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APPROACH REGIONS FOR T H E SQUARE ROOT OF T H E
POISSON KERNEL A N D B O U N D E D F U N C T I O N S

P . SJOGREN

If the Poisson kernel of the unit disc is replaced by its square root, it is known
that normalised Poisson integrals of Lp boundary functions converge almost ev-
erywhere at the boundary, along approach regions wider than the ordinary non-
tangential cones. The sharp approach region, defined by means of a monotone
function, increases with p. We make this picture complete by determining along
which approach regions one has almost everywhere convergence for L°° boundary
functions.

1. INTRODUCTION

Let

be the Poisson kernel of the unit disc [ / C C . With T = dU = M/27T, the Poisson
integral of a function / g LX(T) is Pf(z) = frP(z,6)f(0)d6.

It is well known that the harmonic function Pf(z) converges to f(8) for almost
all 0 € T as z —>• e%e and z stays in the nontangential cone which one can define by
the inequality |argz — 6\ < constant (1 — \z\). Moreover, these cones are best (that
is, largest) possible if one considers regions of the type |argz — 6\ < h{\ — \z\) for
increasing functions h. The situation is the same for IP boundary functions / , for
1 < p ^ oo.

However, if we use the square root of P, the convergence properties are different.
Define Pof(z) = f S/P{z,6)f{9)de. Then Pof is an eigenfunction of the hyperbolic
Laplacian. This and other powers of the Poisson kernel are used in connection with rep-
resentations of the group SL(2, R). To get boundary convergence, one must normalise
Pof by setting

Here 1 denotes the constant boundary function.
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First of all, Vof(z) converges for continuous / ; indeed Vof can then be extended
by / to a continuous function in U. This is because the operator Vo is given by
convolution with an approximate identity in T. If / € IJ'iT) and 1 ^ p < oo, it is
known that Vof(z) converges to f(0) for almost all 6 £ T as z —> exB and z stays in
the approach region

- 9\ < C(l - M) (log r = ^)* 'J .

Here C < oo is arbitrary. This result was proved for p — 1 by the author [5] and
for 1 < p < oo by Ronning [2]. Clearly Rp(0) intersects T only at exd. Notice that
Rp(0) is wider than the nontangential cones near exB, and that Rp(0) increases with
p. Further results for the square root of the Poisson kernel in more general settings can
be found in Ronning [3] and [4] and in Sjogren [6].

We point out that one also has convergence, after normalisation, if any power larger
than 1/2 of the Poisson kernel is used. But then the approach regions are like those of
the Poisson kernel itself. Only the square root is different.

For Vof with / € L°°(T), it trivially follows that one has, almost everywhere,
convergence along Rp(0) for any p < oo. The object of this note is to show that one
can have wider approach regions here. We determine precisely which regions, defined
by means of an increasing function, are admissible for L°°.

THEOREM. The following are equivalent for any increasing function

h : R+ -*• R+ .

(i) For any f £ L°°(T) one has for almost all 6 e T

'Pof(z) -* f{9) asz-+eie and \argz -6\< h{l - \z\).

(ii) h(t) = Oty1-') ast^O,foranye>0.

Here O can be replaced by o, since e can be varied.

Essentially all proofs of almost everywhere convergence results for various Poisson
integrals of V functions, p < oo, use a maximal function argument. The starting
point of such an argument is already established convergence for continuous or smooth
functions. The maximal function corresponding to a certain kind of convergence is
denned (essentially) by replacing lim by sup, taken over the approach region, and
by replacing the function by its absolute value. From a strong or weak type (p,p)
estimate for the maximal operator, almost everywhere convergence then follows, via
approximation with smooth functions.

But this argument breaks down for L°°, since the continuous functions do not form
a dense subspace of L°°. To prove the above theorem, we shall instead use a recent
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result due to Bellow and Jones [1]. It states that almost everywhere convergence follows

if the restriction of the maximal operator to the unit ball in L°° is continuous at 0 for

the topology of convergence in measure.

By C we denote various (large) positive constants, and F ~ G means \/C ^

F/G^C.

2. PROOF OF THE THEOREM

Write t = 1 - \z\ and thus z = (1 - t)eiB. Then

Vof(z) = Rt * f{9),

where the convolution is taken in T and

Here 6 € T = (-n,ir]. Since Pol(l - t) ~ -Jt logl/i , the order of magnitude of Rt is
given by

Rt(0) ~ Qt{0) = X X

Here and in the sequel, we assume t < 1/2, that is, we disregard the disc \z\ ^ 1/2.
Write Tvf(9) = f(0 — rj). Then the convergence in (i) means

The relevant maximal function for our problem is

Mof(0) = sup \VQf(z)\.

