On Valuations, Places and Graded Rings Associated to *-Orderings

Igor Klep

Abstract

We study natural $*$-valuations, $*$-places and graded $*$-rings associated with $*$-ordered rings. We prove that the natural $*$-valuation is always quasi-Ore and is even quasi-commutative (i.e., the corresponding graded $*$-ring is commutative), provided the ring contains an imaginary unit. Furthermore, it is proved that the graded $*$-ring is isomorphic to a twisted semigroup algebra. Our results are applied to answer a question of Cimprič regarding $*$-orderability of quantum groups.

1 Introduction

The notion of a $*$-ordering on a division $*$-ring was introduced by Holland [Ho2] as an analogue to the notion of a total ordering. This theory was developed further by several authors, e.g., by Craven, Chacron [Ch] and Marshall. Marshall [Ma1, Ma2] and Craven-Smith [CS] also extended the theory to $*$-rings and in particular to *-domains. Major tools in this theory are valuations and graded rings. To each *-ordering of a domain we can associate a natural $*$-valuation and a graded $*$-ring [Ma1, Ma2]. In order to study these objects, we introduce $*$-places motivated by the notion of real places associated with total orderings as introduced and studied by Marshall-Zhang [MZ1]. We show that the natural $*$-valuation v associated with a $*$-ordered domain A is quasi-Ore (for the definition see $\S 2$). Furthermore, if A contains a central skew element i satisfying $i^{2}=-1$ (we call such an element an imaginary unit), then v is quasi-commutative, i.e., the corresponding graded $*$-ring $\operatorname{gr}(A, v)$ is commutative. If A is a C-algebra, this result can be further improved. In this case it is shown that $\operatorname{gr}(A, v)$ is isomorphic to a twisted semigroup ring $\mathbb{C}[\Gamma, c]$ for an ordered cancellative abelian semigroup Γ and a positive symmetric factor set $c: \Gamma \times \Gamma \rightarrow \mathbb{R}$.

These results are used in the last section to answer a question posed by Cimprič [Ci, $\S 6]$. We show that noncommutative quantum affine spaces and quantum Weyl fields do not admit $*$-orderings (independent of the involution chosen).

2 Basic Definitions and Preliminary Results

Throughout this paper A will denote a domain with involution and $\operatorname{Sym} A$ will be the set of its symmetric elements. A subset $P \subseteq A$ is called a $*$-ordering provided the

[^0]following hold:
$\left(\mathrm{O}_{1}\right) \quad 1 \in P, P+P \subseteq P$,
$\left(\mathrm{O}_{2}\right) \quad r P r^{*} \subseteq P$ for all $r \in A$,
$\left(\mathrm{O}_{3}\right) \quad P \cup-P=\operatorname{Sym} A$,
$\left(\mathrm{O}_{4}\right) \quad P \cap-P=\{0\}$,
$\left(\mathrm{O}_{5}\right) \quad a, b \in P \Rightarrow\{a, b\}:=a b+b a \in P$.
If Γ is an ordered cancellative abelian semigroup, then an onto mapping $v: A \rightarrow$ $\Gamma \cup\{\infty\}$ is a $*$-valuation if:
$\left(\mathrm{V}_{1}\right) \quad v(x)=\infty$ iff $x=0$,
$\left(\mathrm{V}_{2}\right) \quad v(x y)=v(x)+v(y)$ for all $x, y \in A^{\times}$,
$\left(\mathrm{V}_{3}\right) \quad v(x+y) \geqslant \min \{v(x), v(y)\}$ for all $x, y \in A$,
$\left(\mathrm{V}_{4}\right) \quad v\left(x^{*}\right)=v(x)$ for all $x \in A$.
Here $A^{\times}:=A \backslash\{0\}$. The corresponding graded $*$-ring $\operatorname{gr}(A, v)$ is constructed as follows. We form $A_{\alpha}:=\{x \in A \mid v(x) \geqslant \alpha\}, A_{\alpha}^{+}:=\{x \in A \mid v(x)>\alpha\}$ and $\bar{A}_{\alpha}:=A_{\alpha} / A_{\alpha}^{+}$. Then $\operatorname{gr}(A, v):=\bigoplus_{\alpha \in \Gamma} \bar{A}_{\alpha}$ is given the componentwise addition, the multiplication induced by $(\bar{a}, \bar{b}) \mapsto \overline{a b}$ for $a \in A_{\alpha}$ and $b \in A_{\beta}$ and the involution defined by $\bar{a}^{*}:=\overline{a^{*}}$. Then v induces a $*$-valuation $\operatorname{gr}(v): \operatorname{gr}(A, v) \rightarrow \Gamma \cup\{\infty\}$ given by $\operatorname{gr}(v)\left(\sum_{\alpha \in \Gamma} \bar{a}_{\alpha}\right)=\gamma$, where γ is the least $\gamma \in \Gamma$ such that $\bar{a}_{\gamma} \neq 0$ if $\sum_{\alpha \in \Gamma} \bar{a}_{\alpha} \neq 0$.

