On Valuations, Places and Graded Rings Associated to *-Orderings

Igor Klep

Abstract. We study natural *-valuations, *-places and graded *-rings associated with *-ordered rings. We prove that the natural *-valuation is always quasi-Ore and is even quasi-commutative (*i.e.*, the corresponding graded *-ring is commutative), provided the ring contains an imaginary unit. Furthermore, it is proved that the graded *-ring is isomorphic to a twisted semigroup algebra. Our results are applied to answer a question of Cimprič regarding *-orderability of quantum groups.

1 Introduction

The notion of a *-ordering on a division *-ring was introduced by Holland [Ho2] as an analogue to the notion of a total ordering. This theory was developed further by several authors, e.g., by Craven, Chacron [Ch] and Marshall. Marshall [Ma1, Ma2] and Craven-Smith [CS] also extended the theory to *-rings and in particular to *-domains. Major tools in this theory are valuations and graded rings. To each *-ordering of a domain we can associate a natural *-valuation and a graded *-ring [Ma1, Ma2]. In order to study these objects, we introduce *-places motivated by the notion of real places associated with total orderings as introduced and studied by Marshall–Zhang [MZ1]. We show that the natural *-valuation ν associated with a *-ordered domain A is quasi-Ore (for the definition see $\S2$). Furthermore, if A contains a central skew element i satisfying $i^2 = -1$ (we call such an element an *imaginary unit*), then v is quasi-commutative, *i.e.*, the corresponding graded *-ring gr(A, v) is commutative. If A is a C-algebra, this result can be further improved. In this case it is shown that gr(A, v) is isomorphic to a twisted semigroup ring $\mathbb{C}[\Gamma, c]$ for an ordered cancellative abelian semigroup Γ and a positive symmetric factor set $c\colon \Gamma \times \Gamma \to \mathbb{R}.$

These results are used in the last section to answer a question posed by Cimprič [Ci, $\S6$]. We show that noncommutative quantum affine spaces and quantum Weyl fields do not admit *-orderings (independent of the involution chosen).

2 Basic Definitions and Preliminary Results

Throughout this paper A will denote a domain with involution and Sym A will be the set of its symmetric elements. A subset $P \subseteq A$ is called a *-ordering provided the

Received by the editors December 14, 2004; revised February 1, 2005.

AMS subject classification: 14P10, 16S30, 16W10.

Keywords: *-orderings, valuations, rings with involution.

[©]Canadian Mathematical Society 2007.

I. Klep

following hold:

- $(O_1) \quad 1 \in P, \ P+P \subseteq P,$
- (O₂) $rPr^* \subseteq P$ for all $r \in A$,
- (O₃) $P \cup -P = \operatorname{Sym} A$,
- $(O_4) \quad P \cap -P = \{0\},$
- $(O_5) \quad a,b \in P \ \Rightarrow \ \{a,b\} := ab + ba \in P.$

If Γ is an ordered cancellative abelian semigroup, then an onto mapping $\nu: A \to \Gamma \cup \{\infty\}$ is a *-*valuation* if:

- (V₁) $v(x) = \infty$ iff x = 0,
- (V₂) v(xy) = v(x) + v(y) for all $x, y \in A^{\times}$,
- (V₃) $v(x + y) \ge \min\{v(x), v(y)\}$ for all $x, y \in A$,
- (V_4) $v(x^*) = v(x)$ for all $x \in A$.

Here $A^{\times} := A \setminus \{0\}$. The corresponding graded *-ring gr(A, v) is constructed as follows. We form $A_{\alpha} := \{x \in A \mid v(x) \ge \alpha\}, A_{\alpha}^{+} := \{x \in A \mid v(x) > \alpha\}$ and $\overline{A}_{\alpha} := A_{\alpha}/A_{\alpha}^{+}$. Then gr $(A, v) := \bigoplus_{\alpha \in \Gamma} \overline{A}_{\alpha}$ is given the componentwise addition, the multiplication induced by $(\overline{a}, \overline{b}) \mapsto \overline{ab}$ for $a \in A_{\alpha}$ and $b \in A_{\beta}$ and the involution defined by $\overline{a}^{*} := \overline{a^{*}}$. Then v induces a *-valuation gr(v): gr $(A, v) \to \Gamma \cup \{\infty\}$ given by gr $(v)(\sum_{\alpha \in \Gamma} \overline{a}_{\alpha}) = \gamma$, where γ is the least $\gamma \in \Gamma$ such that $\overline{a}_{\gamma} \neq 0$ if $\sum_{\alpha \in \Gamma} \overline{a}_{\alpha} \neq 0$.

