exp

{
−p

2
〈λ ·M〉T

}
= c + m̂T , (15)

where m̂ is a martingale strongly orthogonal to M , i.e. such that 〈m̂,M〉 = 0.

Proof. Let the p-optimal martingale measure satisfy (14). From (8) and (14) we have

E
p−1
T (−λ ·M)Ep−1

T (m̄) = V0ET ((1 − p)λ ·X), (16)

where, recall, m̄ = −[1/(p − 1)] ∫ t
0 (1/Vs) dm̃s . Since

E
p−1
T (−λ ·M) = ET ((1 − p)λ ·X) exp

{
p(p − 1)

2
〈λ ·M〉T

}
,

from (16), it follows that

exp

{
−p(p − 1)

2
〈λ ·M〉T

}
= 1

V0
E
p−1
T (m̄). (17)

Now, by taking both sides of (17) to the power 1/(p − 1), we obtain

exp

{
−p

2
〈λ ·M〉T

}
= cET (m̄) = c + m̂T (18)

with c = 1/(V0)
1/(p−1). Since m̄ ∈ BMO (see the proof of Theorem 1 of Mania et al. (2002)),

the processes Et (m̄) and, hence, m̂t = c
∫ t

0 Es(m̄) dm̄s are martingales. From (18) it should
now be clear that (15) holds.

Let us now prove the converse. Consider the martingale Zt = E(ZT | Ft), where ZT =
c̄ET (−λ · M − (p/2)〈λ · M〉), i.e. Zp−1

T = c̄(p−1)ET ((1 − p)λ ·X). Therefore, Zt has the
following expression, where the last equality is due to (15):

Zt = c̄Et (−λ ·M)E

(
EtT (−λ ·M) exp

{
−p

2
〈λ ·M〉T

} ∣∣∣∣ Ft
)

= c̄Et (−λ ·M)EQmin
(

exp

{
−p

2
〈λ ·M〉T

} ∣∣∣∣ Ft
)

= c̄Et (−λ ·M)(c + m̂t ).

In fact, since m̂ is a P-martingale strongly orthogonal to M (i.e. 〈m̂,M〉 = 0), it follows from
Girsanov’s theorem that m̂ is a Qmin-martingale.

It is easy to see that

ZT

Zt
= EtT (−λ ·M) exp{−(p/2)〈λ ·M〉tT }

E(exp{−(p/2)〈λ ·M〉tT } | Ft) .

Now let us define the process Y , via Yt = E((ZT /Zt )p | Ft). We will show that Y = V and,
therefore, that the optimal martingale measure has density satisfying (14). For this purpose let
us first prove that

Yt = E1−p
(

exp

{
−p

2
〈λ ·M〉tT

} ∣∣∣∣ Ft
)
. (19)
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It follows from the expression for ZT /Zt that

Yt = E

(
E
p
tT (−λ ·M) exp{−(p2/2)〈λ ·M〉tT }
Ep(exp{−(p/2)〈λ ·M〉tT } | Ft)

)

= E(EtT (−pλ ·M) exp{−(p/2)〈λ ·M〉tT } | Ft)
Ep(exp{−(p/2)〈λ ·M〉tT } | Ft)

= E1−p(exp{−(p/2)〈λ ·M〉tT } | Ft),
since

EQp min
(

exp

{
−p

2
〈λ ·M〉tT

} ∣∣∣∣ Ft
)

= E

(
exp

{
−p

2
〈λ ·M〉tT

} ∣∣∣∣ Ft
)
. (20)

Under Assumption 1, the process Y is bounded, since, for any stopping time τ ,

E(EpτT (−λ ·M) | Fτ ) ≤ C

and

E(EptT (−λ ·M) | Ft) = EQp min
(

exp

{
p(p − 1)

2
〈λ ·M〉tT

} ∣∣∣∣ Ft
)

= E

(
exp

{
−p

2
〈λ ·M〉tT

}1−p ∣∣∣∣ Ft
)

≥ E1−p
(

exp

{
−p

2
〈λ ·M〉tT

} ∣∣∣∣ Ft
)
,

where we use (20) and Jensen’s inequality. Furthermore, Yt = E((ZT /Zt )p | Ft) and by
Jensen’s inequality it is evident that Yt ≥ 1 for all t ∈ [0, T ]. Therefore, Y satisfies the
two-sided inequality (7).

