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Abstract

It has been shown by one of the authors that the system of idempotents of monoids on a group
G of Lie type with Dynkin diagram T can be classified by the following data: a partially ordered
set 2/ with maximum element 1 and a map A: ^ —> 2 r with A(l) = V and with the property
that for all J\, J2, J} €%f with J\ < J2 < J3, any connected component of X(J2) is contained in
either X(J\) or A(J$). In this paper we show that X comes from a regular monoid if and only if
the following conditions are satisfied:

(1) % is a A-semilattice;
(2) If J,, J2 € W, then k(Jx) n X(J2) C X{J\ A J2)\
(3) If 0 € T, J € W, then max{y! e W\J\ <J,8e X(Ji)} exists;
(4) If J\,J2 e 2^with J\ < J2 and if A" is a two element discrete subset of k{J\) U X(J2), then

X C X(J) for some J e % with / , < J < J2.

1980 Mathematics subject classification {Amer. Math. Soc.) (1985 Revision): 20 G 99, 20 M 17.

By a Coxeter group W = (W, F) is meant a group W generated by a subset
F of elements of order 2, such that W has a presentation by the relations
(ae)m{o,e) = i, for a, (9 e T. We assume that the rank \T\ < 00. If a, 6 e F,

define a - 6 if m = m{a,d) > 3. In this way T becomes a graph, called the
Coxeter graph of W. Note that a, 6 are not adjacent in the graph if and only
if ad = 0a. It is customary to write a - 6 to mean m — 3, a — 6 to mean
w = 4 and <r = 0 to mean m = 6. The possible graphs for finite H7 were
determined by Coxeter (see [8]). Coxeter groups arise in much of algebra as
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Weyl groups related to root systems. The possible connected Coxeter graphs
are then

Bn or Cn : - • • • • • -

Dn :

These graphs are closely related to the Dynkin diagrams of root systems.
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Let W be a Coxeter group, a eW. Then a — 6\ • • • 6k for some 6\,...,6k

€ F. If k is minimal, then the length l(a) is denned to be k. Coxeter groups
are characterized by Matsumoto's exchange condition [8, Theorem 4.4].

THEOREM (Exchange condition). Let 0\,...,0k e F , a - 6\---6k, l(a) =
k. Ifde T, then either I (da) = k + 1 or else I (da) = k - 1 and da =
8\---df-dic for some i = \,...,k.

REMARK. The exchange condition implies the following.

(i) If 0 i , . . . , 6n € T, a = 0i • • • dn, l(a) = k, then a = 0,, • • • dik for some
/ , < • • • < ik.

( i i ) I f 0 , , . . . , 0 « , 6 [ , . . . , e ' n e r , a = 6 i - d n = d [ - d ' n a n d / ( d ) = n ,
t h e n { 6 i , . . . , 6 H } = { 6 [ , . . . , 0 ' n } .

If / c T, let W, = (I) denote the subgroup of W generated by /. If
/, / ' c T, then lVmr = Wt n Wv and Wt = Wv if and only if / = /'.

Let ̂  be a partially ordered set with maximum element 1, X: % —> 2 r such
that A(l) = T. If J e &, we write Wj for WX(J). Let W(X) = {(J, Wjo)\J e
&,ae W). Define (Ju WJxa) < (J2, Wha) if J\ < J2 and Wjtan Wha ± 0.
Define A to be transitive if < is transitive on W(X). Define X to be regular if
(W(X), <) is a A-semilattice. Then it can be seen [5] that X is transitive if and
only if for all J\,Ji,Ji^^ with J\ > J2 > J3, any connected component of
X(J2) is contained in either X(J\) or X(J^). The main goal of this paper is to
obtain a similarly usable characterization of regularity.

Before proceeding, we explain the motivation for the above considerations.
The basic motivation comes from the theory of linear algebraic monoids ([3],
[4], [6], [7]). It has been shown by L. Renner and one of the authors [8] that
for a connected regular linear algebraic monoid M with zero, the system of
idempotents (biordered set in the sense of Nambooripad [2]) is determined
by a 'type map' X from the finite lattice ^ of principal ideals of M into 2 r ,
where T is the Dynkin diagram of the group of units of M. One of the authors
[5] considered the more general situation of monoids on a group G with a
JJA'-pair. Again the system of idempotents is characterized by a type map
X: % —• 2 r . Moreover it was shown in [5] that an abstract map X: % —> 2 r

arises if and only if it is transitive. It was further shown in [5], that X comes
from a regular monoid on G if and only if X is regular.