We define a relation \sim_{ν} on A^{\times} by $x \sim_{\nu} y \Leftrightarrow \nu(x) < \nu(x - y)$. This is a semigroup congruence and is *-invariant (*i.e.*, $x \sim_{\nu} y$ implies $x^* \sim_{\nu} y^*$). For details we refer the reader to [Ho1].

Definition Let $v: A \to \Gamma \cup \{\infty\}$ be a *-valuation.

- (i) *v* is *compatible* with a *-ordering *P* of *A* iff $x \sim_v y \in P$ implies $x \in P$ for all $x, y \in \text{Sym } A^{\times}$.
- (ii) v is called *quasi-commutative* iff for all $a, b \in A^{\times}$ we have $ab \sim_{v} ba$. Obviously, v is quasi-commutative iff v(ab ba) > v(ab) for all $a, b \in A^{\times}$ and this is the case iff gr(A, v) is commutative.
- (iii) *v* is *quasi-Ore* iff for all *a*, *b* ∈ *A*[×] there exist *r*, *s* ∈ *A*[×] such that *ra* ~_v *sb*. Note that this condition is left-right symmetric by the properties of ~_v.
- (iv) If Γ is a subsemigroup of \mathbb{Z} , then *v* is called *discrete*.

Remark Clearly, if gr(A, v) is an Ore domain, then v is quasi-Ore. The converse is false in general, but it holds in special cases, *e.g.*, if v is discrete [Co, Theorem 4.2].

If $v: A \to \Gamma \cup \{\infty\}$ is a *-valuation, we write $\mathcal{O}_v := A_0$ and $\mathfrak{m}_v := A_0^+$. If *A* is a division *-ring, then \mathcal{O}_v is an *invariant valuation* *-*ring* and \mathfrak{m}_v is its maximal *-ideal. In general, \mathfrak{m}_v is only a completely prime *-ideal of \mathcal{O}_v . Hence the *residue* *-*ring* $k_v := \mathcal{O}_v/\mathfrak{m}_v$ is only a domain and not necessarily a division ring.

To each *-ordering $P \subseteq A$ a *natural* (*order-compatible*) *-*valuation* v_P can be associated as follows. The *-ordering P gives an order relation \leq on Sym A, which induces the archimedean equivalence \approx on Sym A. We extend the latter to the whole A by declaring, for all $a, b \in A^{\times}$, that $a \prec b$ if $aa^* \leq nbb^*$ for some positive integer n, and $a \approx b$ if $a \prec b$ and $b \prec a$. Denote by $v_P(a)$ the equivalence class of $a \in A^{\times}$ and $v_P(0) := \infty$. Then the relation \prec induces a total ordering of the set $\Gamma_P = v_P(A^{\times})$.

By [Ma1, Theorem 3.3], the binary operation $v_P(a) + v_P(b) := v_P(ab)$ is well defined on Γ_P , so Γ_P becomes an ordered cancellative abelian semigroup. Marshall [Ma1] observed that v_P is a *-valuation and $s_1s_2 \sim_v s_2s_1$ for all $s_1, s_2 \in \text{Sym } A^{\times}$. We say that v is *quasi-commutative for symmetric elements*.

3 *-Places and Graded *-Rings

Proposition 1 Assume $v: A \to \Gamma \cup \{\infty\}$ is a *-valuation quasi-commutative for symmetric elements with v(2) = 0. Then v is quasi-Ore and symmetric elements of gr(A, v) commute. If, furthermore, v is discrete, then gr(A, v) is an Ore domain.