Now, from (19) we can express Y as follows, where Dt = (c + m̂t )
1−p:

Yt = exp

{
−p(p − 1)

2
〈λ ·M〉t

}
(c + m̂t )

1−p = JtDt .

Writing Itô’s formula for this product, we have

Yt = (c + m̂0)
1−p − p(p − 1)

2

∫ t

0
Ys d〈λ ·M〉s

+ (1 − p)

∫ t

0
exp

{
−p(p − 1)

2
〈λ ·M〉s

}
(c + m̂s)

−p dm̂s

+ p(p − 1)

2

∫ t

0
exp

{
−p(p − 1)

2
〈λ ·M〉s

}
(c + m̂s)

−p−1 d〈m̂〉s ,

which coincides with (5) when ψ = 0 and

L̃t = (1 − p)

∫ t

0
exp

{
−p(p − 1)

2
〈λ ·M〉s

}
(c + m̂s)

−p dm̂s .

The process Y coincides with the value process V , by Proposition 1, because it satisfies (5)
and YT = 1. Therefore, since ψ = 0, (14) follows immediately from Corollary 1.
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In the case p = 2, the next result has already been pointed out in Laurent and Pham (1999)
and in Biagini et al. (2000); we obtain it as a corollary to Theorems 1 and 2.

Corollary 2. The p-optimal martingale measure coincides with the minimal martingale mea-
sure and ψ = 0 if and only if the mean–variance trade-off 〈λ ·M〉T is deterministic.

In fact, if the mean–variance trade-off 〈λ ·M〉T is deterministic, then (10) and (15) are
satisfied.

3. Diffusion case

We consider a diffusion model for the financial market already considered in Karatzas et
al. (1991) and Laurent and Pham (1999). Let W = (W 1, . . . ,Wn) be an n-dimensional
standard Brownian motion defined on a complete probability space, (�,F ,P), equipped with
the P-augmented filtration generated by W , namely F = (Ft , t ∈ [0, T ]). We denote by
Wl = (W 1, . . . ,Wd) andW⊥ = (Wd+1, . . . ,Wn) the d-dimensional and (n−d)-dimensional
Brownian motions, respectively.

Assume that there are d risky assets (stocks) and a bond traded on the market. For simplicity,
the bond price is assumed to be 1 at all times and the stock price dynamics is given by

dXt = diag(Xt )(µt dt + σt dWl
t ), t ∈ [0, T ],

where diag(X) denotes the diagonal d × d matrix with diagonal elements (X1, . . . , Xd).
With reference to the market coefficients, we assume that the d-dimensional vector process,

µ, of stock appreciation rates and the d × d volatility matrix, σ , are progressively measurable
with respect to F . We also require that, for any t ∈ [0, T ], the volatility matrix is nonsingular
almost surely. We take n > d, so that there are more sources of uncertainty than there are stocks
available for trading and the market is incomplete in the Harrison and Pliska (1981) sense.

Straightforward calculations yield, in this case, λ = diag(X−1)(σσ�)−1µ,
∫ t

0 λ
�
s dMs =∫ t

0 θ
�
s dWl

s , 〈λ ·M〉t = ∫ t
0 ‖θs‖2 ds (which is the mean–variance trade-off) and θ = σ−1µ

(the market price of risk). As before, we denote by Me the set of equivalent martingale
measures of X. Let K(σ ) be the class of F -predictable R

n−d -valued processes ν such that∫ T
0 ‖νt‖2 dt < ∞ a.s.