We define a relation \sim_{v} on A^{\times}by $x \sim_{v} y \Leftrightarrow v(x)<v(x-y)$. This is a semigroup congruence and is $*$-invariant (i.e., $x \sim_{v} y$ implies $x^{*} \sim_{v} y^{*}$). For details we refer the reader to [Hol].

Definition Let $v: A \rightarrow \Gamma \cup\{\infty\}$ be a $*$-valuation.
(i) $\quad v$ is compatible with a $*$-ordering P of A iff $x \sim_{v} y \in P$ implies $x \in P$ for all $x, y \in \operatorname{Sym} A^{\times}$.
(ii) $\quad v$ is called quasi-commutative iff for all $a, b \in A^{\times}$we have $a b \sim_{v} b a$. Obviously, v is quasi-commutative iff $v(a b-b a)>v(a b)$ for all $a, b \in A^{\times}$and this is the case iff $\operatorname{gr}(A, v)$ is commutative.
(iii) v is quasi-Ore iff for all $a, b \in A^{\times}$there exist $r, s \in A^{\times}$such that $r a \sim_{v} s b$. Note that this condition is left-right symmetric by the properties of \sim_{v}.
(iv) If Γ is a subsemigroup of \mathbb{Z}, then v is called discrete.

Remark Clearly, if $\operatorname{gr}(A, v)$ is an Ore domain, then v is quasi-Ore. The converse is false in general, but it holds in special cases, e.g., if v is discrete [Co, Theorem 4.2].

If $v: A \rightarrow \Gamma \cup\{\infty\}$ is a $*$-valuation, we write $\mathcal{O}_{v}:=A_{0}$ and $\mathfrak{m}_{v}:=A_{0}^{+}$. If A is a division $*$-ring, then \mathcal{O}_{v} is an invariant valuation $*$-ring and \mathfrak{m}_{v} is its maximal *-ideal. In general, m_{v} is only a completely prime $*$-ideal of \mathcal{O}_{v}. Hence the residue *-ring $k_{v}:=\mathcal{O}_{v} / \mathrm{m}_{v}$ is only a domain and not necessarily a division ring.

To each $*$-ordering $P \subseteq A$ a natural (order-compatible) $*$-valuation v_{P} can be associated as follows. The $*$-ordering P gives an order relation \leqslant on Sym A, which induces the archimedean equivalence \approx on Sym A. We extend the latter to the whole A by declaring, for all $a, b \in A^{\times}$, that $a \prec b$ if $a a^{*} \leqslant n b b^{*}$ for some positive integer n, and $a \approx b$ if $a \prec b$ and $b \prec a$. Denote by $v_{P}(a)$ the equivalence class of $a \in A^{\times}$and $v_{P}(0):=\infty$. Then the relation \prec induces a total ordering of the set $\Gamma_{P}=v_{P}\left(A^{\times}\right)$.

By [Ma1, Theorem 3.3], the binary operation $v_{P}(a)+v_{P}(b):=v_{P}(a b)$ is well defined on Γ_{P}, so Γ_{P} becomes an ordered cancellative abelian semigroup. Marshall [Ma1] observed that v_{P} is a $*$-valuation and $s_{1} s_{2} \sim_{v} s_{2} s_{1}$ for all $s_{1}, s_{2} \in \operatorname{Sym} A^{\times}$. We say that v is quasi-commutative for symmetric elements.

$3 *$-Places and Graded $*$-Rings

Proposition 1 Assume $v: A \rightarrow \Gamma \cup\{\infty\}$ is a $*$-valuation quasi-commutative for symmetric elements with $v(2)=0$. Then v is quasi-Ore and symmetric elements of $\operatorname{gr}(A, v)$ commute. If, furthermore, v is discrete, then $\operatorname{gr}(A, v)$ is an Ore domain.

