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Abstract

We construct an interesting family of connected graded domains of Gel’fand–Kirillov
dimension 4, and show that the general member of this family is noetherian. The
algebras we construct are Koszul and have global dimension 4. They fail to be Artin–
Schelter Gorenstein, however, showing that a theorem of Zhang and Stephenson for
dimension 3 algebras does not extend to dimension 4. The Auslander–Buchsbaum
formula also fails to hold for these algebras. The algebras we construct are birational
to P2, and their existence disproves a conjecture of the first author and Stafford. The
algebras can be obtained as global sections of a certain quasicoherent graded sheaf on
P1 × P1, and our key technique is to work with this sheaf. In contrast to all previously
known examples of birationally commutative graded domains, the graded pieces of the
sheaf fail to be ample in the sense of Van den Bergh. Our results thus require significantly
new techniques.
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1. Introduction

Let k be an uncountable algebraically closed field, and let R be an N-graded k-algebra. We
assume also that R is connected graded: i.e. R0 = k and dimkRn <∞ for all n. Recall that
R is Artin–Schelter (AS) regular if R has global dimension d <∞, finite Gel’fand–Kirillov
dimension (henceforth GK-dimension), and RHomR(k, R) = k[`] for some `. In general, AS-
regular algebras of dimension d which are also Koszul (in which case `= d) are considered to be
the noncommutative analogues of polynomial rings in d variables.
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The condition RHomR(k, R) = k[`] is the Artin–Schelter Gorenstein condition, and it is the
most mysterious of the three conditions for regularity. It has been shown in many cases to
imply that the algebra R is well behaved, and in fact all known examples of AS-regular algebras
are noetherian domains. Conversely, Stephenson and Zhang [SZ00] proved that if a connected
graded algebra R is noetherian, Koszul, and has global dimension 3, it is AS-Gorenstein. In
fact, there has been speculation [SV01, p. 195] that this is true if R has arbitrary finite global
dimension.

In this paper we show, surprisingly, that the results of [SZ00] fail in dimension 4. We prove
the following theorem.

Theorem 1.1. There is a connected graded noetherian domain R with GKdimR= gl. dimR=
4 such that R is Koszul but not AS-Gorenstein.

The algebra R above has other surprising homological properties. In particular, the
Auslander–Buchsbaum equality fails for R: we have depth k + p.dim k = 0 + 4> depthR= 2.
(See § 3 for definitions.) It is worth noting that R is not only Koszul, but the trivial module has
a resolution of the form

0→R[−4]→R[−3]4→R[−2]6→R[−1]4→R→ k→ 0, (1.2)

so that R has many properties of a polynomial ring in four variables.
The algebra R is interesting in another way, as well: it is a counterexample to a conjecture

in the classification of noncommutative projective surfaces. This classification is one of the most
important open problems in the subject of noncommutative projective geometry, and is far
from complete. An important special case, however, is well understood: birationally commutative
surfaces, defined here as connected graded noetherian domains R whose graded quotient ring is
isomorphic to K[t, t−1; ϕ] for some field K of transcendence degree 2.

If such R have GK-dimension 3 or 5, then they have been classified [RS09, Sie11, Sie].
In fact, in [RS09] the first author and Stafford conjecture that this classification is complete:
all birationally commutative surfaces have GK-dimension 3 or 5. The algebra R above is a
counterexample to this conjecture, and shows that there is still unexplored territory in the study
of birationally commutative surfaces.

Let us explain the conjecture of [RS09] further. We begin by summarizing their results on
birationally commutative graded algebras. If S is a connected graded noetherian domain (or
Ore domain, more generally) we may invert the homogeneous elements of S to obtain the
graded quotient ring Qgr(S). We have Qgr(S)∼=D[t, t−1; ϕ], where D is a division ring and
ϕ ∈Autk(D). If D is commutative, and thus D ∼= k(X) for some projective variety X, then we
say that S is birational to X, or more generally birationally commutative. If ϕ is induced from
an automorphism of X, we say that S and ϕ are geometric.