Since σ is nonsingular, by the Itô representation theorem any local martingale N that is
strongly orthogonal toM = diag(X)σ ·Wl admits an integral representationNt = ∫ t

0 ν
�
s dW⊥

s

for some ν ∈ K(σ ). Therefore, the density of any martingale measure can be expressed as

Zνt = Et

(
−

∫ ·

0
θ�
s dWl

s +
∫ ·

0
ν�
s dW⊥

s

)
, t ∈ [0, T ],

for some ν ∈ K(σ ). Let Kp(σ ) = {ν ∈ K(σ ) : E(ZνT ) = 1, E(ZνT )
p < ∞}. Then the

subclass Me
p of equivalent martingale measures is given by

Me
p = {Pν : dPν/ dP = ZνT , ν ∈ Kp(σ )}

and Assumption 1 ensures that Kp(σ ) �= ∅.
We now make a further assumption.

Assumption 3. The mean–variance trade-off is bounded, i.e.
∫ T

0 ‖θs‖2 ds ≤ c a.s. for some
c > 0.
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Remark 2. Assumption 3 implies Assumption 1, i.e. that the minimal martingale measure
exists and satisfies the reverse Hölder inequality Rp(P), since, for any stopping time τ ,

E(EpτT (−θ ·Wl) | Fτ ) = EQp min
(

exp

{
p(p − 1)

2

∫ T

τ

‖θs‖2 ds

} ∣∣∣∣ Fτ
)
.

Recall that the measure Qp min is defined by d(Qp min) = ET (−pθ ·Wl) dP.

By the martingale representation theorem, the martingale part of the value process is ex-
pressed as a stochastic integral,

mt =
∫ t

0
ϕ�
s dWl

s +
∫ t

0
(ϕ⊥
s )

� dW⊥
s .

Now, since Assumption 3 implies that the minimal martingale measure satisfies the inequal-
ityRp(P), and the filtrationF is continuous, the following statement follows from Proposition 1
as a corollary.

Theorem 3. Let Assumption 3 hold. Then the value process V is the unique bounded, positive
solution to the backward stochastic differential equation

Yt = Y0 −
∫ t

0

[
p(p − 1)

2
Ys‖θs‖2 − pθ�

s ψs − p

2(p − 1)Ys
‖ψ⊥

s ‖2
]

ds

+
∫ t

0
ψ�
s dWl

s +
∫ t

0
(ψ⊥

s )
� dW⊥

s , YT = 1.

Moreover, ν∗ is optimal if and only if

ν∗
t = − 1

(p − 1)Vt
ϕ⊥
t (dt × dP)-almost everywhere,

i.e. if and only if the p-optimal martingale measure is given by the density

Zν
∗
T = ET

(
−

∫ ·

0
θ�
s dWl

s − 1

p − 1

∫ ·

0

1

Vs
(ϕ⊥
s )

� dW⊥
s

)
.

Remark 3. Let us introduce Rt = lnVt . Under Assumption 3, Rt is the unique bounded,
nonnegative solution to

Rt = R0 −
∫ t

0

[
p(p − 1)

2
‖θs‖2 − pθ�

s ψ̄s − 1

2(p − 1)
‖ψ̄⊥

s ‖2 + 1

2
‖ψ̄s‖2

]
ds

+
∫ t

0
ψ̄�
s dWl

s +
∫ t

0
(ψ̄⊥

s )
� dW⊥

s , RT = 0, (21)

where ψ̄s = ψs/Ys and ψ̄⊥
s = ψ⊥

s /Ys . Furthermore, the martingale part of Rt is in BMO.

As Qmin is in Me
p, Qp min is a probability measure equivalent to P. Thus, by Girsanov’s

theorem, the process Ŵ l defined via

Ŵ l
t = p

∫ t

0
θ(s,W l) ds +Wl

t

is the Brownian motion with respect to the measure Qp min.
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The following corollaries respectively follow from Theorems 1 and 2.

Corollary 3. Let Assumption 3 hold. Then the minimal martingale measure is p-optimal,
i.e. ν∗ = 0 and ZQ∗

T = ET (−θ ·Wl), if and only if

exp

{
p(p − 1)

2

∫ T

0
‖θs‖2 ds

}
= c +

∫ T

0
ψ̂�
s dŴ l

s (22)

for a constant c and some Ŵ l-integrable, F -predictable process ψ̂ such that the defined
stochastic integral is a Qp min-martingale.