Proof Since v is quasi-commutative for symmetric elements, we have $v\left(s_{1} s_{2}-s_{2} s_{1}\right)>$ $v\left(s_{1} s_{2}\right)$ for all $s_{1}, s_{2} \in \operatorname{Sym} A^{\times}$. Now let $a, b \in A^{\times}$be arbitrary. Define $r_{1}:=a^{*} b b^{*}$ and $r_{2}:=b^{*} a a^{*}$. Then

$$
\begin{aligned}
v\left(a r_{1}-b r_{2}\right) & =v\left(a a^{*} b b^{*}-b b^{*} a a^{*}\right)=v\left(\left(a a^{*}\right)\left(b b^{*}\right)-\left(b b^{*}\right)\left(a a^{*}\right)\right) \\
& >v\left(a a^{*} b b^{*}\right)=v\left(a r_{1}\right)=v\left(b r_{2}\right) .
\end{aligned}
$$

Hence v is quasi-Ore. Note that an element $a=\sum \bar{a}_{\alpha} \in \operatorname{gr}(A, v)$ is symmetric iff $\bar{a}_{\alpha} \in \bar{A}_{\alpha}$ is symmetric for every α. By a simple induction argument, to prove that symmetric elements of $\operatorname{gr}(A, v)$ commute, it suffices to show that two symmetric elements of the form $\bar{a}_{\alpha}, \bar{b}_{\beta}$ commute. Moreover, as $2 \bar{a}=0$ implies $\bar{a}=0$ for all $\bar{a} \in \operatorname{gr}(A, v)$ by the assumption $v(2)=0$, it is enough to prove that $2 \bar{a}_{\alpha}, 2 \bar{b}_{\beta}$ commute. Since \bar{a}_{α} is symmetric, $a_{\alpha} \sim_{v} a_{\alpha}^{*}$ and thus $v\left(a_{\alpha}+a_{\alpha}^{*}\right)=v\left(a_{\alpha}\right)$. Hence $2 \bar{a}_{\alpha}=\overline{a_{\alpha}+a_{\alpha}^{*}}$ and $a_{\alpha}+a_{\alpha}^{*}$ is symmetric. Similarly, $2 \bar{b}_{\beta}=\overline{b_{\beta}+b_{\beta}^{*}}$. Since v is quasicommutative for symmetric elements, $\left(a_{\alpha}+a_{\alpha}^{*}\right)\left(b_{\beta}+b_{\beta}^{*}\right) \sim_{v}\left(b_{\beta}+b_{\beta}^{*}\right)\left(a_{\alpha}+a_{\alpha}^{*}\right)$ and so $\left(2 \bar{a}_{\alpha}\right)\left(2 \bar{b}_{\beta}\right)=\left(2 \bar{b}_{\beta}\right)\left(2 \bar{a}_{\alpha}\right)$, as desired. Finally, the last statement of the proposition follows from [Co, Theorem 4.2].

Theorem 2 If A is $a *$-ordered domain and v the natural $*$-valuation, then v is quasiOre. If also, A contains an imaginary unit, then v is quasi-commutative.

Proof By [Ma1, 3.3 Theorem] and Proposition 1, v is quasi-Ore. So let us assume that $i \in A$ is an imaginary unit. Observe that every $*$-ordering of A extends uniquely to a $*$-ordering of the central localization $A_{\mathbb{N}}\left(\cong A \otimes_{\mathbb{Z}}(\mathbb{O})\right.$). Hence we may assume that $\left(\mathbb{O} \subseteq A\right.$. For every $x \in A$ we have $x=\frac{x+x^{*}}{2}+i \frac{x-x^{*}}{2 i}$. In other words, $x=x_{1}+i x_{2}$ for (uniquely determined) $x_{1}, x_{2} \in \operatorname{Sym} A$. Let $a, b \in A^{\times}$be arbitrary. Write $a=a_{1}+i a_{2}$ and $b=b_{1}+i b_{2}$ for symmetric $a_{1}, a_{2}, b_{1}, b_{2}$. Then

$$
\begin{aligned}
a b-b a & =\left(a_{1}+i a_{2}\right)\left(b_{1}+i b_{2}\right)-\left(b_{1}+i b_{2}\right)\left(a_{1}+i a_{2}\right) \\
& =\left(a_{1} b_{1}-b_{1} a_{1}\right)+\left(b_{2} a_{2}-a_{2} b_{2}\right)+i\left(a_{1} b_{2}-b_{2} a_{1}\right)+i\left(a_{2} b_{1}-b_{1} a_{2}\right)
\end{aligned}
$$

Hence by the triangle inequality,

$$
v(a b-b a) \geqslant \min \left\{v\left(a_{1} b_{1}-b_{1} a_{1}\right), v\left(b_{2} a_{2}-a_{2} b_{2}\right), v\left(a_{1} b_{2}-b_{2} a_{1}\right), v\left(a_{2} b_{1}-b_{1} a_{2}\right)\right\} .
$$

Now use [Ma1, 3.3(5) Theorem] to get

$$
\begin{aligned}
v(a b-b a) & >\min \left\{v\left(a_{1} b_{1}\right), v\left(a_{2} b_{2}\right), v\left(a_{1} b_{2}\right), v\left(a_{2} b_{1}\right)\right\} \\
& =\min \left\{v\left(a_{1}\right), v\left(a_{2}\right)\right\}+\min \left\{v\left(b_{1}\right), v\left(b_{2}\right)\right\} .
\end{aligned}
$$

By [Ma2, 2.4 Proposition], the right-hand side of the last equation equals $v(a)+$ $v(b)=v(a b)$. Hence $v(a b-b a)>v(a b)$, as required.

