MAPS INTO DYNKIN DIAGRAMS ARISING FROM REGULAR MONOIDS

M. K. AUGUSTINE and MOHAN S. PUTCHA

(Received 22 April 1988)

Communicated by T. E. Hall

Abstract

It has been shown by one of the authors that the system of idempotents of monoids on a group G of Lie type with Dynkin diagram Γ can be classified by the following data: a partially ordered set \mathscr{U} with maximum element 1 and a map $\lambda: \mathscr{U} \to 2^{\Gamma}$ with $\lambda(1) = \Gamma$ and with the property that for all $J_1, J_2, J_3 \in \mathscr{U}$ with $J_1 < J_2 < J_3$, any connected component of $\lambda(J_2)$ is contained in either $\lambda(J_1)$ or $\lambda(J_3)$. In this paper we show that λ comes from a regular monoid if and only if the following conditions are satisfied:

(1) \mathscr{U} is a \wedge -semilattice;

(2) If $J_1, J_2 \in \mathscr{U}$, then $\lambda(J_1) \cap \lambda(J_2) \subseteq \lambda(J_1 \wedge J_2)$;

(3) If $\theta \in \Gamma$, $J \in \mathcal{U}$, then max{ $J_1 \in \mathcal{U} | J_1 \leq J, \theta \in \lambda(J_1)$ } exists;

(4) If $J_1, J_2 \in \mathscr{U}$ with $J_1 < J_2$ and if X is a two element discrete subset of $\lambda(J_1) \cup \lambda(J_2)$, then $X \subseteq \lambda(J)$ for some $J \in \mathscr{U}$ with $J_1 \leq J \leq J_2$.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 G 99, 20 M 17.

By a Coxeter group $W = (W, \Gamma)$ is meant a group W generated by a subset Γ of elements of order 2, such that W has a presentation by the relations $(\sigma\theta)^{m(\sigma,\theta)} = 1$, for $\sigma, \theta \in \Gamma$. We assume that the rank $|\Gamma| < \infty$. If $\sigma, \theta \in \Gamma$, define $\sigma \stackrel{m}{-} \theta$ if $m = m(\sigma, \theta) \ge 3$. In this way Γ becomes a graph, called the Coxeter graph of W. Note that σ, θ are not adjacent in the graph if and only if $\sigma\theta = \theta\sigma$. It is customary to write $\sigma - \theta$ to mean m = 3, $\sigma = \theta$ to mean m = 4 and $\sigma \equiv \theta$ to mean m = 6. The possible graphs for finite W were determined by Coxeter (see [8]). Coxeter groups arise in much of algebra as

^{© 1989} Australian Mathematical Society 0263-6115/89 \$A2.00 + 0.00

Weyl groups related to root systems. The possible connected Coxeter graphs are then

These graphs are closely related to the Dynkin diagrams of root systems.

Let W be a Coxeter group, $\sigma \in W$. Then $\sigma = \theta_1 \cdots \theta_k$ for some $\theta_1, \ldots, \theta_k \in \Gamma$. If k is minimal, then the *length* $l(\sigma)$ is defined to be k. Coxeter groups are characterized by Matsumoto's exchange condition [8, Theorem 4.4].

THEOREM (Exchange condition). Let $\theta_1, \ldots, \theta_k \in \Gamma$, $\sigma = \theta_1 \cdots \theta_k$, $l(\sigma) = k$. If $\theta \in \Gamma$, then either $l(\theta\sigma) = k + 1$ or else $l(\theta\sigma) = k - 1$ and $\theta\sigma = \theta_1 \cdots \hat{\theta}_i \cdots \theta_k$ for some $i = 1, \ldots, k$.

REMARK. The exchange condition implies the following.

- (i) If $\theta_1, \ldots, \theta_n \in \Gamma$, $\sigma = \theta_1 \cdots \theta_n$, $l(\sigma) = k$, then $\sigma = \theta_{i_1} \cdots \theta_{i_k}$ for some $i_1 < \cdots < i_k$.
- (ii) If $\theta_1, \ldots, \theta_n$, $\theta'_1, \ldots, \theta'_n \in \Gamma$, $\sigma = \theta_1 \cdots \theta_n = \theta'_1 \cdots \theta'_n$ and $l(\sigma) = n$, then $\{\theta_1, \ldots, \theta_n\} = \{\theta'_1, \ldots, \theta'_n\}$.