Remark 4. This condition is satisfied in the ‘almost-complete’ diffusion model, where the
market price of risk is adapted to the filtration, F l , generated by the Brownian motion Wl ,
i.e. where θ = θ(t,W l), t ∈ [0, T ] (see Pham et al. (1998) and Laurent and Pham (1999)).

In fact, (22) is ensured to hold by the integral representation theorem (see, e.g. Theo-
rem 7.12 of Liptser and Shiryaev (1977)), according to which any Qp min-local martingale
adapted to F l can be represented as a stochastic integral. Note that Assumption 3 implies that∫ t

0 ψ̂
�
s dŴ l

s ∈ BMO.

Corollary 4. Let Assumption 3 hold. Then the p-optimal martingale measure satisfies

E
p−1
T (MQ∗

) = Y0ET

(
(1 − p)

(
θ ·Wl +

∫ T

0
‖θs‖2 ds

))
(23)

if and only if

exp

{
−p

2

∫ T

0
‖θs‖2 ds

}
= c +

∫ T

0
ψ̃�
s dW⊥

s . (24)

Equation (23) implies that ν∗ is such that ET (ν∗ ·W⊥) = 1 + c−1
∫ T

0 ψ̃�
s dW⊥

s , where c and ψ̃
are respectively the constant and the F -predictable process appearing in (24).

Condition 4 is satisfied in the case in which the market price of risk is adapted to the filtration,
F⊥, generated by the Brownian motion W⊥, i.e. in which θ = θ(t,W⊥), t ∈ [0, T ].

4. Stochastic volatility model

In this, last, section we study a stochastic volatility model. We will assume that the underlying
dynamics are Markov, in which setting, provided that mild conditions on the coefficients are
satisfied, we can express the solution to the problem of finding thep-optimal martingale measure
in terms of a classical Bellman equation.

We start by considering a stochastic volatility model similar to that of Pham et al. (1998).
We will assume that the dynamics of the asset price process is determined by the following
system of stochastic differential equations:

dXt = diag(Xt )(µ(t, Xt , Yt ) dt + σ l(t, Xt , Yt ) dWl
t ), (25)

dYt = b(t, Xt , Yt ) dt + δ(t, Xt , Yt ) dWl
t + σ⊥(t, Xt , Yt ) dW⊥

t . (26)

Assumption 4. We assume that

(i) the coefficients µ, b, δ, σ l , and σ⊥ are measurable and bounded;
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(ii) the n × n matrix function σσ� is uniformly elliptic, i.e. there is a constant c > 0 such
that

(σ (t, x, y)λ, σ (t, x, y)λ) ≥ c|λ|2

for all t ∈ [0, T ], x ∈ Rd+, y ∈ Rn−d , and λ ∈ Rn, where σ is defined by

σ(t, x, y) =
(
σ l(t, x, y) 0
δ(t, x, y) σ⊥(t, x, y),

)
;

and

(iii) the system (25), (26) admits a unique strong solution.

Let us introduce the logarithm of the value function, namely

R(t, x, y) = ln inf
ν∈KM

p (σ)
E

(
E
p
tT

(
−

∫ ·

0
θ�(s,Xs, Ys) dWl

s

+
∫ ·

0
ν�(s,Xs, Ys) dW⊥

s

) ∣∣∣∣ Xt = x, Yt = y

)
,

where θ = σ l
−1
µ and KM

p (σ) is the class of feedback controls, i.e. controls from Kp(σ )

expressed in the form ν(t, Xt , Yt ) for some measurable function ν(t, x, y), t ∈ [0, T ], x ∈ Rd+,
y ∈ Rn−d .

In the following, we will use Proposition 3 of Mania et al. (2004) and the fact that the
process Rt satisfies (21). In essence, Proposition 3, applied to Rt , says that the latter can be
represented as a space transformation of an asset price process by the logarithm of the value
function, which admits a generalized L-operator and all first-order generalized derivatives.
Hence, let us recall the definition of generalized derivative together with Proposition 3 of
Mania et al. (2004).