For monoids M on a group G of Lie type, the partially ordered ser W(X) is
isomorphic to the partially ordered set of 'diagonal idempotents' of M. We
illustrate with an example. Let G = GL(4, F) where F is a field. Then one
monoid on G is ̂ (F), the monoid of all 4 x 4 matrices over F. In this case
the Weyl group of G is the group ^4 of all 4 x 4 permutation matrices and F
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can be chosen to be

n o o o\
0 1 0 0
0 0 0 1

V0 0 1 07

The graph structure for T is

,02 =

(\ 0 0 0\
0 0 1 0
0 1 0 0
o o o \)

-0,

,03 =

(0 1 0 0\
1 0 0 0
0 0 1 0

yo o o \)

The standard idempotent representatives for matrices in
ranks are given by the linearly ordered set

of different

1 0 0 0>
0 1 0 0
0 0 1 0

1 0 0
0 1 0 0
0 0 0 0

,0 0 0 0,

1 0 0
0 0 0 0
0 0 0 0

,0 0 0 0,
,0

The corresponding regular map X: % —> 2 r is given by k{e) = {0 e T\e6 -
6e}, for all e € ^ . Thus A(7) = T, Afo) = {02,03}, A(«j) = {6>!,6>3}, A(e3) =
{0!, 02} and A(0) = T. The lattice W{X) is a sixteen element Boolean lattice
isomorphic to the lattice of diagonal idempotents of Jt^(F).

We now fix a Coxeter group W = W(T). Before stating the main theorem,
we prove some lemmas.

LEMMA 1. Let a\,...,a^, 0 e V, 6 ^ <?,, / = \,...,k. Let a = o\ • • • a^.

Suppose l(a) = k and ad - O'a for some W € W with I (a) = k and 6 not
appearing in W. Then aid = 0ov for i - \,...,k.

PROOF. We prove this by induction on k. By the exchange condition

(1) a2 • • ak6 = O\6o = 6a'

with I (a1) = k - 1, and 6 does not appear in a'. So by the induction hy-
pothesis, 0<7, = aid for i — 2,..., k. So if o\ e {02, • • •, ak} we are done. So
assume a\ £ {ai,...,ak~\. N o w ~o = uaiV,!? = uv for some / € {2,...,k}.
Since a\ does not appear in the left side of (1), we see that a\ does not ap-
pear in uv = ~a'. Hence o\ = a, and o\duo\V = duv. So aidu = Bua\\ and
hence ua\ = 6o\du. Since 0 does not appear in uo\, we see by the exchange
condition that 6a\6u = O\U. So 0<Ti0 = a\ and 6o\ - ax6. This completes
the proof.

LEMMA 2. Let JX,J2 C T, a e Wh, a e Wh, a £ Wh. Let l(a) = k,
a = a\- • -ak, ai G F. Suppose that a is of minimal length in WJxaWJx and
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that Wj,a n Wj2a~l ^ 0. Then there exists 0 e 7i\72 such that 0<r, = <T,0,
i=l,...,k.

PROOF. We prove this by induction of l(a). By the exchange condition

(2) l(ax) = l(tr) + l(x) = l{xa) for all xeWJr

In particular, l(aa) = l(a) + /(a). Now a a e Wj, Wj2. So by the exchange
condition, aa = uv for some u e Wj, and v e Wj2 such that /(wr;) = l(u) +
/(v). Since a £ Wy2. « ^ 1. So w = 0M] for some u{ e Wj,, d e Ju

/(MI) = /(M) - 1. So K,V = Baa. By (2), /(0<r) = l(a) + 1. So by the
exchange condition, Baa — aa\ for some a\ e WJt with /(c*i) = l(a) - 1. So
aa\ = Uiv e Wjt Wj2. If a\ £ Wj2, we are done, by the induction hypothesis.
So assume a\ e Wj2. Since a £ Wj2, we see that a — aina-i, a\ - aid* with
n e J\\Ji. If n ^ 6 then 7i appears in u\V = aa\, a contradiction. Hence
n = 6 and BaaiBaT, = oaiai. Then doaid = aai. So ffa20 = 0<7a2, 0 does
not appear in aai. We are now done, by Lemma 1.