An application of this result will be given in the next section, where we answer a question posed by Cimprič [Ci]. For another application we refer the reader to [KM].

If D is a $*$-ordered division ring and v is the natural $*$-valuation, then $k_{v}=\mathcal{O}_{v} / \mathfrak{m}_{v}$ is a $*$-ordered division subring of $\mathbb{H}, c f$. [Ho2]. Hence we have a $*$-homomorphism $\mathcal{O}_{v} \rightarrow \mathbb{H}$. We extend this to a map $D \rightarrow \mathbb{H} \cup\{\infty\}$ by mapping $D \backslash \mathcal{O}_{v} \rightarrow\{\infty\}$. This mapping is called a $*$-place. For more on $*$-places on division rings we refer the reader to $[\mathrm{Cr}]$.

Proposition 3 If A is a *-ordered domain and v the natural $*$-valuation, then k_{v} is $a *$-ordered subring of \mathbb{H}. If A also contains an imaginary unit, then k_{v} is a $*$-ordered subring of \mathbb{C}.

Proof Write P for the $*$-ordering of A. Let $\bar{a}, \bar{b} \in k_{v}^{\times}$. As $v\left(a a^{*} b b^{*}-b b^{*} a a^{*}\right)>$ $v\left(a a^{*} b b^{*}\right)=0$, we have $\bar{a} \cdot \overline{a^{*} b b^{*}}=\bar{b} \cdot \overline{b^{*} a a^{*}}$. In other words, k_{v} is an Ore domain. Moreover, P induces an archimedean $*$-ordering \bar{P} of k_{v}. By [CS, Corollary 2.5], \bar{P} extends to a $*$-ordering Q of $\mathrm{Quot}\left(k_{v}\right)$. Let w denote the natural $*$-valuation of Quot $\left(k_{v}\right)$. By a result of Holland [Ho2, 4.1], $w(a s-s a)>w(a s)$ for all $a, s \in \operatorname{Quot}\left(k_{v}\right)$ with $s=s^{*}$. Obviously, $\left.w\right|_{k_{v}}$ is the natural $*$-valuation associated with the $*$-ordering \bar{P} of k_{v}. Since \bar{P} is archimedean, $\left.w\right|_{k_{v}}$ is trivial. This implies that symmetric elements of k_{v} are central. Furthermore, \bar{P} induces an archimedean total ordering of Sym k_{v}, hence Sym k_{v} is an ordered subring of \mathbb{R}. Form the central localization $B:=k_{v}\left(\operatorname{Sym} k_{v}^{\times}\right)^{-1}$. Clearly, $B \subseteq$ Quot $\left(k_{v}\right)$, hence Q induces a $*$-ordering of B. From the definition of B it is easy to see that this $*$-ordering is archimedean. Moreover, by results of Herstein [He], B is finite dimensional over its center. As it is also a domain, B must be a division ring. Hence by a theorem due to Holland [Ho1], B is a $*$-ordered division subring of \mathbb{H}. In particular, k_{v} is a $*$-ordered subring of \mathbb{H}.

If A contains an imaginary unit, then k_{v} is commutative by Theorem 2 and thus a *-ordered subring of \mathbb{C}.

Again, by this proposition we have a mapping $A \rightarrow \mathbb{H} \cup\{\infty\}$. We call it the weak *-place associated with P. A *-place associated with P will be a mapping ($\operatorname{Sym} A \times$ Sym $A) \backslash\{(0,0)\} \rightarrow \mathbb{R} \cup\{\infty\}$ with certain properties. In order to define it, we need the following classical result.

Lemma 4 ([Fu, Ch. IV]) Let $(A,+, \leqslant)$ be a totally ordered abelian group and v the natural order-compatible valuation. For $a, b>0$ and $v(a)=v(b)$ there exists a unique real number $\mu(a, b) \in(0, \infty)$ such that $\mu(a, b) \in\left[\frac{m}{n}, \frac{m+1}{n}\right]$ for any $m, n \in \mathbb{N}$ satisfying $m b \leqslant n a \leqslant(m+1) b$.