Notice that Mof(0) is dominated by a constant times

Mf{6)= sup T,Qt * |/l («)•

0<t<l/2

PROPOSITION. Assume that (iij holds, and let e > 0. Given <5 > 0, there exists
K > 0 such that for / G X°°(T) with

e T : Mf(0) >e}\<6

https://doi.org/10.1017/S0004972700034183 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034183


524 P. Sjogren [4]

Here ||-|| is the norm in /^(T), and |-| is Lebesgue measure in T. This proposition
means that M is continuous at 0 for the topology of convergence in measure, when
restricted to the unit ball in L°°. For this, see [1, p.158]. We can then apply Corollary
1 of [1] to the family of operators / ->• TvRt * f, |T?| < h(t), 0 < t < 1/2. This is not
a sequence of operators, but one can easily either extend Bellow and Jones's result to
larger families or reduce our convergence problem to a sequence. Thus the implication
(ii) => (i) is a consequence of the proposition.

PROOF OF THE PROPOSITION: We can clearly assume that e is small and that

Consider first Qt* f with t large in the sense that e~4/e ^ t < 1/2. Observe that
Qt < (tlogl/t)'1 in T, and that the function t -> tlogl/t is increasing near 0. Thus
Qt* f < e4/£e/4 H/ld in T, so that Qt * f < e if H/l^ < e"4/e. This means that in
the supremum defining Mf, we can assume that t < e~4/e.

Write

Qt{0) = Qt(0)x\eK2h(t) +Qt(6)X2h(t)<\e\ = QUO) + QtW-

Letting
Mjf{9)= sup TvQi*f(9), 7 = 1,2,

Mfc()

we get Mf ^ M i / + M2f and thus

(1) {Mf >e}c {M1f > e/2} U {M2f > e/2}.

To deal with M2f, observe that when |T/| < h(t)

1 1 2
Q(e) ^ ^

The last expression is a decreasing function of \6\, whose integral in T is bounded
uniformly in t. It is well known that convolution by such a function is controlled by
the Hardy-Littlewood maximal operator MHL, SO that M2f ^ CMm,f. Since MHL is
of weak type (1,1), we obtain

(2) \{M2f > e/2}\ ^ Ce-1 \\f\\,.

Finally, we consider Mxf. If Mif(0) > e/2, there exist t € (0,e~4/e) and r\ with
IT/I ^ h(t) such that Q\ * f(6 - rj) > e/2. This means that
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Clearly only the values of / in the interval

[O-ii- 2h{t),e -v + 2h(t)] c [0 - 3h(t),6 + 3h(t)]

matter here. We shall compare the integral in (3) with

rB+Jh(t)

m= f(<p)d<p.
J9-3h(t)

Our claim is

J-2h(t) t + \<P\ r

This actually means that, with the restrictions 0 < / ^ 1 and / / = TO, the integral
in (4) is maximal when / is given by f(6 ~ r\ - ip) = X[-m/2,m/2](v)- To obtain (4),
observe first that

= J X[-T,T

where /j. is the positive measure

dn{r) = (t + T)~ X[o,2h{t)]dT + (t + 2h(t))~ S2h(t)-

From Fubini's theorem, we then have

r2h(t)

-2h{t)

For each r , it is trivial to see that the inner integral here is maximal when f(0 - T) — ip) =
X[-m/2,m/2]('P) • Applying again Fubini's theorem, we conclude

f2k(t) x , f

/ TTTM^6 -V~<p)d<p= d/i(r) / X[-T, T
J-2h(t) t + m J J

and (4) follows.
Combining (3) and (4), we have

2 , t + m/2 e__log__>-.

Hence log (t + m/2)/t > \ogt~e/i, and so m/2t > t"e / 4 - 1. But t~e/4 > 2 because of
our assumption t < e~4/e. This implies m/2t > t~e/4/2 and finally m > t1~e/4.
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To sum up, we have shown that for each 9 with Mif(9) > e/2 there exists a
t = t(9) such that the interval J(9) = [9 - 3h{t), 9 + 3h{t)] has the property

A standard covering argument then produces a sequence {9i,U) with Mif(9i) > e/2
and U = £(#i) such that the corresponding J(9i) are disjoint and the scaled intervals
J'(0i) = [6i - 9h(ti), 6i + 9h(ti)] cover the set {Mif > e/2}. In particular, we get

(5)

Our hypothesis (ii) implies that h(t) ^ Ct1~£^4 for some C depending on e, and so

\{Mxf > e/2})

in view of (5).

Combining this with (1) and (2), we get

| { M / > £ } | ^ C | | / | | 1 > C = C(e).

The proposition follows. D

It remains to prove that (i) implies (ii), and we assume that (ii) is false. Then there
exist e 6 (0,1) and a sequence U —¥ 0 such that h{ti)/t\~* -» oo. We can assume that
£)t\~e/h{ti) < oo. Let Ei C T be the union of at most C/h{U) intervals of length

t

t\~e, chosen in such a way that the distance from any point of T to Ei is at most h(ti).

If 9 6 dEi, it is clear that

Thus for any 0 e T one has

sup \
i)

Since |£?i| < Ct\~e/h(ti), we can choose io so large that the measure \E\ of the
set E = \J Ei is arbitrarily small. But clearly

m

•>to

for each 9. Thus we do not have almost everywhere convergence to \B along the region
defined by h, and (i) is disproved. This completes the proof of the theorem.
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