Subject to the condition that S is geometric and generated in degree 1, [RS09] classifies
birationally commutative projective surfaces: in other words those graded algebras birational
to a commutative surface. The prototypical example is a twisted homogeneous coordinate
ring B(X, L, σ) =

⊕
n∈N H0(X, L ⊗ σ∗L ⊗ · · · ⊗ (σn−1)∗L) for some projective surface X with

automorphism σ :X →X and invertible sheaf L on X (see [AV90] for more details about this
construction). They show the following theorem.

Theorem 1.3 [RS09, Theorem 1.1]. Let S be a connected graded noetherian domain that
is generated in degree 1, birational to a commutative surface, and geometric. Then up to a
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finite-dimensional vector space, S is either a twisted homogeneous coordinate ring B(X, L, σ) or
else a closely related subring R(X, Z, L, σ) of such (called a näıve blowup algebra).

More generally, the second author has obtained in [Sie11, Sie] a similar classification result
without the generation in degree 1 hypothesis. Possibly after passing to a Veronese subring, all
such algebras are again (special kinds of) subrings of twisted homogeneous coordinate rings. In
all cases the rings involved may be written explicitly in terms of commutative geometric data.

The first author and Stafford conjectured [RS09, p. 6] that the conclusions of Theorem 1.3
hold without the assumption that S is geometric. The conjecture was motivated by the following
theorem of the first author, using work of Diller and Favre [DF01].

Theorem 1.4 [Rog09]. Let Q :=K[t, t−1; ϕ], where K is a finitely generated field extension of
k of transcendence degree 2. Then every connected graded Ore domain S with graded quotient
ring Q has the same GK-dimension d ∈ {3, 4, 5,∞}. If d=∞, then no such S is noetherian. If
d <∞, then d ∈ {3, 5} if and only if ϕ is geometric.

It follows from this result that the hypotheses of Theorem 1.3 imply restrictions on the
GK-dimension of S. Thus we may restate the first author and Stafford’s conjecture as follows.

Conjecture 1 (Rogalski–Stafford). Suppose that S is a connected graded domain of GK-
dimension 4, generated in degree 1, that is birational to a commutative surface. Then S is
not noetherian.

We note that it is not hard to write down examples of connected graded domains of GK-
dimension 4 that are birational to commutative surfaces; some of these are even finitely presented
and Koszul. However, analyzing their ring-theoretic structure is nontrivial, and the examples
known until now are not noetherian.

We begin with one of these nonnoetherian examples, and examine a family of (nonformal)
deformations of it. Namely, let K := k(u, v) be a rational function field and define σ :K→K
by σ(u) = uv, σ(v) = v. Setting E := k + ku+ kv + kuv, the k-subalgebra A of K[t, t−1; σ]
generated by Et is a nonnoetherian Koszul algebra of GK-dimension 4; it has appeared before
in the literature, for example in [YZ06, Proposition 7.6].

To deform A, we perturb σ by a two-parameter family of automorphisms ofK. Given ρ, θ ∈ k∗,
let τ = τ(ρ, θ) :K→K be given by

τ(u) =
(ρ+ 1)u+ (ρ− 1)
(ρ− 1)u+ (ρ+ 1)

, τ(v) =
(θ + 1)v + (θ − 1)
(θ − 1)v + (θ + 1)

.

Let G := {τ(ρ, θ) | ρ, θ ∈ k∗}. We may naturally identify G with the subgroup of Aut(P1 × P1)
that fixes each of the four points [±1 : 1][±1 : 1]. Given τ ∈G, define ϕ := σ ◦ τ ∈Autk(K). Let

R(τ) := k〈Et〉 ⊆ k(u, v)[t, t−1; ϕ]. (1.5)

The family of algebras of interest is then {R(τ) | τ ∈G}.
We may now state our main result.

Theorem 1.6. Let R=R(τ) be as in (1.5), where τ = τ(ρ, θ) ∈G. For any pair (ρ, θ) which is
algebraically independent over the prime subfield of k, the algebra R(τ) is a noetherian domain
of GK-dimension 4 that is birational to P2. Further, the results of Theorem 1.1 hold for this R.