Let p(t, x, y) ≡ p(0, (x0, y0), t, (x, y)) be the transition density of the Markov process that
is the unique strong solution to (25) and (26) for the fixed initial conditionsX0 = x0 andY0 = y0,
and introduce the measure ρ on the space ([0, T ] × Rd+ × Rn−d ,B([0, T ] × Rd+ × Rn−d)):

ρ(ds, dx, dy) = p(s, x, y) ds dx dy.

We recall that, for functions f in C1,2, continuously differentiable at t on [0, T ] and twice
differentiable at x, y on Rd+ × Rn−d , the L-operator is defined as

Lf = ft + tr( 1
2 diag(x)σ l(σ l)� diag(x)fxx)+ tr(δ(σ l)� diag(x)fxy)

+ tr( 1
2 (δδ

� + σ⊥(σ⊥)�)fyy),

where ft , fxx, fxy , and fyy are partial derivatives of the function f , for which we use the matrix
notation.

Definition 1. We shall say that a function

f ≡ (f (t, x, y), t ≥ 0, x ∈ Rd+, y ∈ Rn−d)
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belongs to the classV Lρ if there exist a sequence (f n, n ≥ 1) of functions inC1,2 and measurable
ρ-integrable functions fxi (i ≤ d), fyj (d < j ≤ n), and (Lf ) such that, as n → ∞,

E
(

sup
s≤T

|f n(s,Xs, Ys)− f (s,Xs, Ys)|
)

→ 0,

∫∫
[0,T ]×Rd+×Rn−d

(f nxi (s, x, y)− fxi (s, x, y))
2x2
i ρ(ds, dx, dy) → 0, i ≤ d,

∫∫
[0,T ]×Rd+×Rn−d

(f nyj (s, x, y)− fyj (s, x, y))
2ρ(ds, dx, dy) → 0, d < j ≤ n,

∫∫
[0,T ]×Rd+×Rn−d

|Lf n(s, x, y)− (Lf )(s, x, y)|ρ(ds, dx, dy) → 0.

Proposition 3. (Proposition A of Mania et al. (2004).) Let Assumptions 4(i) and 4(ii) hold and
let f (t, Xt , Yt ) be a bounded process. Then the process (f (t, Xt , Yt ), t ∈ [0, T ]) is an Itô
process of the form

f (t, Xt , Yt ) = f (0, X0, Y0)+
∫ t

0
g(s, ω) dWs +

∫ t

0
a(s, ω) ds, a.s.,

with

E

(∫ t

0
g2(s, ω) ds

)
< ∞, E

(∫ t

0
|a(s, ω)| ds

)
< ∞,

if and only if f belongs to V Lρ . Moreover, the process f (t, Xt , Yt ) admits the decomposition

f (t, Xt , Yt ) = f (0, X0, Y0)+
d∑
i=1

∫ t

0
fxi (s, Xs, Ys) dXis

+
n∑

j=d+1

∫ t

0
fyj (s,Xs, Ys) dY js +

∫ t

0
(Lf )(s,Xs, Ys) ds.

Remark 5. For continuous functions f ∈ V Lρ , the first relation displayed in Definition 1 can
be replaced with the condition

sup
(s,x,y)∈D

|f n(s, x, y)− f (s, x, y)| → 0 as n → ∞,

where D is any compact subset of [0, T ] × Rd+ × Rn−d .

Theorem 4. If Assumptions 4(i), 4(ii), and 4(iii) hold, then the logarithm R(t, x, y) admits all
first-order generalized derivatives Rx and Ry , a generalized L-operator LR, and is the unique
bounded solution to

0 = LR(t, x, y)+ (1 − p)µ�(t, x, y) diag(x)Rx(t, x, y)

+ (b�(t, x, y)− pθ�
t δ

�(t, x, y))Ry(t, x, y)+ p(p − 1)

2
‖θt‖2

− 1

2(p − 1)
‖(σ⊥)�(t, x, y)Ry(t, x, y)‖2

+ 1
2‖(σ l)�(t, x, y) diag(x)Rx(t, x, y)+ δ�(t, x, y)Ry(t, x, y)‖2 (dt × dx × dy)-a.s.