THEOREM 1. Let % be a partially ordered set with maximum element 1
and let X: % -> 2 r be a transitive map such that A(l) = F. 77ie« A « regular
if and only if

(i) ^ « a A-semilattice,
(ii) i/71, y2 e ^ , f/ien A(/i) n A(72) Q A(/i A 72),

(iii) ifJ e %, 6 e T, rAe« max{/( e &\Ji <J,6& A(/i)} exwte,
(iv) //" 7i, / 2 e %, J\ > Ji and X is a two element discrete subset of

A{Ji) U A(/2), then X c A(/) for some J e % with JX>J> J2.

PROOF. First we prove necessity. So assume that A is regular. So(W(A.),<)
is a A-semilattice. Let Ju J2 e ^ , such that (/,, WJt) A (/2, W/2) = (/, Wya).
Let J' € ^ with /i > / ' , / 2 > / ' . Then (/,, ^ , ) > (/ ' , Wr), i = 1,2. So
(J, Wja) > (J1, Wr). So J > J'. Hence J = / , A/2. Also (J, Wja) > (J, Wj)
whereby Wja = Wj. If 0 e X{JX) n A(/2), then 0 e JF/, n **y2. So (7, fF/0) =
(/,, WAd)A(J2, Wj26) = (7,, PFy,)A(72, ^y2) = (7, ^ ) . Sod&Wj and hence
0 € k(J). This proves (i) and (ii).

Next let 0 € r\X(J), (J, Wj) A (7, WjQ) = (/,, W^.a). So 7i < 7, 0 €
WjWAa,a e Jty.PFy. So 0 e WjWhWj. Since 0 ^ A(7), 0 e A(7,). So
(J, Wj) > (Ju Wj,), (7, Wjd) > (Ju Wj,). SO (/,, Wj,a) > (Ju Wj,) whereby
Wj,a = Wj,. Let 72 e ^ with 0 € A(72). Then (7, Wj) > (J2,Wj2) and
(7, Wj6) > (72, WO-,). So (/,, Wj,) > (J2, WJ2) and hence Jx > 72. This proves
(iii).

Finally we prove (iv). We can assume that X <£ X(JX), X £ A(72). So X =
{0,7r} with n e A(7i)\A(72) 0 € A(72)\A(7i), 07t = nd. Let 7 = max{73|73 <
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Ju 6 € JL(J3)}. Then as above (JuWh) A (Ji,Wjtd) = (/»,**>,)• Since
n e A(/i), (/i, Wy,) > (/2, ^ j ,* ) . Since dn = nO, Wh0 n W^K # 0. So
(/i.fT/,0) > (/2,W/2«), whence (/,FTy) > {J2,Whn). Hence 7 > 72 and
n € WO, PFj. Since n $ k(J2), n e A(/). So (9, TT € k(J).

Conversely assume that (i), (ii), (iii) and (iv) are valid. First we claim that
for any J<E2S,XC T,

(3) max{/! € 2f|/i < 7 J C A(7i)} exists.

We prove this by induction on |.Yj. If X c k(J), there is nothing to prove.
Otherwise there exists 6 e X\X(J). By (iii), JQ = max{/, < J\6 e A(/i)}
exists. By the induction hypothesis, J2 = max{/i < /ol^\{^} Q A.{J\)}
exists. Now J2 < Jo < J, 6 e A(/o), <9 ^ ^(^)- So by transitivity 0 e /l(/2).
S o l e A(/2). Now let Ji < J such that X c k{Ji). Then 0 € X{J{). So
/i < /o and then J\ < J2. Hence (3) holds.

Next we claim that if J\,J2 e ^ , J2 < J\, O\,...,Ok e k{J2), n e k{J\),
then not — OjU, i — \,...,k, implies that there exists / € ^ with

(4) Ji<J<J\, n,ou...,ok£X(J).