If $I \subseteq \Gamma$, let $W_I = \langle I \rangle$ denote the subgroup of W generated by I. If $I, I' \subseteq \Gamma$, then $W_{I \cap I'} = W_I \cap W_{I'}$ and $W_I = W_{I'}$ if and only if I = I'.

Let \mathscr{U} be a partially ordered set with maximum element $1, \lambda: \mathscr{U} \to 2^{\Gamma}$ such that $\lambda(1) = \Gamma$. If $J \in \mathscr{U}$, we write W_J for $W_{\lambda(J)}$. Let $\mathscr{W}(\lambda) = \{(J, W_J \sigma) | J \in \mathscr{U}, \sigma \in W\}$. Define $(J_1, W_{J_1} \sigma) \leq (J_2, W_{J_2} \alpha)$ if $J_1 \leq J_2$ and $W_{J_1} \sigma \cap W_{J_2} \alpha \neq \emptyset$. Define λ to be *transitive* if \leq is transitive on $\mathscr{W}(\lambda)$. Define λ to be *regular* if $(\mathscr{W}(\lambda), \leq)$ is a \wedge -semilattice. Then it can be seen [5] that λ is transitive if and only if for all $J_1, J_2, J_3 \in \mathscr{U}$ with $J_1 \geq J_2 \geq J_3$, any connected component of $\lambda(J_2)$ is contained in either $\lambda(J_1)$ or $\lambda(J_3)$. The main goal of this paper is to obtain a similarly usable characterization of regularity.

Before proceeding, we explain the motivation for the above considerations. The basic motivation comes from the theory of linear algebraic monoids ([3], [4], [6], [7]). It has been shown by L. Renner and one of the authors [8] that for a connected regular linear algebraic monoid M with zero, the system of idempotents (biordered set in the sense of Nambooripad [2]) is determined by a 'type map' λ from the finite lattice \mathscr{U} of principal ideals of M into 2^{Γ} , where Γ is the Dynkin diagram of the group of units of M. One of the authors [5] considered the more general situation of monoids on a group G with a BN-pair. Again the system of idempotents is characterized by a type map $\lambda: \mathscr{U} \to 2^{\Gamma}$. Moreover it was shown in [5] that an abstract map $\lambda: \mathscr{U} \to 2^{\Gamma}$ arises if and only if it is transitive. It was further shown in [5], that λ comes from a regular monoid on G if and only if λ is regular.

For monoids M on a group G of Lie type, the partially ordered ser $\mathscr{W}(\lambda)$ is isomorphic to the partially ordered set of 'diagonal idempotents' of M. We illustrate with an example. Let G = GL(4, F) where F is a field. Then one monoid on G is $\mathscr{M}_4(F)$, the monoid of all 4×4 matrices over F. In this case the Weyl group of G is the group S_4 of all 4×4 permutation matrices and Γ can be chosen to be

$$\Gamma = \left\{ \theta_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \theta_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \theta_3 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}.$$

The graph structure for Γ is

$$\theta_1 - \theta_2 - \theta_3$$

The standard idempotent representatives for matrices in $\mathcal{M}_4(F)$ of different ranks are given by the linearly ordered set

The corresponding regular map $\lambda: \mathcal{U} \to 2^{\Gamma}$ is given by $\lambda(e) = \{\theta \in \Gamma | e\theta = \theta e\}$, for all $e \in \mathcal{U}$. Thus $\lambda(I) = \Gamma$, $\lambda(e_1) = \{\theta_2, \theta_3\}$, $\lambda(e_2) = \{\theta_1, \theta_3\}$, $\lambda(e_3) = \{\theta_1, \theta_2\}$ and $\lambda(0) = \Gamma$. The lattice $\mathcal{W}(\lambda)$ is a sixteen element Boolean lattice isomorphic to the lattice of diagonal idempotents of $\mathcal{M}_4(F)$.