Proof Since *v* is quasi-commutative for symmetric elements, we have $v(s_1s_2-s_2s_1) > v(s_1s_2)$ for all $s_1, s_2 \in \text{Sym } A^{\times}$. Now let $a, b \in A^{\times}$ be arbitrary. Define $r_1 := a^*bb^*$ and $r_2 := b^*aa^*$. Then

$$v(ar_1 - br_2) = v(aa^*bb^* - bb^*aa^*) = v((aa^*)(bb^*) - (bb^*)(aa^*))$$

> $v(aa^*bb^*) = v(ar_1) = v(br_2).$

Hence v is quasi-Ore. Note that an element $a = \sum \overline{a}_{\alpha} \in \operatorname{gr}(A, v)$ is symmetric iff $\overline{a}_{\alpha} \in \overline{A}_{\alpha}$ is symmetric for every α . By a simple induction argument, to prove that symmetric elements of $\operatorname{gr}(A, v)$ commute, it suffices to show that two symmetric elements of the form \overline{a}_{α} , \overline{b}_{β} commute. Moreover, as $2\overline{a} = 0$ implies $\overline{a} = 0$ for all $\overline{a} \in \operatorname{gr}(A, v)$ by the assumption v(2) = 0, it is enough to prove that $2\overline{a}_{\alpha}$, $2\overline{b}_{\beta}$ commute. Since \overline{a}_{α} is symmetric, $a_{\alpha} \sim_{v} a_{\alpha}^{*}$ and thus $v(a_{\alpha} + a_{\alpha}^{*}) = v(a_{\alpha})$. Hence $2\overline{a}_{\alpha} = \overline{a_{\alpha} + a_{\alpha}^{*}}$ and $a_{\alpha} + a_{\alpha}^{*}$ is symmetric. Similarly, $2\overline{b}_{\beta} = \overline{b}_{\beta} + \overline{b}_{\beta}^{*}$. Since v is quasi-commutative for symmetric elements, $(a_{\alpha} + a_{\alpha}^{*})(b_{\beta} + b_{\beta}^{*}) \sim_{v} (b_{\beta} + b_{\beta}^{*})(a_{\alpha} + a_{\alpha}^{*})$ and so $(2\overline{a}_{\alpha})(2\overline{b}_{\beta}) = (2\overline{b}_{\beta})(2\overline{a}_{\alpha})$, as desired. Finally, the last statement of the proposition follows from [Co, Theorem 4.2].

Theorem 2 If A is a *-ordered domain and v the natural *-valuation, then v is quasi-Ore. If also, A contains an imaginary unit, then v is quasi-commutative.

Proof By [Ma1, 3.3 Theorem] and Proposition 1, v is quasi-Ore. So let us assume that $i \in A$ is an imaginary unit. Observe that every *-ordering of A extends uniquely to a *-ordering of the central localization $A_{\mathbb{N}} \cong A \otimes_{\mathbb{Z}} \mathbb{Q}$). Hence we may assume that $\mathbb{Q} \subseteq A$. For every $x \in A$ we have $x = \frac{x+x^*}{2} + i \frac{x-x^*}{2i}$. In other words, $x = x_1 + i x_2$ for (uniquely determined) $x_1, x_2 \in \text{Sym } A$. Let $a, b \in A^{\times}$ be arbitrary. Write $a = a_1 + ia_2$ and $b = b_1 + ib_2$ for symmetric a_1, a_2, b_1, b_2 . Then

$$ab - ba = (a_1 + ia_2)(b_1 + ib_2) - (b_1 + ib_2)(a_1 + ia_2)$$

= $(a_1b_1 - b_1a_1) + (b_2a_2 - a_2b_2) + i(a_1b_2 - b_2a_1) + i(a_2b_1 - b_1a_2).$

Hence by the triangle inequality,

$$v(ab-ba) \ge \min \{v(a_1b_1-b_1a_1), v(b_2a_2-a_2b_2), v(a_1b_2-b_2a_1), v(a_2b_1-b_1a_2)\}$$

Now use [Ma1, 3.3(5) Theorem] to get

$$v(ab - ba) > \min \left\{ v(a_1b_1), v(a_2b_2), v(a_1b_2), v(a_2b_1) \right\}$$
$$= \min\{v(a_1), v(a_2)\} + \min\{v(b_1), v(b_2)\}.$$

By [Ma2, 2.4 Proposition], the right-hand side of the last equation equals v(a) + v(b) = v(ab). Hence v(ab - ba) > v(ab), as required.