It is not hard to show using the growth criterion underlying Theorem 1.4 that the rings R(τ)
have GK-dimension 4 for the very general choices of (ρ, θ) in the theorem (interestingly, though,
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the GK-dimension of R(τ) is 3 instead for some sporadic nongeneral choices). It is also fairly
straightforward that they have global dimension 4 and are Koszul but not AS-Gorenstein. The
fact that the rings R(τ) are noetherian for general τ is the deeper content of the result. The proof
of this requires techniques that differ substantially from past work on birationally commutative
algebras and occupies most of the second half of the paper.

The ring R=R(τ) in Theorem 1.6 must be nongeometric by Theorem 1.4. Thus there is no
rational projective surface X for which ϕ :K→K corresponds to an automorphism φ :X →X.
This certainly precludes the possibility that R has the same graded quotient ring as any twisted
homogeneous coordinate ring, so Theorem 1.3 fails completely in this case. We conjecture that
the augmentation ideal R+ is the only nontrivial graded prime ideal of R and thus that R has
no nontrivial map to any twisted homogeneous coordinate ring.

To conclude the introduction, we give an overview of the ideas behind the proofs. Let
R=R(τ) where τ = τ(ρ, θ) for a pair (ρ, θ) algebraically independent over the prime subfield
of k. As in past work on birationally commutative algebras, we would like to work as far as
possible with sheaves on a projective variety, rather than R-modules. We work on T := P1 × P1.
Let φ : T 99K T be the birational self-map induced by ϕ= στ . We have R⊆ k(T )[t, t−1; ϕ]. Let
Rn be the subsheaf of the constant sheaf of rational functions generated by Rnt

−n ⊆ k(T ).
Much of the first half of the paper is devoted to proving that R=

⊕
H0(T,Rn) for general τ .

The proof requires a careful analysis of how the properties of the birational maps φn change
as τ varies. The proof that kR has a resolution as in (1.2) is intertwined and must be done
simultaneously.

Writing the ring R as a ring of sections is crucial to the proof of the noetherian property,
but working with the sheaves Rn is quite delicate. In all past work on birationally commutative
algebras, the main idea has been to show that the sequence of sheaves Rn is an ample sequence
in the sense of [Van96]. There is then a purely formal category equivalence between the category
of tails of R-modules and the category of tails of (appropriately defined) R-modules. This allows
one to translate questions about properties of R (including the noetherian property) to more
tractable geometric questions about R. Unfortunately, in our case the sheaves Rn do not form
an ample sequence. This requires us to develop new methods to show the ring R is noetherian.
More specifically, if F is a coherent sheaf on T , then

⊕
n H

1(T, F ⊗Rn) may not be finite-
dimensional; however, this graded vector space carries a natural R-action and a key step in our
proof is showing that such an R-module, which we call a cohomology module, is noetherian.

2. Review of pullback by a birational map

Throughout the paper, we will work with an automorphism ϕ of K = k(u, v) and the induced
birational self-map φ of T = P1 × P1. Explicitly, ϕ is equal to the pullback action of φ on
K = k(T ). In this section, we review basic facts about pullback of divisors under a birational
self-map of a surface. See [Rog09] for a longer discussion of this, which closely follows the ideas
in [DF01]. In this paper we will only need a few selected results.