We now fix a Coxeter group $W = W(\Gamma)$. Before stating the main theorem, we prove some lemmas.

LEMMA 1. Let $\sigma_1, \ldots, \sigma_k$, $\theta \in \Gamma$, $\theta \neq \sigma_i$, $i = 1, \ldots, k$. Let $\sigma = \sigma_1 \cdots \sigma_k$. Suppose $l(\sigma) = k$ and $\sigma \theta = \theta \overline{\sigma}$ for some $\overline{\sigma} \in W$ with $l(\overline{\sigma}) = k$ and θ not appearing in $\overline{\sigma}$. Then $\sigma_i \theta = \theta \sigma_i$ for $i = 1, \ldots, k$.

PROOF. We prove this by induction on k. By the exchange condition

(1)
$$\sigma_2 \cdots \sigma_k \theta = \sigma_1 \theta \overline{\sigma} = \theta \overline{\sigma}'$$

with $l(\overline{\sigma}') = k - 1$, and θ does not appear in $\overline{\sigma}'$. So by the induction hypothesis, $\theta\sigma_i = \sigma_i\theta$ for i = 2, ..., k. So if $\sigma_1 \in \{\sigma_2, ..., \sigma_k\}$ we are done. So assume $\sigma_1 \notin \{\sigma_2, ..., \sigma_k\}$. Now $\overline{\sigma} = u\sigma_i v, \overline{\sigma}' = uv$ for some $i \in \{2, ..., k\}$. Since σ_1 does not appear in the left side of (1), we see that σ_1 does not appear in $uv = \overline{\sigma}'$. Hence $\sigma_1 = \sigma_i$ and $\sigma_1\theta u\sigma_1 v = \theta uv$. So $\sigma_1\theta u = \theta u\sigma_1$; and hence $u\sigma_1 = \theta\sigma_1\theta u$. Since θ does not appear in $u\sigma_1$, we see by the exchange condition that $\theta\sigma_1\theta u = \sigma_1 u$. So $\theta\sigma_1\theta = \sigma_1$ and $\theta\sigma_1 = \sigma_1\theta$. This completes the proof.

LEMMA 2. Let $J_1, J_2 \subseteq \Gamma$, $\sigma \in W_{J_2}$, $\alpha \in W_{J_1}$, $\alpha \notin W_{J_2}$. Let $l(\sigma) = k$, $\sigma = \sigma_1 \cdots \sigma_k$, $\sigma_i \in \Gamma$. Suppose that σ is of minimal length in $W_{J_1} \sigma W_{J_1}$ and that $W_{J_1}\sigma \cap W_{J_2}\alpha^{-1} \neq \emptyset$. Then there exists $\theta \in J_1 \setminus J_2$ such that $\theta \sigma_i = \sigma_i \theta$, i = 1, ..., k.

PROOF. We prove this by induction of $l(\alpha)$. By the exchange condition

(2)
$$l(\sigma x) = l(\sigma) + l(x) = l(x\sigma)$$
 for all $x \in W_{J_1}$.

In particular, $l(\sigma\alpha) = l(\sigma) + l(\alpha)$. Now $\sigma\alpha \in W_{J_1}W_{J_2}$. So by the exchange condition, $\sigma\alpha = uv$ for some $u \in W_{J_1}$ and $v \in W_{J_2}$ such that l(uv) = l(u) + l(v). Since $\alpha \notin W_{J_2}$, $u \neq 1$. So $u = \theta u_1$ for some $u_1 \in W_{J_1}$, $\theta \in J_1$, $l(u_1) = l(u) - 1$. So $u_1v = \theta\sigma\alpha$. By (2), $l(\theta\sigma) = l(\sigma) + 1$. So by the exchange condition, $\theta\sigma\alpha = \sigma\alpha_1$ for some $\alpha_1 \in W_{J_1}$ with $l(\alpha_1) = l(\alpha) - 1$. So $\sigma\alpha_1 = u_1v \in W_{J_1}W_{J_2}$. If $\alpha_1 \notin W_{J_2}$, we are done, by the induction hypothesis. So assume $\alpha_1 \in W_{J_2}$. Since $\alpha \notin W_{J_2}$, we see that $\alpha = \alpha_2\pi\alpha_3$, $\alpha_1 = \alpha_2\alpha_3$ with $\pi \in J_1 \setminus J_2$. If $\pi \neq \theta$ then π appears in $u_1v = \sigma\alpha_1$, a contradiction. Hence $\pi = \theta$ and $\theta\sigma\alpha_2\theta\alpha_3 = \sigma\alpha_2\alpha_3$. Then $\theta\sigma\alpha_2\theta = \sigma\alpha_2$. So $\sigma\alpha_2\theta = \theta\sigma\alpha_2$, θ does not appear in $\sigma\alpha_2$. We are now done, by Lemma 1.