An application of this result will be given in the next section, where we answer a question posed by Cimprič [Ci]. For another application we refer the reader to [KM].

If *D* is a *-ordered division ring and *v* is the natural *-valuation, then $k_v = \mathcal{O}_v/\mathfrak{m}_v$ is a *-ordered division subring of \mathbb{H} , *cf.* [Ho2]. Hence we have a *-homomorphism $\mathcal{O}_v \to \mathbb{H}$. We extend this to a map $D \to \mathbb{H} \cup \{\infty\}$ by mapping $D \setminus \mathcal{O}_v \to \{\infty\}$. This mapping is called a *-place. For more on *-places on division rings we refer the reader to [Cr].

Proposition 3 If A is a *-ordered domain and v the natural *-valuation, then k_v is a *-ordered subring of \mathbb{H} . If A also contains an imaginary unit, then k_v is a *-ordered subring of \mathbb{C} .

Proof Write *P* for the *-ordering of *A*. Let $\overline{a}, \overline{b} \in k_v^{\times}$. As $v(aa^*bb^* - bb^*aa^*) > v(aa^*bb^*) = 0$, we have $\overline{a} \cdot \overline{a^*bb^*} = \overline{b} \cdot \overline{b^*aa^*}$. In other words, k_v is an Ore domain. Moreover, *P* induces an archimedean *-ordering \overline{P} of k_v . By [CS, Corollary 2.5], \overline{P} extends to a *-ordering *Q* of Quot(k_v). Let *w* denote the natural *-valuation of Quot(k_v). By a result of Holland [Ho2, 4.1], w(as-sa) > w(as) for all $a, s \in \text{Quot}(k_v)$ with $s = s^*$. Obviously, $w|_{k_v}$ is the natural *-valuation associated with the *-ordering \overline{P} of k_v . Since \overline{P} is archimedean, $w|_{k_v}$ is trivial. This implies that symmetric elements of k_v are central. Furthermore, \overline{P} induces an archimedean total ordering of Sym k_v , hence Sym k_v is an ordered subring of \mathbb{R} . Form the central localization $B := k_v(\text{Sym } k_v^{\times})^{-1}$. Clearly, $B \subseteq \text{Quot}(k_v)$, hence *Q* induces a *-ordering of *B*. From the definition of *B* it is easy to see that this *-ordering is archimedean. Moreover, by results of Herstein [He], *B* is finite dimensional over its center. As it is also a domain, *B* must be a division ring. Hence by a theorem due to Holland [Ho1], *B* is a *-ordered division subring of \mathbb{H} . In particular, k_v is a *-ordered subring of \mathbb{H} .

If *A* contains an imaginary unit, then k_v is commutative by Theorem 2 and thus a *-ordered subring of \mathbb{C} .

Again, by this proposition we have a mapping $A \to \mathbb{H} \cup \{\infty\}$. We call it the *weak* *-*place* associated with *P*. A *-place associated with *P* will be a mapping (Sym $A \times$ Sym A) \ {(0,0)} $\to \mathbb{R} \cup \{\infty\}$ with certain properties. In order to define it, we need the following classical result.

Lemma 4 ([Fu, Ch. IV]) Let $(A, +, \leq)$ be a totally ordered abelian group and v the natural order-compatible valuation. For a, b > 0 and v(a) = v(b) there exists a unique real number $\mu(a, b) \in (0, \infty)$ such that $\mu(a, b) \in \left[\frac{m}{n}, \frac{m+1}{n}\right]$ for any $m, n \in \mathbb{N}$ satisfying $mb \leq na \leq (m+1)b$.