Fix an algebraically closed base field k. Suppose that ψ : U → T is a regular morphism
of nonsingular varieties over k. Then there is a standard pullback map of (Weil) divisors
ψ∗ : Div T →Div U . Now let ψ : S 99K T be a birational map of nonsingular varieties. Then
the domain of definition of ψ is an open set U = S r Z, where Z has codimension at least
2 (see [Har77, Lemma V.5.1]). Since Div S = Div U (see [Har77, Proposition II.6.5]) we get a
pullback map ψ∗ : Div T →Div U = Div S. We define ψ∗ : Div S→Div T as (ψ−1)∗.
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On S and T , there is a one-to-one correspondence between Weil divisors and invertible
subsheaves of K, where K is the constant sheaf of rational functions. Thus the pullback map
defined above also induces a pullback map on invertible subsheaves of K. If M⊆K we write
Mψ ⊆K for the pulled-back invertible sheaf. Note that Mψ is the unique invertible subsheaf
N of K such that N|U = (ψ|U )∗(M). Let (f) be the principal divisor associated to a rational
function f ∈ k(T ). We often use the notation fψ := f ◦ ψ. It follows directly from the definitions
that (fψ) = ψ∗(f), and thus pullback of divisors also induces a pullback map ψ∗ : Pic T → Pic S
on the Picard groups. This also shows that given any invertible sheaf M (without a framing
inside K), there is an invertible sheaf Mψ which is well defined up to isomorphism.

One thing that makes pullback by a birational map a subtle operation is that it can behave
poorly with respect to composition. In particular, when one attempts to iterate pullback by
a birational self-map ψ : S 99K S of a nonsingular surface, one may have (ψn)∗ 6= (ψ∗)n. The
simplest example of this is the Cremona transformation ψ : P2 99K P2 defined by [x : y : z] 7→ [yz :
xz : xy]. At the level of the Picard group Pic P2 = Z, the map ψ∗ : Z→ Z is multiplication by 2,
while ψ2 is the identity map and so (ψ2)∗ 6= (ψ∗)2. The following gives a sufficient condition to
avoid such pathologies.

Lemma 2.1 [Rog09, Lemma 2.4]. Let φ, ψ : S 99K S be birational self-maps of a nonsingular
surface S. If there does not exist a curve C on S such that φ contracts C to a fundamental point
of ψ, then (ψ ◦ φ)∗ = φ∗ ◦ ψ∗ as maps Div S→Div S.

Note that the images of curves contracting under φ are precisely the fundamental points for
the map φ−1, by Zariski’s main theorem. So an equivalent formulation of the hypothesis of the
lemma is to assume that φ−1 and ψ have no common fundamental points.

Definition 2.2 [Rog09, Definition 2.6]. A birational map ψ : S 99K S of a nonsingular
projective surface S is called stable if, for all n> 1, there is no curve C such that ψn contracts
C to a fundamental point of ψ (equivalently, if, for all n ∈ N, ψ−n and ψ have no common
fundamental points).

The definition follows [DF01], where the term analytically stable is used. By Lemma 2.1,
a stable birational map has (ψn)∗ = (ψ∗)n for all n ∈ N. Note that our convention is that
N = {0, 1, . . .}.

3. Establishing notation

For the remainder of the paper, let k be an algebraically closed, uncountable base field. Let F
be the prime subfield of k. Let T := P1 × P1, with coordinates [x : y][z : w]. Let u := x/y and let
v := z/w, and let K := k(T ) = k(u, v). We define a birational self-map

σ : T 99K T
[x : y][z : w] 7→ [xz : yw][z : w].

We note the pullback action of σ on rational functions: we have

uσ = uv, vσ = v, uσ
−1

= uv−1, vσ
−1

= v. (3.1)

We establish some notation for subvarieties of T : let

X := V(x) = [0 : 1]× P1, Y := V(y) = [1 : 0]× P1,

Z := V(z) = P1 × [0 : 1], W := V(w) = P1 × [1 : 0].
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Figure 1. The birational self-map σ.

Note that u and v give coordinates on T r (Y ∪W )∼= A2. We also fix names for the four
intersection points:

P := Z ∩X = [0 : 1][0 : 1], Q := Z ∩ Y = [1 : 0][0 : 1],
F :=W ∩X = [0 : 1][1 : 0], G :=W ∩ Y = [1 : 0][1 : 0].

Then the fundamental points of σ are Q and F ; further, σ(Z rQ) = P and σ(W r F ) =G.
The inverse map σ−1 is given by the formula [x : y][z : w] 7→ [xw : yz][z : w] and the fundamental
points of σ−1 are P and G, while σ−1(Z rG) =Q and σ−1(W r P ) = F .