(27)
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with the boundary condition
R(T , x, y) = 0. (28)

Moreover, ν∗ = −[1/(p − 1)](σ⊥)�Ry and the density of the p-optimal martingale measure
is of the form

Z∗
T = ET

(
−

∫ ·

0
θ�(s,Xs, Ys) dWl

s − 1

p − 1

∫ ·

0
((σ⊥)�Ry)�(s,Xs, Ys) dW⊥

s

)
.

Proof. We give the proof of the existence of a solution (in a certain sense) to the Bellman
equation and of the differentiability (in a generalized sense) of the solution. Since (X, Y ) is
a Markov process, the feedback controls are sufficient and Rt = R(t,Xt , Yt ) a.s. (this can
be shown as in Chitashvili and Mania (1996)). As it satisfies (21), the process Rt is an Itô
process. Under Assumptions 4(i) and 4(ii), we know that Rt is bounded and that its martingale
part is in BMO (see Remark 3), and these facts ensure that the finite-variation part of Rt is of
integrable variation. We can apply Proposition 3, which implies that the function R(t, x, y)
admits a generalized L-operator and all first-order generalized derivatives, and that Rt can be
represented as

R(t,Xt , Yt )

= R0 +
∫ t

0
(R�

x (s,Xs, Ys) diag(Xs)σ
l(s,Xs, Ys)+ R�

y (s,Xs, Ys)δ(s,Xs, Ys)) dWl
s

+
∫ t

0
R�
y (s,Xs, Ys)σ

⊥(s,Xs, Ys) dW⊥
s +

∫ t

0
LR(s,Xs, Ys) ds

+
∫ t

0
(R�

x (s,Xs, Ys) diag(Xs)µ(s,Xs, Ys)+ R�
y (s,Xs, Ys)b(s,Xs, Ys)) ds. (29)

Moreover, the process Rt is a solution to (21) and, by the uniqueness of the canonical
decomposition of semimartingales, comparing the martingale parts of (29) and (21) yields,
dt × dP-almost everywhere,

ψ̄t = (σ l)�(t, Xt , Yt ) diag(Xt )Rx(t, Xt , Yt )+ δ�(t, Xt , Yt )Ry(t, Xt , Yt ), (30)

(ψ̄⊥
t )

� = (σ⊥)�(t, Xt , Yt )Ry(t, Xt , Yt ). (31)

Then, by equating the processes of bounded variation of (29) and (21) and taking (30) and (31)
into account, we obtain

0 =
∫ t

0

[
LR(s,Xs, Ys)+ (1 − p)R�

x (s,Xs, Ys) diag(Xs)µ(s,Xs, Ys)

+ R�
y (s,Xs, Ys)b(s,Xs, Ys)+ p(p − 1)

2
‖θs‖2 − pθ�

s δ
�(s,Xs, Ys)Ry(s,Xs, Ys)

− 1

2(p − 1)
‖(σ⊥)�(s,Xs, Ys)Ry(s,Xs, Ys)‖2

+ 1
2‖(σ l)�(s,Xs, Ys) diag(Xs)Rx(s,Xs, Ys)+ δ�(s,Xs, Ys)Ry(s,Xs, Ys)‖2

]
ds.

It follows that R(t, x, y) solves the Bellman equation (27).
We now prove the uniqueness of the solution. If we use the generalized Itô formula (see

Proposition 3) with any bounded, nonnegative solution to the equations (27) and (28) from the
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classV Lρ , we see thatR(t,Xt , Yt ) solves (21). The solution to (21) is unique, so it has to coincide
with Rt . This implies that even the solution to (27) and (28) is unique (dt × dx × dy)-a.s.