Assume $P \subseteq A$ is a *-ordering. Then (Sym A, +) is an abelian group and P is a total ordering of Sym A. Hence, using Lemma 4 we can define a map \wp : $(\text{Sym} A \times \text{Sym} A) \setminus \{(0,0)\} \rightarrow \mathbb{R} \cup \{\infty\}$ as follows

$$\wp(a,b) = \begin{cases} \infty & \text{if } v(a) < v(b), \\ \mu(|a|,|b|) & \text{if } v(a) = v(b), \{a,b\} \in P, \\ -\mu(|a|,|b|) & \text{if } v(a) = v(b), -\{a,b\} \in P, \\ 0 & \text{if } v(a) > v(b). \end{cases}$$

This mapping is the *-*place* associated with *P*. Let us note some properties of \wp . For all $a, b \in \text{Sym } A$, not both zero, we have

 $(P_1) \ \wp(a,b) = \infty \ \text{iff} \ \wp(b,a) = 0, \\ (P_2) \ \text{if} \ \wp(a,b), \ \wp(b,c) \neq \infty, \ \text{then} \ \wp(a,b) \wp(b,c) = \wp(a,c), \\ (P_3) \ \text{if} \ \wp(a,c), \ \wp(b,c) \neq \infty, \ \text{then} \ \wp(a,c) + \wp(b,c) = \wp(a+b,c), \\ (P_4) \ \wp(a,b) = \wp(\{a,c\},\{b,c\}) \ \text{for all} \ c \in \text{Sym} A^{\times}, \\ (P_5) \ \wp(a,b) = \wp(r^*ar, r^*br) \ \text{for all} \ r \in A^{\times}.$

In case $i \in A$ is an imaginary unit, we can extend \wp to a mapping $(A \times A) \setminus \{(0,0)\} \to \mathbb{C}$ as follows. As before, we assume $\mathbb{Q} \subseteq A$. We first extend \wp to $(A \times \text{Sym } A) \setminus \{(0,0)\} \to \mathbb{C}$ by $\wp(a_1+ia_2,b) := \wp(a_1,b)+i\wp(a_2,b)$ for $a_1,a_2,b \in \text{Sym } A$. This is well defined since every $a \in A$ can be written uniquely as $a = a_1 + ia_2$ for symmetric a_1, a_2 . For the second step, we define $\wp(a,b) := \frac{1}{2}\wp(ab^* + b^*a, bb^*)$ for $a, b \in A$, not both zero. We claim that this is well defined. Let $a \in A$ and $s \in \text{Sym } A$. We have to show that $\wp(a, s) = \frac{1}{2}\wp(as+sa, s^2)$. Let $a = a_1+ia_2$ for $a_j \in \text{Sym } A$. Then $\wp(a, s) = \wp(a_1, s) + i\wp(a_2, s)$ and $\wp(as+sa, s^2) = \wp(a_1s+sa_1, s^2) + i\wp(a_2s+sa_2, s^2)$. Thus we may assume without loss of generality that a is symmetric as well. But then our claim follows from (P₄).

Proposition 5 ([MZ2, §1.3 Notes]) Assume A is a *-ordered domain and a \mathbb{C} -algebra and let v denote the natural *-valuation. If for $a, b \in A$, $v(a) \ge v(b)$, then $\wp(a, b) = \mu$ iff $v(a - \mu b) > v(b)$.

Proof It is easy to see that $\wp(a, b) = \mu$ iff $\wp(a - \mu b, b) = 0$. So it suffices to prove the statement for $\mu = 0$. By definition, $\wp(a, b) = \frac{1}{2}\wp(ab^* + b^*a, bb^*)$. Write $ab^* + b^*a = c_1 + ic_2$ for symmetric c_1, c_2 . Then $\wp(a, b) = \frac{1}{2}\wp(c_1, bb^*) + \frac{i}{2}\wp(c_2, bb^*)$. By [Ma2, 2.4 Proposition], $v(ab^* + b^*a) = \min\{v(c_1), v(c_2)\}$. On the other hand, $v(ab^* + b^*a) = v(ab^*)$ by Theorem 2. If v(a) > v(b), then $v(c_j) > v(bb^*)$ for j = 1, 2. Thus $\wp(a, b) = 0$ by the definition of \wp . Conversely, if $\wp(a, b) = 0$, then $\wp(c_j, bb^*) = 0$ for j = 1, 2. Hence $v(c_j) > v(bb^*)$ and so $v(ab^*) = v(ab^* + b^*a) > v(bb^*)$. This implies v(a) > v(b), as desired.

In the rest of this section we sharpen Theorem 2 for *-ordered \mathbb{C} -algebras by showing that the corresponding graded ring is isomorphic to a twisted semigroup ring. As our semigroups are abelian and written additively, we use the exponential notation for twisted semigroup rings.