We prove this by induction on k. If <r, e X(J\) for all /, there is nothing
to prove. So assume o\ $ A(/i). By condition (iv), there exists 73 e ^ ,
Ji < h < J\ such that 71,0̂  e i(y3). By the induction hypothesis, there
exists J G1^, J2 < J < Ji such that n,a2,...,ok e A(7). Now J < Ji < J\,
O\ € A(/3), <7i ̂  k{J\). So by transitivity cf! e A(/). So w,ffi,...,ojt G X(J).
This proves (4).

Let (Ju Wj^Oi), (J2, Who2) e W(X). We need to show that (/,, WJxox) A
(72, Who2) exists in 3T(A). If n e ff, then (/, WyCT) -• (/, W^CT^) is an
automorphism of W{X). For this reason we need only show that (J\, WJx) A
(J2, Wj2o) exists where a € W is such that it is an element of minimum
length in Wj2aWJr Then by the exchange condition l{Sa) = l(S) 4- l{a),
l(ay) = /(<r) + /(y) for all d € W/2, ye WJx. There exists a maximum
/ , < 7iA72 such that CT€ H^3. We claim that (Ju WJt)A(J2, Wha) = {Jy,Wh).
So let (Ju WJx) > (J4, Wj4a), (J2, Wha) > (/4, Wj4a). We can assume that a
is of minimum length in Wj4a. Now a e WJ4WJ^ and hence a e ff},. Also
a € Wj2WJta C WjjWj^Wj,. Hence <r e PFy4. Therefore / 4 < 73. There exists
w € WJA, v e W 2̂ such that ua = va. So u = vaa~x € WhWhWjK n Wj4.
By the exchange condition u = abc for some a e Jfy2 n WJt, b 6 H7^ n Wj4,
ceWAn Wj4. Now

(5) (Jif WJ}ca) > (J,, WAca) = (J,, Wj4a).
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Also,

= (/j , Whbca) < (J2, Wj2bca)

(6) - (J2, Wj2abca) = (J2, Wj.ua) = (J2, Whva)

= (J2, Who).

Moreover

(7) (J3, Whca) < (/,, WJlCa) = (/,, Wh)

By (5), (6) and (7), it is clear that without loss of generality we can assume
that / 3 = J4.

First we consider the case J\ — J2. We assume a £ WJt and obtain a
c o n t r a d i c t i o n . L e t l{a) = k, a — a\- -ak, at e F . T h e n <j\,..., ak e k ( J $ ) ,
a G WJr By Lemma 1 there exists 8 e A(/!)\/l(/3) such that dot — Ojd,
i — \,...,k. By (4), there exists / e ^ , J3 < J < Jx such that au...,ak,
6 G X{J). So a e Wj and / = 73. So 6 e A(/3), a contradiction.

Next we consider the case where J\ > J2. Since a e WJ{, we have
(/3, »>,«) < (/2, ^ 2 « ) < (/1, Wj,). Also a € WhWho C WhWhWh. Since
a is of minimum length in W}ja, a e Wj2WJy So (/3, W 3̂) < (/2, Wj2a).
By the above, (72, Wha) A (/2, Wy2a) = (Jo, WJ<SP) exists. Then (70, WJofi) <
(h,Wha), (J0,WjJ) < (JuWJt). So as before a e H^o. Hence 73 > Jo.
But (70, »0b^) > (Ji, Wh) and (70, ^0J») > W, Wha). So / 3 = Jo and
^ 3 = WjJ = Wj3a.

Finally we consider the general case. Now a € W^Wj.o C WJ}WJ2WJ3.

Since a is of minimum length in lVJ}a, a e Jf>2 Wj2. Since also a € WJx we see
by the exchange condition that a — ab for some a sW^n Wj2, b e ^ n W}3.
Let / = /1 A /2- Then a e » } by (ii). Now WA n »>, c H ,̂. So (7, H^a) =
(/, Wjb) < (/,, Wh). Also (/, Wya) = (/, Wjb) > (/3, »>,), (/>, ^ , « ) . Since
72 > J, we see by the above that {J2, Wha) A {J, Wja) = (Jo, Whfi) exists.
Then (Jo, WjJ) < (/,, »>,), (/2, »>2ff). So as above a € Wh. Hence Jo < J3.
But (Jo, WjJ) > (J3, Wh),(J3, Wj,a). So Jo = J3 and WjJ = Wh = Wha.
This completes the proof of sufficiency.