THEOREM 1. Let \mathscr{U} be a partially ordered set with maximum element 1 and let $\lambda: \mathscr{U} \to 2^{\Gamma}$ be a transitive map such that $\lambda(1) = \Gamma$. Then λ is regular if and only if

(i) \mathcal{U} is a \wedge -semilattice,

[5]

- (ii) if $J_1, J_2 \in \mathcal{U}$, then $\lambda(J_1) \cap \lambda(J_2) \subseteq \lambda(J_1 \wedge J_2)$,
- (iii) if $J \in \mathcal{U}$, $\theta \in \Gamma$, then max $\{J_1 \in \mathcal{U} | J_1 \leq J, \theta \in \lambda(J_1)\}$ exists,
- (iv) if $J_1, J_2 \in \mathcal{U}$, $J_1 \ge J_2$ and X is a two element discrete subset of $\lambda(J_1) \cup \lambda(J_2)$, then $X \subseteq \lambda(J)$ for some $J \in \mathcal{U}$ with $J_1 \ge J \ge J_2$.

PROOF. First we prove necessity. So assume that λ is regular. So $(\mathscr{W}(\lambda), \leq)$ is a \wedge -semilattice. Let $J_1, J_2 \in \mathscr{U}$, such that $(J_1, W_{J_1}) \wedge (J_2, W_{J_2}) = (J, W_J \alpha)$. Let $J' \in \mathscr{U}$ with $J_1 \geq J', J_2 \geq J'$. Then $(J_i, W_{J_i}) \geq (J', W_{J'}), i = 1, 2$. So $(J, W_J \alpha) \geq (J', W_{J'})$. So $J \geq J'$. Hence $J = J_1 \wedge J_2$. Also $(J, W_J \alpha) \geq (J, W_J)$ whereby $W_J \alpha = W_J$. If $\theta \in \lambda(J_1) \cap \lambda(J_2)$, then $\theta \in W_{J_1} \cap W_{J_2}$. So $(J, W_J \theta) = (J_1, W_{J_1} \theta) \wedge (J_2, W_{J_2} \theta) = (J_1, W_{J_1}) \wedge (J_2, W_{J_2}) = (J, W_J)$. So $\theta \in W_J$ and hence $\theta \in \lambda(J)$. This proves (i) and (ii).

Next let $\theta \in \Gamma \setminus \lambda(J)$, $(J, W_J) \wedge (J, W_J \theta) = (J_1, W_{J_1} \alpha)$. So $J_1 \leq J$, $\theta \in W_J W_{J_1} \alpha, \alpha \in W_{J_1} W_J$. So $\theta \in W_J W_{J_1} W_J$. Since $\theta \notin \lambda(J)$, $\theta \in \lambda(J_1)$. So $(J, W_J) \geq (J_1, W_{J_1})$, $(J, W_J \theta) \geq (J_1, W_{J_1})$. So $(J_1, W_{J_1} \alpha) \geq (J_1, W_{J_1})$ whereby $W_{J_1} \alpha = W_{J_1}$. Let $J_2 \in \mathscr{U}$ with $\theta \in \lambda(J_2)$. Then $(J, W_J) \geq (J_2, W_{J_2})$ and $(J, W_J \theta) \geq (J_2, W_{J_2})$. So $(J_1, W_{J_1}) \geq (J_2, W_{J_2})$ and hence $J_1 \geq J_2$. This proves (iii).