Assume $P \subseteq A$ is a $*$-ordering. Then $(\operatorname{Sym} A,+)$ is an abelian group and P is a total ordering of Sym A. Hence, using Lemma 4 we can define a map $\wp:(\operatorname{Sym} A \times$ $\operatorname{Sym} A) \backslash\{(0,0)\} \rightarrow \mathbb{R} \cup\{\infty\}$ as follows

$$
\wp(a, b)= \begin{cases}\infty & \text { if } v(a)<v(b) \\ \mu(|a|,|b|) & \text { if } v(a)=v(b),\{a, b\} \in P \\ -\mu(|a|,|b|) & \text { if } v(a)=v(b),-\{a, b\} \in P \\ 0 & \text { if } v(a)>v(b)\end{cases}
$$

This mapping is the $*$-place associated with P. Let us note some properties of \wp. For all $a, b \in \operatorname{Sym} A$, not both zero, we have
$\left(\mathrm{P}_{1}\right) \wp(a, b)=\infty \operatorname{iff} \wp(b, a)=0$,
$\left(\mathrm{P}_{2}\right)$ if $\wp(a, b), \wp(b, c) \neq \infty$, then $\wp(a, b) \wp(b, c)=\wp(a, c)$,
$\left(\mathrm{P}_{3}\right)$ if $\wp(a, c), \wp(b, c) \neq \infty$, then $\wp(a, c)+\wp(b, c)=\wp(a+b, c)$,
$\left(\mathrm{P}_{4}\right) \wp(a, b)=\wp(\{a, c\},\{b, c\})$ for all $c \in \operatorname{Sym} A^{\times}$,
$\left(\mathrm{P}_{5}\right) \wp(a, b)=\wp\left(r^{*} a r, r^{*} b r\right)$ for all $r \in A^{\times}$.
In case $i \in A$ is an imaginary unit, we can extend \wp to a mapping $(A \times A) \backslash$ $\{(0,0)\} \rightarrow \mathbb{C}$ as follows. As before, we assume $\mathbb{O} \subseteq A$. We first extend \wp to $(A \times$ $\operatorname{Sym} A) \backslash\{(0,0)\} \rightarrow \mathbb{C}$ by $\wp\left(a_{1}+i a_{2}, b\right):=\wp\left(a_{1}, b\right)+i \wp\left(a_{2}, b\right)$ for $a_{1}, a_{2}, b \in \operatorname{Sym} A$. This is well defined since every $a \in A$ can be written uniquely as $a=a_{1}+i a_{2}$ for symmetric a_{1}, a_{2}. For the second step, we define $\wp(a, b):=\frac{1}{2} \wp\left(a b^{*}+b^{*} a, b b^{*}\right)$ for $a, b \in A$, not both zero. We claim that this is well defined. Let $a \in A$ and $s \in \operatorname{Sym} A$. We have to show that $\wp(a, s)=\frac{1}{2} \wp\left(a s+s a, s^{2}\right)$. Let $a=a_{1}+i a_{2}$ for $a_{j} \in \operatorname{Sym} A$. Then $\wp(a, s)=\wp\left(a_{1}, s\right)+i \wp\left(a_{2}, s\right)$ and $\wp\left(a s+s a, s^{2}\right)=\wp\left(a_{1} s+s a_{1}, s^{2}\right)+i \wp\left(a_{2} s+s a_{2}, s^{2}\right)$. Thus we may assume without loss of generality that a is symmetric as well. But then our claim follows from $\left(\mathrm{P}_{4}\right)$.

Proposition 5 ([MZ2, $\S 1.3$ Notes $])$ Assume A is $a *$-ordered domain and a (C-algebra and let v denote the natural $*$-valuation. Iffor $a, b \in A, v(a) \geqslant v(b)$, then $\wp(a, b)=\mu$ iff $v(a-\mu b)>v(b)$.

Proof It is easy to see that $\wp(a, b)=\mu$ iff $\wp(a-\mu b, b)=0$. So it suffices to prove the statement for $\mu=0$. By definition, $\wp(a, b)=\frac{1}{2} \wp\left(a b^{*}+b^{*} a, b b^{*}\right)$. Write $a b^{*}+b^{*} a=c_{1}+i c_{2}$ for symmetric c_{1}, c_{2}. Then $\wp(a, b)=\frac{1}{2} \wp\left(c_{1}, b b^{*}\right)+\frac{i}{2} \wp\left(c_{2}, b b^{*}\right)$. By [Ma2, 2.4 Proposition], $v\left(a b^{*}+b^{*} a\right)=\min \left\{v\left(c_{1}\right), v\left(c_{2}\right)\right\}$. On the other hand, $v\left(a b^{*}+b^{*} a\right)=v\left(a b^{*}\right)$ by Theorem 2. If $v(a)>v(b)$, then $v\left(c_{j}\right)>v\left(b b^{*}\right)$ for $j=1$, 2. Thus $\wp(a, b)=0$ by the definition of \wp. Conversely, if $\wp(a, b)=0$, then $\wp\left(c_{j}, b b^{*}\right)=0$ for $j=1,2$. Hence $v\left(c_{j}\right)>v\left(b b^{*}\right)$ and so $v\left(a b^{*}\right)=v\left(a b^{*}+b^{*} a\right)>$ $v\left(b b^{*}\right)$. This implies $v(a)>v(b)$, as desired.