Proposition 6 ([MZ2, 2.3 Example(1)]) Let Γ be an ordered cancellative abelian semigroup. Consider the twisted semigroup ring $\mathbb{C}[\Gamma, c]$ with the twisting given by $t^{\alpha}t^{\beta} = c(\alpha, \beta)t^{\alpha+\beta}$, where $c: \Gamma \times \Gamma \to \mathbb{R}$ is a positive symmetric factor set, i.e.,

- (FS₁) $c(\alpha, \beta) > 0$ for all $\alpha, \beta \in \Gamma$,
- (FS₂) $c(\alpha, 0) = c(0, \alpha) = 1$ for all $\alpha \in \Gamma$,
- (FS₃) $c(\alpha, \beta)c(\alpha + \beta, \gamma) = c(\alpha, \beta + \gamma)c(\beta, \gamma)$ for all $\alpha, \beta, \gamma \in \Gamma$,
- (FS₄) $c(\alpha, \beta) = c(\beta, \alpha)$ for all $\alpha, \beta \in \Gamma$.

The involution on $\mathbb{C}[\Gamma, c]$ fixes Γ pointwise and $z^* = \overline{z}$ for $z \in \mathbb{C}$, and $\mathbb{C}[\Gamma, c]$ is a graded commutative *-domain. A *-valuation $v: \mathbb{C}[\Gamma, c] \to \Gamma \cup \{\infty\}$ is defined as follows: if $a = \sum a_{\alpha}t^{\alpha} \neq 0$, then v(a) is the smallest $\alpha \in \Gamma$ such that $a_{\alpha} \neq 0$. *-orderings of $\mathbb{C}[\Gamma, c]$ compatible with v are in a natural one-to-one correspondence $\sigma \mapsto P_{\sigma}$ with semigroup homomorphisms $\Gamma \to \{-1, 1\}$. A nonzero $a = \sum a_{\alpha}t^{\alpha}$ is symmetric iff $a_{\alpha} \in \mathbb{R}$ for all $\alpha \in \Gamma$ such that $a_{\alpha} \neq 0$. Such an element a is positive with respect to P_{σ} iff $\sigma(\alpha)a_{\alpha} > 0$, where $\alpha = v(a)$. Also, v is the natural *-valuation associated with P_{σ} .

Proof This is straightforward. For example, to prove that $\sigma \mapsto P_{\sigma}$ is a bijection, we proceed as follows. *-orderings of $\mathbb{C}[\Gamma, c]$ compatible with v are total orderings of Sym $\mathbb{C}[\Gamma, c] = \mathbb{R}[\Gamma, c]$ compatible with v that are closed under *-conjugation. But total orderings of $\mathbb{R}[\Gamma, c]$ compatible with v are all of the form P_{σ} and these are closed under *-conjugation.

Theorem 7 ([MZ2, 2.3 Example(2)]) Suppose *P* is a *-ordering of a \mathbb{C} -algebra *A* and $v: A \to \Gamma \cup \{\infty\}$ the natural *-valuation.

- (i) For each $\alpha \in \Gamma$ there exists $s_{\alpha} \in P$ with $v(s_{\alpha}) = \alpha$.
- (ii) The mapping $\overline{A}_{\alpha} \to \mathbb{C}$ defined by $\overline{a} \mapsto \wp(a, s_{\alpha})$, where $\wp: (A \times A) \setminus \{(0, 0)\} \to \mathbb{C}$ is the *-place associated with P, is an isomorphism.
- (iii) The mapping $c: \Gamma \times \Gamma \to \mathbb{R}$ defined by $c(\alpha, \beta) := \wp(\{s_{\alpha}, s_{\beta}\}, s_{\alpha+\beta})$ is a positive symmetric factor set. Furthermore, $\sum \overline{a}_{\alpha} \mapsto \sum \wp(a_{\alpha}, s_{\alpha})t^{\alpha}$ defines a *-isomorphism between $gr(A, \nu)$ and $\mathbb{C}[\Gamma, c]$.