Finally we prove (iv). We can assume that $X \notin \lambda(J_1)$, $X \notin \lambda(J_2)$. So $X = \{\theta, \pi\}$ with $\pi \in \lambda(J_1) \setminus \lambda(J_2)$ $\theta \in \lambda(J_2) \setminus \lambda(J_1)$, $\theta \pi = \pi \theta$. Let $J = \max\{J_3 | J_3 \leq I_3\}$

 $J_1, \theta \in \lambda(J_3)$ }. Then as above $(J_1, W_{J_1}) \wedge (J_1, W_{J_1}\theta) = (J_3, W_{J_3})$. Since $\pi \in \lambda(J_1), (J_1, W_{J_1}) \ge (J_2, W_{J_2}\pi)$. Since $\theta \pi = \pi \theta, W_{J_1}\theta \cap W_{J_2}\pi \neq \emptyset$. So $(J_1, W_{J_1}\theta) \ge (J_2, W_{J_2}\pi)$, whence $(J, W_J) \ge (J_2, W_{J_2}\pi)$. Hence $J \ge J_2$ and $\pi \in W_{J_2}W_J$. Since $\pi \notin \lambda(J_2), \pi \in \lambda(J)$. So $\theta, \pi \in \lambda(J)$.

Conversely assume that (i), (ii), (iii) and (iv) are valid. First we claim that for any $J \in \mathcal{U}$, $X \subseteq \Gamma$,

(3)
$$\max\{J_1 \in \mathcal{U} | J_1 \le J, X \subseteq \lambda(J_1)\} \text{ exists}$$

We prove this by induction on |X|. If $X \subseteq \lambda(J)$, there is nothing to prove. Otherwise there exists $\theta \in X \setminus \lambda(J)$. By (iii), $J_0 = \max\{J_1 \leq J | \theta \in \lambda(J_1)\}$ exists. By the induction hypothesis, $J_2 = \max\{J_1 \leq J_0 | X \setminus \{\theta\} \subseteq \lambda(J_1)\}$ exists. Now $J_2 \leq J_0 \leq J$, $\theta \in \lambda(J_0)$, $\theta \notin \lambda(J)$. So by transitivity $\theta \in \lambda(J_2)$. So $X \subseteq \lambda(J_2)$. Now let $J_1 \leq J$ such that $X \subseteq \lambda(J_1)$. Then $\theta \in \lambda(J_1)$. So $J_1 \leq J_0$ and then $J_1 \leq J_2$. Hence (3) holds.

Next we claim that if $J_1, J_2 \in \mathcal{U}, J_2 \leq J_1, \sigma_1, \ldots, \sigma_k \in \lambda(J_2), \pi \in \lambda(J_1)$, then $\pi \sigma_i = \sigma_i \pi, i = 1, \ldots, k$, implies that there exists $J \in \mathcal{U}$ with

(4)
$$J_2 \leq J \leq J_1, \quad \pi, \sigma_1, \ldots, \sigma_k \in \lambda(J).$$

We prove this by induction on k. If $\sigma_i \in \lambda(J_1)$ for all *i*, there is nothing to prove. So assume $\sigma_1 \notin \lambda(J_1)$. By condition (iv), there exists $J_3 \in \mathcal{U}$, $J_2 \leq J_3 \leq J_1$ such that $\pi, \sigma_1 \in \lambda(J_3)$. By the induction hypothesis, there exists $J \in \mathcal{U}$, $J_2 \leq J \leq J_3$ such that $\pi, \sigma_2, \ldots, \sigma_k \in \lambda(J)$. Now $J \leq J_3 \leq J_1$, $\sigma_1 \in \lambda(J_3), \sigma_1 \notin \lambda(J_1)$. So by transitivity $\sigma_1 \in \lambda(J)$. So $\pi, \sigma_1, \ldots, \sigma_k \in \lambda(J)$. This proves (4).