In the rest of this section we sharpen Theorem 2 for $*$-ordered \mathbb{C}-algebras by showing that the corresponding graded ring is isomorphic to a twisted semigroup ring. As our semigroups are abelian and written additively, we use the exponential notation for twisted semigroup rings.

Proposition 6 ([MZ2, 2.3 Example(1)]) Let Γ be an ordered cancellative abelian semigroup. Consider the twisted semigroup ring $\mathbb{C}[\Gamma, c]$ with the twisting given by $t^{\alpha} t^{\beta}=c(\alpha, \beta) t^{\alpha+\beta}$, where $c: \Gamma \times \Gamma \rightarrow \mathbb{R}$ is a positive symmetric factor set, i.e.,
$\left(\mathrm{FS}_{1}\right) c(\alpha, \beta)>0$ for all $\alpha, \beta \in \Gamma$,
$\left(\mathrm{FS}_{2}\right) c(\alpha, 0)=c(0, \alpha)=1$ for all $\alpha \in \Gamma$,
$\left(\mathrm{FS}_{3}\right) c(\alpha, \beta) c(\alpha+\beta, \gamma)=c(\alpha, \beta+\gamma) c(\beta, \gamma)$ for all $\alpha, \beta, \gamma \in \Gamma$, $\left(\mathrm{FS}_{4}\right) c(\alpha, \beta)=c(\beta, \alpha)$ for all $\alpha, \beta \in \Gamma$.

The involution on $\mathbb{C}[\Gamma, c]$ fixes Γ pointwise and $z^{*}=\bar{z}$ for $z \in \mathbb{C}$, and $\mathbb{C}[\Gamma, c]$ is a graded commutative $*$-domain. A *-valuation $v: \mathbb{C}[\Gamma, c] \rightarrow \Gamma \cup\{\infty\}$ is defined as follows: if $a=\sum a_{\alpha} t^{\alpha} \neq 0$, then $v(a)$ is the smallest $\alpha \in \Gamma$ such that $a_{\alpha} \neq 0$. *-orderings of $\mathbb{C}[\Gamma, c]$ compatible with v are in a natural one-to-one correspondence $\sigma \mapsto P_{\sigma}$ with semigroup homomorphisms $\Gamma \rightarrow\{-1,1\}$. A nonzero $a=\sum a_{\alpha} t^{\alpha}$ is symmetric iff $a_{\alpha} \in \mathbb{R}$ for all $\alpha \in \Gamma$ such that $a_{\alpha} \neq 0$. Such an element a is positive with respect to P_{σ} iff $\sigma(\alpha) a_{\alpha}>0$, where $\alpha=v(a)$. Also, v is the natural $*$-valuation associated with P_{σ}.

Proof This is straightforward. For example, to prove that $\sigma \mapsto P_{\sigma}$ is a bijection, we proceed as follows. $*$-orderings of $\mathbb{C}[\Gamma, c]$ compatible with v are total orderings of Sym $\mathbb{C}[\Gamma, c]=\mathbb{R}[\Gamma, c]$ compatible with v that are closed under $*$-conjugation. But total orderings of $\mathbb{R}[\Gamma, c]$ compatible with v are all of the form P_{σ} and these are closed under $*$-conjugation.

Theorem 7 ([MZ2, 2.3 Example(2)]) Suppose P is $a *$-ordering of a $(\mathbb{C}$-algebra A and $v: A \rightarrow \Gamma \cup\{\infty\}$ the natural $*$-valuation.
(i) For each $\alpha \in \Gamma$ there exists $s_{\alpha} \in P$ with $v\left(s_{\alpha}\right)=\alpha$.
(ii) The mapping $\bar{A}_{\alpha} \rightarrow \mathbb{C}$ defined by $\bar{a} \mapsto \wp\left(a, s_{\alpha}\right)$, where $\wp:(A \times A) \backslash\{(0,0)\} \rightarrow \mathbb{C}$ is the $*$-place associated with P, is an isomorphism.
(iii) The mapping $c: \Gamma \times \Gamma \rightarrow \mathbb{R}$ defined by $c(\alpha, \beta):=\wp\left(\left\{s_{\alpha}, s_{\beta}\right\}, s_{\alpha+\beta}\right)$ is a positive symmetric factor set. Furthermore, $\sum \bar{a}_{\alpha} \mapsto \sum \wp\left(a_{\alpha}, s_{\alpha}\right) t^{\alpha}$ defines a *-isomorphism between $\operatorname{gr}(A, v)$ and $\mathbb{C}[\Gamma, c]$.