It will be helpful to factor σ as a composition of monoidal transformations and their inverses
[Har77, Theorem V.5.5]. Let α : T̃ → T be the blowup of T at Q and F . We denote the six (−1)-
curves on T̃ by LX , LF , LW , LY , LQ, LZ ; these are arranged in a hexagon in this order. The
morphism α contracts the divisors LQ and LF to the pointsQ and F , and maps (LX , LW , LY , LZ)
to (X,W, Y, Z). There is also a morphism β : T̃ → T so that the diagram

T̃
α

����������
β

��>>>>>>>>

T σ
//_______ T

commutes. The morphism β contracts LZ to P and LW to G. It maps (LX , LF , LY , LQ) to
(X,W, Y, Z). See Figure 1.

We will want to understand how the divisors on T pull back along σ = βα−1. Since α and β
have no fundamental points, by Lemma 2.1 we have

σ∗X = α∗β
∗X = α∗(LX + LZ) =X + Z, σ∗Y = α∗β

∗Y = α∗(LY + LW ) = Y +W, (3.2)
σ∗Z = α∗(LZ + LQ) = Z, σ∗W = α∗(LW + LF ) =W. (3.3)

In particular, this calculation shows that in the Picard group the pullback map is O(a, b)σ ∼=
O(a, a+ b).
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We are interested in deforming σ by composing it with a automorphism of T . For any
τ ∈Auto(T ) = PGL2 × PGL2, we define φ := τ ◦ σ : T 99K T . Since τ is an automorphism acting
as the identity on the Picard group of T , note that we also have

O(a, b)φ ∼=O(a, a+ b). (3.4)

In fact, it will be convenient to work only with τ coming from a more restricted (two-
dimensional) algebraic subgroup of automorphisms. Let

G := {τ ∈Aut(T ) | τ fixes each of the points [±1 : 1][±1 : 1]} ⊆Auto(T ).

It is easy to see that G∼= k∗ × k∗ as algebraic groups (an explicit isomorphism is given later in
this section), and we write τ(ρ, θ) for the element of G which corresponds to (ρ, θ) ∈ k∗ × k∗.

We now define the rings that are the main subject of the paper. Let

L :=OT (Y +W )∼=O(1, 1) and E := k + ku+ kv + kuv ⊆K = k(u, v).

We canonically identify E with H0(T, L). Now for given τ ∈G, we denote the pullback action
of φ= τσ : T 99K T on rational functions by ϕ, so ϕ(f) = fφ, and we form the skew-Laurent ring
K[t, t−1; ϕ]. Let

R :=R(τ) := k〈Et〉 ⊆K[t, t−1; ϕ]

be the k-subalgebra generated in degree 1 by Et.

Let us say that τ is a general element of G if τ lies in the complement of a countable union of
proper closed subvarieties of G. The goal of this paper is to understand the algebras R(τ) =R,
at least for general τ . We recall here the definitions of some homological properties of interest.
The connected graded k-algebra R is Artin–Schelter (AS) Gorenstein if R has finite left and
right injective dimension d and we have

ExtiR(k, R) =

{
0 if i 6= d,

k[`] if i= d

(for some shift `), where k =R/R>1 is the trivial graded module. If in addition R has finite global
dimension d and finite GK-dimension, then R is AS-regular. The algebra R satisfies (right) χi
if dimk ExtjR(k, M)<∞ for all j 6 i and for all finitely generated MR, and R satisfies χ if it
satisfies χi for all i> 0.

Recall [Jør98] that the depth of a graded R-module M is defined to be min{i | ExtiR(k, M) 6=
0}. For commutative noetherian graded rings and for some classes of noncommutative graded
rings, including AS-Gorenstein algebras [Jør98, Theorem 3.2], the Auslander–Buchsbaum formula
holds: that is, for a graded module M of finite projective dimension we have pdM + depthM =
depthR. Recall also that if R=

⊕
n∈N Rn is a connected graded algebra, then the Hilbert series

of R is the formal power series hR(s) =
⊕

n∈N(dimk Rn)sn.