Let $(J_1, W_{J_1}\sigma_1)$, $(J_2, W_{J_2}\sigma_2) \in \mathscr{W}(\lambda)$. We need to show that $(J_1, W_{J_1}\sigma_1) \land (J_2, W_{J_2}\sigma_2)$ exists in $\mathscr{W}(\lambda)$. If $\pi \in W$, then $(J, W_J\sigma) \to (J, W_J\sigma\pi)$ is an automorphism of $\mathscr{W}(\lambda)$. For this reason we need only show that $(J_1, W_{J_1}) \land (J_2, W_{J_2}\sigma)$ exists where $\sigma \in W$ is such that it is an element of minimum length in $W_{J_2}\sigma W_{J_1}$. Then by the exchange condition $l(\delta\sigma) = l(\delta) + l(\sigma)$, $l(\sigma\gamma) = l(\sigma) + l(\gamma)$ for all $\delta \in W_{J_2}$, $\gamma \in W_{J_1}$. There exists a maximum $J_3 \leq J_1 \land J_2$ such that $\sigma \in W_{J_3}$. We claim that $(J_1, W_{J_1}) \land (J_2, W_{J_2}\sigma) = (J_3, W_{J_3})$. So let $(J_1, W_{J_1}) \geq (J_4, W_{J_4}\alpha)$, $(J_2, W_{J_2}\sigma) \geq (J_4, W_{J_4}\alpha)$. We can assume that α is of minimum length in $W_{J_4}\alpha$. Now $\alpha \in W_{J_4}W_{J_1}$ and hence $\alpha \in W_{J_1}$. Also $\sigma \in W_{J_2}W_{J_4}\alpha \subseteq W_{J_2}W_{J_4}W_{J_1}$. Hence $\sigma \in W_{J_4}$. Therefore $J_4 \leq J_3$. There exists $u \in W_{J_4}$, $v \in W_{J_2}$ such that $u\alpha = v\sigma$. So $u = v\sigma\alpha^{-1} \in W_{J_2}W_{J_3}W_{J_1} \cap W_{J_4}$. By the exchange condition u = abc for some $a \in W_{J_2} \cap W_{J_4}$, $b \in W_{J_3} \cap W_{J_4}$, $c \in W_{J_1} \cap W_{J_4}$. Now

(5)
$$(J_3, W_{J_3}c\alpha) \ge (J_4, W_{J_4}c\alpha) = (J_4, W_{J_4}\alpha).$$

Also,

(6)

$$(J_{3}, W_{J_{3}}c\alpha) = (J_{3}, W_{J_{3}}bc\alpha) \le (J_{2}, W_{J_{2}}bc\alpha)$$

$$= (J_{2}, W_{J_{2}}abc\alpha) = (J_{2}, W_{J_{2}}u\alpha) = (J_{2}, W_{J_{2}}v\sigma)$$

$$= (J_{2}, W_{J_{3}}\sigma).$$

Moreover

(7)
$$(J_3, W_{J_1} c\alpha) \le (J_1, W_{J_1} c\alpha) = (J_1, W_{J_1})$$

By (5), (6) and (7), it is clear that without loss of generality we can assume that $J_3 = J_4$.

First we consider the case $J_1 = J_2$. We assume $\alpha \notin W_{J_3}$ and obtain a contradiction. Let $l(\sigma) = k$, $\sigma = \sigma_1 \cdots \sigma_k$, $\sigma_i \in \Gamma$. Then $\sigma_1, \ldots, \sigma_k \in \lambda(J_3)$, $\alpha \in W_{J_1}$. By Lemma 1 there exists $\theta \in \lambda(J_1) \setminus \lambda(J_3)$ such that $\theta \sigma_i = \sigma_i \theta$, $i = 1, \ldots, k$. By (4), there exists $J \in \mathcal{U}$, $J_3 \leq J \leq J_1$ such that $\sigma_1, \ldots, \sigma_k$, $\theta \in \lambda(J)$. So $\sigma \in W_J$ and $J = J_3$. So $\theta \in \lambda(J_3)$, a contradiction.