Proof For $\alpha \in \Gamma$ choose $x \in A$ satisfying $v(x)=\alpha$. If $x=x_{1}+i x_{2}$ for symmetric x_{1}, x_{2}, then $v(x)=\min \left\{v\left(x_{1}\right), v\left(x_{2}\right)\right\}$ by [Ma2, 2.4 Proposition]. Say $v\left(x_{1}\right)=\alpha$. If $x_{1} \in P$, then $s_{\alpha}:=x_{1}$. Otherwise $-x_{1} \in P$, and we take $s_{\alpha}:=-x_{1}$. This proves (i).

To prove (ii), let $a=a_{1}+i a_{2}$. If $v\left(a_{1}\right) \neq v\left(a_{2}\right)$, then $\bar{a}=\bar{a}_{j}$ with j such that $v\left(a_{j}\right)=\min \left\{v\left(a_{1}\right), v\left(a_{2}\right)\right\}$. In this case $\wp\left(a, s_{\alpha}\right)=\wp\left(a_{j}, s_{\alpha}\right)$ is a real number and furthermore, every real number can be obtained in this way since A is a $(\mathbb{C}$-algebra. If $v\left(a_{1}\right)=v\left(a_{2}\right)$, then $\wp\left(a, s_{\alpha}\right)=\wp\left(a_{1}, s_{\alpha}\right)+i \wp\left(a_{2}, s_{\alpha}\right)$. By the same reasoning as above, $\wp\left(-, s_{\alpha}\right)$ maps A_{α} onto (C. Now if $\wp\left(a, s_{\alpha}\right)=\wp\left(b, s_{\alpha}\right)$ for some $a, b \in A_{\alpha}$, then $\wp\left(a-b, s_{\alpha}\right)=0$. Hence $v(a-b)>\alpha$ and thus $\bar{a}=\bar{b}$ in \bar{A}_{α}. This shows that the mapping $\bar{A}_{\alpha} \rightarrow \mathbb{C}$, given by $\bar{a} \mapsto \wp\left(a, s_{\alpha}\right)$, is injective. Since it is obviously a homomorphism, it is an isomorphism, as desired.
$\left(\mathrm{FS}_{1}\right)$ and $\left(\mathrm{FS}_{2}\right)$ for c follow immediately from the definition of \wp and so does $\left(\mathrm{FS}_{4}\right)$ since Γ is abelian. The long and tedious calculation needed to prove $\left(\mathrm{FS}_{3}\right)$ is left to the interested reader as an exercise. The rest of (iii) then follows from (ii).

Note that Proposition 6 and Theorem 7 combined with [Ma2, 2.5 Proposition] yield a Krull-Baer type result. Namely, if $P \subseteq A$ is a $*$-ordering, where A is a (C-algebra and $v: A \rightarrow \Gamma \cup\{\infty\}$ is the natural $*$-valuation, then the set of all $*$-orderings of A compatible with v is in a natural one-to-one correspondence with the set of all semigroup homomorphisms $\Gamma \rightarrow\{-1,1\}$.

4 *-Orderability of Quantum Groups

In [Ci] Cimprič studied orderability and real spectra of certain classes of quantum groups. At the end of that paper he asked for a similar characterization of $*$-orderings of these quantum groups, see $[\mathrm{Ci}, \S 6]$. We give an answer to his question by showing that quantum Weyl fields "rarely" admit $*$-orderings.

Proposition 8 Assume A is a k-algebra containing elements x, y satisfying $y x=\sigma x y$ for $\sigma \in k \backslash\{0,1\}$. Then A does not admit a quasi-commutative valuation that is trivial on k.

Proof Assume otherwise and let v be a quasi-commutative valuation of A that is trivial on k. Then $v(x y)<v(x y-y x)=v(x y-\sigma x y)=v(1-\sigma)+v(x y)$. Hence $v(1-\sigma)>0$, a contradiction.

Let $\mathbf{q}=\left(q_{i j}\right)_{i=1, \ldots, n}^{j=i+1, \ldots, n}$ be a sequence of nonzero complex numbers. The quantum affine space $\mathbb{C}_{\mathbf{q}}\left[x_{1}, \ldots, x_{n}\right]$ is the \mathbb{C}-algebra on n generators x_{1}, \ldots, x_{n} subject to relations $x_{i} x_{j}=q_{i j} x_{j} x_{i}$ for $1 \leqslant i<j \leqslant n$. It is well known that $\mathbb{C}_{\mathbf{q}}\left[x_{1}, \ldots, x_{n}\right]$ is an Ore domain. Its division ring of fractions is denoted by $\mathbb{C}_{\mathbf{q}}\left(x_{1}, \ldots, x_{n}\right)$ and called the quantum Weyl field.