Remark 6. Observe that only Ry enters in the construction of the p-optimal martingale mea-
sure. Note also that we must make only Assumption 4(iii) to obtain the financial interpretation
of the model, and that, for the validity of Theorem 4 (and Proposition 3), the existence of a
unique weak solution to (25) and (26), guaranteed by Assumptions 4(i) and 4(ii), is sufficient.

Now we consider the two particular cases.
Case 1. We suppose that the coefficients of (25) depend only on the asset price X, i.e. they

take the forms µ(t,Xt ) and σ l(t, Xt ). In addition, we suppose that σ l satisfies the uniform
ellipticity condition, and that µ and σ l are bounded, measurable, and such that (25) admits a
unique strong solution. ThenF lt = FXt and the market price of risk, θ(t, Xt ), isF lt -measurable.

By the integral representation theorem, any Qp min-local martingale adapted to F l can be
represented as a stochastic integral; hence, condition (22) is satisfied, and by Corollary 3, the
p-optimal martingale measure coincides with the minimal martingale measure Qmin.

We can verify that

Rt = ln EQp min
(

exp

{
p(p − 1)

2

∫ T

t

‖θs‖2 ds

} ∣∣∣∣ F lt
)

characterizes the unique solution to (21), with ψ̄t = ψ̂t /
∫ t

0 ψ̂
�
s dŴ l

s and ψ̄⊥
t = 0, where ψ̂ is

the F l-predictable process appearing in (22). The Markov property of X implies that Rt =
R(t,Xt ) a.s., where

R(t, x) = ln EQp min
(

exp

{
p(p − 1)

2

∫ T

t

‖θs‖2 ds

} ∣∣∣∣ Xt = x

)
.

Since the conditions of Theorem 4 are satisfied, R(t, x) is the unique bounded solution to the
equation

0 = LR(t, x)+ (1 − p)µ�(t, x) diag(x)Rx(t, x)+ p(p − 1)

2
‖θ(t, x)‖2

+ 1
2‖(σ l)�(t, x) diag(x)Rx(t, x)‖2 (dt × dx × dy)-a.s., (32)

with boundary condition R(T , x) = 0, in the class V Lρ .
Under suitable regularity conditions on µ and σ l (see, e.g. Friedman (1975)), the value

function R(t, x) is the unique bounded solution to (32) from the class C1,2, and

LR = ∂R

∂t
+ 1

2
tr(diag(x)σ l(σ l)� diag(x)Rxx).

Case 2. Now let us suppose that the coefficients in (25) and (26) depend only onY , whereY is
the solution to the autonomous equation (26). Let Assumptions 4(i), 4(ii), and 4(iii) hold. Then
F⊥ = FY and the market price of risk, θ(t, Yt ), is F⊥

t -adapted. By the integral representation
theorem there exists an F⊥-adapted process ψ̃ satisfying (24), and such that ψ̃ ·W⊥ is a
bounded martingale.

Using the Itô formula, we can see that the process

Jt = ln E1−p
(

exp

{
−p

2

∫ T

t

‖θs‖2 ds

} ∣∣∣∣ F⊥
t

)

https://doi.org/10.1239/jap/1158784935 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784935


650 M. SANTACROCE

is the unique solution to (21), with ψ̄ = 0 and

ψ̄⊥
t = (1 − p)

ψ̃t

c + ∫ t
0 ψ̃

�
s dW⊥

s

,

where c and ψ̃ are respectively the constant and the F⊥
t -predictable process in (24). Therefore,

the process Jt coincides with the logarithm of the value process Rt and, hence, the logarithm
of the value function does not depend on x, i.e. R(t, x, y) = R(t, y). Thus, by Theorem 4,
R(t, y) is the unique bounded solution to

0 = LR(t, y)+ p(p − 1)

2
‖θ(t, y)‖2 + R�

y (t, y)(b(t, y)− pδ(t, y)θ(t, y))

− 1

2(p − 1)
‖(σ⊥)�(t, y)Ry(t, y)‖2 + 1

2
‖δ�(t, y)Ry(t, y)‖2 (dt × dx × dy)-a.s.

with boundary condition R(T , y) = 0, in the class V Lρ .
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