COROLLARY 1. If% is a finite linearly ordered set, then a transitive map k
is regular if and only if for all Ji,J2€%?, X a two element discrete subset of
X(J\) U X(J2), X c X(J) for some J between J\ and J2.

If A: ^ -* 2 r , X C T, then let kx: % -• 2X where for / G ^ , Ax(7) =

COROLARY 2. Le< % be a partially ordered set with a maximum element
1 and let A: ^ —* 2 r 6e 5MC/J fAaf A(l) = F. TAe« A w transitive (respectively
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regular) if and only if kx is transitive (respectively regular) for all rank < 2
subgraphs X ofT.

In [1] a universal transitive map u: U(F) —> 2 r was constructed. It has the
property that for any transitive map A: ^ —> 2r , there is an order preserving
map y: %/ -> U(F) such that X - u o y. The partially ordered set U = U(F)
was constructed as follows:

U = U(F) = {(A,B)\A,B e2r , AnB = 0

and each connected component of A u B

is either contained in A or contained in B}.

For {A,B),(A',B') € U we define (v4,5) < (^' ,5') if A C A' and 5 ' C fi.
Then (U, <) is a distributive lattice with (A, B) V (A1, B') = {A\JB,BC\ B')
and {A, B) A (^', B') = (AnA',Bl) B').

COROLLARY 3. The map u: U(F) -• 2r, where u(A,B) = AuB, is regular.

PROOF. Clearly U(F) is a A-semilattice. Let J{ = (AltBi), J2 = (A2,B2) e
U(F). Then

u(Jx) n M(72) = {Ax U 5,) n (^2 U B2)

= (Ai n ^2) u (^1 n B2) u (5, n A2) U ( 5 I n 52)

C (Ai n ^ 2 ) U 5 i U 5 2

= u(Ji A J2).

Take any 7 = (A,B) e U(F) and 6 e F. Then max{/' e U(F)|/ ' < / , ^ e
M(7')} = V { / ' G U(F)|7' < 7,6 G «(/ ')} exists since U(F) is a finite lattice.

Let J\ - [A\,B\)> J2 = (A2,B2) and I b e a 2-element discrete subset of
F such that

X C u(Ji) U u(J2) = ( ^ i U 5 i ) U ( ^ 2 U B2) =AlU B2.

Then X = (X n Ai) I) (X\Ai) with X\Ai C 52 . Take / = (C,D) where
C = ^ 2 U ( I n ^ i ) , D = Bi U(X\Ai). Then CnZ) = 0 . Now B{ C 5 2 and
X is discrete. So every connected component of C U D is contained in C or
in D. Thus / 6 U(F). Also J\> J > J2 and X c M(7). This completes the
proof.

https://doi.org/10.1017/S1446788700031748 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031748


[9] Maps into Dynkin diagrams arising from regular monoids 321

References

[1] K. C. Misra, M. S. Putcha and D. S. Singh, 'Transitive maps from posets to Dynkin
diagrams', to appear.

[2] K. S. S. Nambooripad, 'Structure of regular semigroups I.', Mem. Amer. Math. Soc. 224
(1979).

[3] M. S. Putcha, 'A semigroup approach to linear algebraic groups', J. Algebra 80 (1983),
164-185.

[4] , Linear Algebraic Monoids, (London Math. Soc. Lecture Note Series, No. 133, Cam-
bridge Univ. Press, 1988).

[5] , 'Monoids on groups with BN-pairs', J. Algebra 120 (1989), 139-169.
[6] M. S. Putcha and L. E. Renner, 'The system of idempotents and the lattices of ^-classes

of reductive algebraic monoids', /. Algebra 116 (1988), 385-399.
[7] L. E. Renner, 'Analogue of the Bruhat decomposition for algebraic monoids', J. Algebra

101 (1986), 303-338.
[8] M. Suzuki, Group Theory I, (Springer-Verlag, 1982).

Department of Mathematics
North Carolina State University
Raleigh, North Carolina 27695-8205
U.S.A.

https://doi.org/10.1017/S1446788700031748 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031748