Proof For $\alpha \in \Gamma$ choose $x \in A$ satisfying $v(x) = \alpha$. If $x = x_1 + ix_2$ for symmetric x_1, x_2 , then $v(x) = \min\{v(x_1), v(x_2)\}$ by [Ma2, 2.4 Proposition]. Say $v(x_1) = \alpha$. If $x_1 \in P$, then $s_\alpha := x_1$. Otherwise $-x_1 \in P$, and we take $s_\alpha := -x_1$. This proves (i).

To prove (ii), let $a = a_1 + i a_2$. If $v(a_1) \neq v(a_2)$, then $\overline{a} = \overline{a}_j$ with j such that $v(a_j) = \min\{v(a_1), v(a_2)\}$. In this case $\wp(a, s_\alpha) = \wp(a_j, s_\alpha)$ is a real number and furthermore, every real number can be obtained in this way since A is a \mathbb{C} -algebra. If $v(a_1) = v(a_2)$, then $\wp(a, s_\alpha) = \wp(a_1, s_\alpha) + i\wp(a_2, s_\alpha)$. By the same reasoning as above, $\wp(-, s_\alpha)$ maps A_α onto \mathbb{C} . Now if $\wp(a, s_\alpha) = \wp(b, s_\alpha)$ for some $a, b \in A_\alpha$, then $\wp(a - b, s_\alpha) = 0$. Hence $v(a - b) > \alpha$ and thus $\overline{a} = \overline{b}$ in \overline{A}_α . This shows that the mapping $\overline{A}_\alpha \to \mathbb{C}$, given by $\overline{a} \mapsto \wp(a, s_\alpha)$, is injective. Since it is obviously a homomorphism, it is an isomorphism, as desired.

(FS₁) and (FS₂) for *c* follow immediately from the definition of \wp and so does (FS₄) since Γ is abelian. The long and tedious calculation needed to prove (FS₃) is left to the interested reader as an exercise. The rest of (iii) then follows from (ii).

Note that Proposition 6 and Theorem 7 combined with [Ma2, 2.5 Proposition] yield a Krull–Baer type result. Namely, if $P \subseteq A$ is a *-ordering, where A is a \mathbb{C} -algebra and $v: A \to \Gamma \cup \{\infty\}$ is the natural *-valuation, then the set of all *-orderings of A compatible with v is in a natural one-to-one correspondence with the set of all semigroup homomorphisms $\Gamma \to \{-1, 1\}$.

4 *-Orderability of Quantum Groups

In [Ci] Cimprič studied orderability and real spectra of certain classes of quantum groups. At the end of that paper he asked for a similar characterization of *-orderings of these quantum groups, see [Ci, §6]. We give an answer to his question by showing that quantum Weyl fields "rarely" admit *-orderings.

Proposition 8 Assume A is a k-algebra containing elements x, y satisfying $yx = \sigma xy$ for $\sigma \in k \setminus \{0, 1\}$. Then A does not admit a quasi-commutative valuation that is trivial on k.

Proof Assume otherwise and let *v* be a quasi-commutative valuation of *A* that is trivial on *k*. Then $v(xy) < v(xy - yx) = v(xy - \sigma xy) = v(1 - \sigma) + v(xy)$. Hence $v(1 - \sigma) > 0$, a contradiction.

Let $\mathbf{q} = (q_{ij})_{i=1,...,n}^{j=i+1,...,n}$ be a sequence of nonzero complex numbers. The *quantum* affine space $\mathbb{C}_{\mathbf{q}}[x_1,...,x_n]$ is the \mathbb{C} -algebra on n generators $x_1,...,x_n$ subject to relations $x_i x_j = q_{ij} x_j x_i$ for $1 \leq i < j \leq n$. It is well known that $\mathbb{C}_{\mathbf{q}}[x_1,...,x_n]$ is an Ore domain. Its division ring of fractions is denoted by $\mathbb{C}_{\mathbf{q}}(x_1,...,x_n)$ and called the *quantum Weyl field*.

Corollary 9 If $q_{ij} \neq 1$ for some *i*, *j*, then the quantum affine space $\mathbb{C}_{\mathbf{q}}[x_1, \ldots, x_n]$ is not *-orderable (independent of the involution chosen). The same holds true for the quantum Weyl field $\mathbb{C}_{\mathbf{q}}(x_1, \ldots, x_n)$.