Next we consider the case where $J_1 \geq J_2$. Since $\alpha \in W_{J_1}$, we have $(J_3, W_{J_3}\alpha) \leq (J_2, W_{J_2}\alpha) \leq (J_1, W_{J_1})$. Also $\alpha \in W_{J_3}W_{J_2}\sigma \subseteq W_{J_3}W_{J_2}W_{J_3}$. Since α is of minimum length in $W_{J_3}\alpha$, $\alpha \in W_{J_2}W_{J_3}$. So $(J_3, W_{J_3}) \leq (J_2, W_{J_2}\alpha)$. By the above, $(J_2, W_{J_2}\sigma) \wedge (J_2, W_{J_2}\alpha) = (J_0, W_{J_0}\beta)$ exists. Then $(J_0, W_{J_0}\beta) \leq (J_2, W_{J_2}\sigma)$, $(J_0, W_{J_0}\beta) \leq (J_1, W_{J_1})$. So as before $\sigma \in W_{J_0}$. Hence $J_3 \geq J_0$. But $(J_0, W_{J_0}\beta) \geq (J_3, W_{J_3})$ and $(J_0, W_{J_0}\beta) \geq (J_3, W_{J_3}\alpha)$. So $J_3 = J_0$ and $W_{J_3} = W_{J_3}\beta = W_{J_3}\alpha$.

Finally we consider the general case. Now $\alpha \in W_{J_3}W_{J_2}\sigma \subseteq W_{J_3}W_{J_2}W_{J_3}$. Since α is of minimum length in $W_{J_3}\alpha$, $\alpha \in W_{J_2}W_{J_3}$. Since also $\alpha \in W_{J_1}$ we see by the exchange condition that $\alpha = ab$ for some $a \in W_{J_1} \cap W_{J_2}$, $b \in W_{J_1} \cap W_{J_3}$. Let $J = J_1 \wedge J_2$. Then $a \in W_J$ by (ii). Now $W_{J_1} \cap W_{J_2} \subseteq W_J$. So $(J, W_J\alpha) =$ $(J, W_J b) \leq (J_1, W_{J_1})$. Also $(J, W_J \alpha) = (J, W_J b) \geq (J_3, W_{J_3}), (J_3, W_{J_3}\alpha)$. Since $J_2 \geq J$, we see by the above that $(J_2, W_{J_2}\sigma) \wedge (J, W_J\alpha) = (J_0, W_{J_0}\beta)$ exists. Then $(J_0, W_{J_0}\beta) \leq (J_1, W_{J_1}), (J_2, W_{J_2}\sigma)$. So as above $\sigma \in W_{J_0}$. Hence $J_0 \leq J_3$. But $(J_0, W_{J_0}\beta) \geq (J_3, W_{J_3}), (J_3, W_{J_3}\alpha)$. So $J_0 = J_3$ and $W_{J_0}\beta = W_{J_3} = W_{J_3}\alpha$. This completes the proof of sufficiency.

COROLLARY 1. If \mathscr{U} is a finite linearly ordered set, then a transitive map λ is regular if and only if for all $J_1, J_2 \in \mathscr{U}$, X a two element discrete subset of $\lambda(J_1) \cup \lambda(J_2)$, $X \subseteq \lambda(J)$ for some J between J_1 and J_2 .

If $\lambda: \mathscr{U} \to 2^{\Gamma}$, $X \subseteq \Gamma$, then let $\lambda_X: \mathscr{U} \to 2^X$ where for $J \in \mathscr{U}$, $\lambda_X(J) = \lambda(J) \cap X$.

COROLARY 2. Let \mathscr{U} be a partially ordered set with a maximum element 1 and let $\lambda: \mathscr{U} \to 2^{\Gamma}$ be such that $\lambda(1) = \Gamma$. Then λ is transitive (respectively

regular) if and only if λ_X is transitive (respectively regular) for all rank ≤ 2 subgraphs X of Γ .