Corollary 9 If $q_{i j} \neq 1$ for some i, j, then the quantum affine space $\mathbb{C}_{\mathbf{q}}\left[x_{1}, \ldots, x_{n}\right]$ is not $*$-orderable (independent of the involution chosen). The same holds true for the quantum Weyl field $\mathbb{C}_{\mathbf{q}}\left(x_{1}, \ldots, x_{n}\right)$.

Proof This follows easily from Proposition 8 and Theorem 2.

Remark

(i) A special case of Corollary 9 was given in [CKM]. The authors proved that the complex quantum plane $\mathbb{C}\langle X, Y\rangle /(X Y-q Y X)$ for $q \neq 0,1$ does not admit *-orderings for certain kinds of involutions.
(ii) If $q_{i j}=1$ for all i, j, then $\mathbb{C}_{\mathbf{q}}\left[x_{1}, \ldots, x_{n}\right]$ is the ordinary polynomial algebra over \mathbb{C} in n commuting variables and $\mathbb{C}_{\mathbf{q}}\left(x_{1}, \ldots, x_{n}\right)$ is its quotient field. Existence of $*$-orderings of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, resp., $\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)$ depends on the involution chosen. In the case $x_{i}^{*}=x_{i}$ and $*$ is conjugation on \mathbb{C}, $*$-orderings of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, resp., $\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)$ are precisely total orderings of $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, resp., $\mathbb{R}\left(x_{1}, \ldots, x_{n}\right)$. These have been fully classified, see [KKMZ].
(iii) The quantum Gelfand-Kirillov conjecture states that the division ring of fractions of a quantum group is always a quantum Weyl field. Even though it is known to be false in general, it does hold in a variety of cases. By Corollary 9, these quantum groups are never $*$-orderable.

Acknowledgments The author would like to thank the referee for his careful reading and numerous useful comments.

References

[Ch] M. Chacron, c-orderable division rings with involution. J. Algebra 75(1982), no. 2, 495-522.
[Ci] J. Cimprič, Real spectra of quantum groups. J. Algebra 277(2004), no. 1, 282-297.
[CKM] J. Cimprič, M. Kochetov, and M. Marshall, Orderings and *-orderings on cocommutative Hopf algebras. To appear in Algebr. Represent. Theory, preprint available at http://vega.fmf.uni-lj.si/srag.
[Co] P. M. Cohn, On the embedding of rings in skew fields. Proc. London Math. Soc. 11(1961), 511-530.
[Cr] T. Craven, Places on $*-$ fields and the real holomorphy ring. Comm. Algebra 18(1990), no. 9, 2791-2820.
[CS] T. Craven and T. Smith, Ordered $*$-rings. J. Algebra 238(2001), no. 1, 314-327.
[Fu] L. Fuchs, Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963.
[He] I. N. Herstein, Special simple rings with involution. J. Algebra 6(1967), no. 3, 369-375.
[Ho1] S. S. Holland, Orderings and square roots in $*$-fields. J. Algebra 46(1977), no. 1, 207-219.
[Ho2] , Strong orderings on $*$-fields. J. Algebra 101(1986), no. 1, 16-46.
[KM] I. Klep and P. Moravec, On $*$-orderable groups. J. Pure Appl. Algebra 200(2005), no. 1-2, 25-35.
[KKMZ] F.-V. Kuhlmann, S. Kuhlmann, M. Marshall, and M. Zekavat, Embedding ordered fields in formal power series fields. J. Pure Appl. Algebra 169(2002), no. 1, 71-90.
[Ma1] M. Marshall, *-orderings on a ring with involution. Comm. Algebra 28(2000), no. 3, 1157-1173.
[Ma2] , *-orderings and *-valuations on algebras of finite Gelfand-Kirillov dimension. J. Pure Appl. Algebra 179(2003), no. 3, 255-271.
[MZ1] M. Marshall, and Y. Zhang, Orderings, real places and valuations on noncommutative integral domains. J. Algebra 212(1999), no. 1, 190-207.
[MZ2] 8, 3763-3776.

Institute for Mathematics, Physics and Mechanics
Department of Mathematics
University of Ljubljana
Jadranska 19
SI-1111 Ljubljana
Slovenia
e-mail: igor.klep@fmf.uni-lj.si

[^0]: Received by the editors December 14, 2004; revised February 1, 2005.
 AMS subject classification: $14 \mathrm{P} 10,16 \mathrm{~S} 30,16 \mathrm{~W} 10$.
 Keywords: *-orderings, valuations, rings with involution.
 (c)Canadian Mathematical Society 2007.