Proof This follows easily from Proposition 8 and Theorem 2.

Remark

(i) A special case of Corollary 9 was given in [CKM]. The authors proved that the complex quantum plane $\mathbb{C}\langle X, Y \rangle / (XY - qYX)$ for $q \neq 0, 1$ does not admit *-orderings for certain kinds of involutions.

(ii) If $q_{ij} = 1$ for all i, j, then $\mathbb{C}_{\mathbf{q}}[x_1, \ldots, x_n]$ is the ordinary polynomial algebra over \mathbb{C} in n commuting variables and $\mathbb{C}_{\mathbf{q}}(x_1, \ldots, x_n)$ is its quotient field. Existence of *-orderings of $\mathbb{C}[x_1, \ldots, x_n]$, resp., $\mathbb{C}(x_1, \ldots, x_n)$ depends on the involution chosen. In the case $x_i^* = x_i$ and * is conjugation on \mathbb{C} , *-orderings of $\mathbb{C}[x_1, \ldots, x_n]$, resp., $\mathbb{C}(x_1, \ldots, x_n)$ are precisely total orderings of $\mathbb{R}[x_1, \ldots, x_n]$, resp., $\mathbb{R}(x_1, \ldots, x_n)$. These have been fully classified, see [KKMZ]. (iii) The quantum Gelfand–Kirillov conjecture states that the division ring of fractions of a quantum group is always a quantum Weyl field. Even though it is known to be false in general, it does hold in a variety of cases. By Corollary 9, these quantum groups are never *-orderable.

Acknowledgments The author would like to thank the referee for his careful reading and numerous useful comments.

References

[Ch]	M. Chacron, <i>c-orderable division rings with involution</i> . J. Algebra 75 (1982), no. 2, 495–522.
[Ci]	J. Cimprič, Real spectra of quantum groups. J. Algebra 277(2004), no. 1, 282–297.
[CKM]	J. Cimprič, M. Kochetov, and M. Marshall, Orderings and *-orderings on cocommutative Hopf algebras. To appear in Algebr. Represent. Theory, preprint available at http://wood.fmf.uni.li.si/srag
[Co]	P. M. Cohn, On the embedding of rings in skew fields. Proc. London Math. Soc. 11(1961), 511–530.
[Cr]	T. Craven, <i>Places on *-fields and the real holomorphy ring.</i> Comm. Algebra 18 (1990), no. 9, 2791–2820.
[CS]	T. Craven and T. Smith, Ordered *-rings. J. Algebra 238(2001), no. 1, 314–327.
[Fu]	L. Fuchs, Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963.
[He]	I. N. Herstein, Special simple rings with involution. J. Algebra 6(1967), no. 3, 369-375.
[Ho1]	S. S. Holland, Orderings and square roots in *-fields. J. Algebra 46(1977), no. 1, 207–219.
[Ho2]	, Strong orderings on *-fields. J. Algebra 101(1986), no. 1, 16–46.
[KM]	I. Klep and P. Moravec, <i>On *-orderable groups</i> . J. Pure Appl. Algebra 200 (2005), no. 1-2, 25–35.
[KKMZ]	FV. Kuhlmann, S. Kuhlmann, M. Marshall, and M. Zekavat, <i>Embedding ordered fields in formal power series fields.</i> J. Pure Appl. Algebra 169 (2002), no. 1, 71–90.
[Ma1]	M. Marshall, *-orderings on a ring with involution. Comm. Algebra 28 (2000), no. 3, 1157–1173.
[Ma2]	, *-orderings and *-valuations on algebras of finite Gelfand-Kirillov dimension. J. Pure Appl. Algebra 179 (2003), no. 3, 255–271.
[MZ1]	M. Marshall, and Y. Zhang, Orderings, real places and valuations on noncommutative integral domains. J. Algebra 212 (1999), no. 1, 190–207.
[MZ2]	, Orderings and valuations on twisted polynomial rings. Comm. Algebra 28 (2000), no. 8, 3763–3776.

Institute for Mathematics, Physics and Mechanics Department of Mathematics University of Ljubljana Jadranska 19 SI-1111 Ljubljana Slovenia e-mail: igor.klep@fmf.uni-lj.si