In [1] a universal transitive map $u: U(\Gamma) \to 2^{\Gamma}$ was constructed. It has the property that for any transitive map $\lambda: \mathscr{U} \to 2^{\Gamma}$, there is an order preserving map $\gamma: \mathscr{U} \to U(\Gamma)$ such that $\lambda = u \circ \gamma$. The partially ordered set $U = U(\Gamma)$ was constructed as follows:

 $\mathbf{U} = \mathbf{U}(\Gamma) = \{(A, B) | A, B \in 2^{\Gamma}, A \cap B = \emptyset$ and each connected component of $A \cup B$ is either contained in A or contained in B}.

For $(A, B), (A', B') \in U$ we define $(A, B) \leq (A', B')$ if $A \subseteq A'$ and $B' \subseteq B$. Then (U, \leq) is a distributive lattice with $(A, B) \vee (A', B') = (A \cup B, B \cap B')$ and $(A, B) \wedge (A', B') = (A \cap A', B \cup B')$.

COROLLARY 3. The map $u: U(\Gamma) \to 2^{\Gamma}$, where $u(A, B) = A \cup B$, is regular.

PROOF. Clearly $U(\Gamma)$ is a \wedge -semilattice. Let $J_1 = (A_1, B_1), J_2 = (A_2, B_2) \in U(\Gamma)$. Then

$$u(J_1) \cap u(J_2) = (A_1 \cup B_1) \cap (A_2 \cup B_2)$$

= $(A_1 \cap A_2) \cup (A_1 \cap B_2) \cup (B_1 \cap A_2) \cup (B_1 \cap B_2)$
 $\subseteq (A_1 \cap A_2) \cup B_1 \cup B_2$
= $u(J_1 \wedge J_2).$

Take any $J = (A, B) \in U(\Gamma)$ and $\theta \in \Gamma$. Then $\max\{J' \in U(\Gamma) | J' \leq J, \theta \in u(J')\} = \bigvee\{J' \in U(\Gamma) | J' \leq J, \theta \in u(J')\}$ exists since $U(\Gamma)$ is a finite lattice.

Let $J_1 = (A_1, B_1) \ge J_2 = (A_2, B_2)$ and X be a 2-element discrete subset of Γ such that

$$X \subseteq u(J_1) \cup u(J_2) = (A_1 \cup B_1) \cup (A_2 \cup B_2) = A_1 \cup B_2.$$

Then $X = (X \cap A_1) \cup (X \setminus A_1)$ with $X \setminus A_1 \subseteq B_2$. Take J = (C, D) where $C = A_2 \cup (X \cap A_1)$, $D = B_1 \cup (X \setminus A_1)$. Then $C \cap D = \emptyset$. Now $B_1 \subseteq B_2$ and X is discrete. So every connected component of $C \cup D$ is contained in C or in D. Thus $J \in U(\Gamma)$. Also $J_1 \ge J \ge J_2$ and $X \subseteq u(J)$. This completes the proof.

References

- [1] K. C. Misra, M. S. Putcha and D. S. Singh, 'Transitive maps from posets to Dynkin diagrams', to appear.
- [2] K. S. S. Nambooripad, 'Structure of regular semigroups I.', Mem. Amer. Math. Soc. 224 (1979).
- [3] M. S. Putcha, 'A semigroup approach to linear algebraic groups', J. Algebra 80 (1983), 164-185.
- [4] ____, Linear Algebraic Monoids, (London Math. Soc. Lecture Note Series, No. 133, Cambridge Univ. Press, 1988).
- [5] ____, 'Monoids on groups with BN-pairs', J. Algebra 120 (1989), 139-169.
- [6] M. S. Putcha and L. E. Renner, 'The system of idempotents and the lattices of \mathcal{T} -classes of reductive algebraic monoids', J. Algebra 116 (1988), 385-399.
- [7] L. E. Renner, 'Analogue of the Bruhat decomposition for algebraic monoids', J. Algebra 101 (1986), 303-338.
- [8] M. Suzuki, Group Theory I, (Springer-Verlag, 1982).

Department of Mathematics North Carolina State University Raleigh, North Carolina 27695-8205 U.S.A.

[9]