The main goal of the remainder of the paper will be to prove the following result.

Theorem 3.5. Let the pair (ρ, θ) be algebraically independent over the prime subfield F of k,
and let R=R(τ(ρ, θ)).
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(1) The algebra R is noetherian.

(2) There is a presentation R∼= k〈x1, x2, x3, x4〉/(f1, . . . , f6), where

f1 = x1(cx1 − x3) + x3(x1 − cx3), f2 = x1(cx2 − x4) + x3(x2 − cx4),
f3 = x2(cx1 − x3) + x4(x1 − cx3), f4 = x2(cx2 − x4) + x4(x2 − cx4),
f5 = x1(dx1 − x2) + x4(x1 − dx2), f6 = x1(dx3 − x4) + x4(x3 − dx4),

for c= (θ − 1)/(θ + 1), d= (ρ− 1)/(ρ+ 1).

(3) The trivial module k has a graded free resolution of the form

0→R[−4]→R[−3]4→R[−2]6→R[−1]4→R→ k→ 0.

(4) The Hilbert series of R is hR(s) = 1/(1− s)4 and R is Koszul of global dimension 4.
However, R is not AS-Gorenstein and therefore not AS-regular, and the Auslander–Buchsbaum
equality fails for R.

We use the notation 1 := τ(1, 1) for the identity map of G, and we give the special case of
R(τ) where τ = 1 its own name:

A :=R(1) = k〈t, ut, vt, uvt〉 ⊆K[t, t−1; σ].

(Note that here we denote σ : T 99K T and the induced pullback action on K by the same symbol;
we will do likewise for τ . We hope this will not induce confusion.) The ring A has appeared in the
literature before (see [YZ06, Proposition 7.6]) and it has certain bad properties. Most notably,
it is not noetherian on either side (we sketch the simple proof in 4.13 below). However, several
other properties we desire to prove for R, such as finite global dimension, hold for A and the
main strategy of our proofs in these cases is to show that these properties deform to hold also
for R(τ) for general τ .

In the remainder of this section, we give some further formulas and subsidiary results which
will be useful in the following. Although the coordinate system we have been using is the one in
which σ is simplest, occasionally we will want to change coordinates so that the automorphisms
τ ∈G are diagonalized. We use round brackets ( : ) for the coordinate system of P1 which is
related to the original one by the change of coordinate formulas [x : y] = (x− y : x+ y) and
(a : b) = [a+ b :−a+ b]. Then [1 : 1] = (0 : 1) and [1 :−1] = (1 : 0), and the group of
automorphisms of P1 fixing both of these points is isomorphic to k∗, where we let ρ ∈ k∗
correspond to the diagonal automorphism (a : b) 7→ (ρ−1a : b). An automorphism in G has the
form µ× ν where µ, ν ∈Aut(P1) correspond to elements ρ, θ ∈ k∗ respectively; this makes explicit
the isomorphism τ : k∗ × k∗→G already mentioned.

We define the useful abbreviations

γ := ρ+ 1, δ := ρ− 1, ε := θ + 1, ζ := θ − 1.

Then in our two coordinate systems we have the following formulas for τ(ρ, θ) : T → T :

(a : b)(c : d) 7→ (ρ−1a : b)(θ−1c : d),
[x : y][z : w] 7→ [γx+ δy : γy + δx][εz + ζw : εw + ζz].

In terms of the action on rational functions, we record the formulas

uτ =
γu+ δ

δu+ γ
, vτ =

εv + ζ

ζv + ε
, uτ

−1
=

γu− δ
−δu+ γ

, vτ
−1

=
εv − ζ
−ζv + ε

. (3.6)
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For future reference we also record the following formulas for the action of φ and its inverse
on rational functions. Recalling that we write ϕ(f) = fφ, we have

ϕ(u) =
γuv + δ

δuv + γ
, ϕ(v) =

εv + ζ

ζv + ε
, ϕ−1(u) =

(γu− δ)
(−δu+ γ)

(−ζv + ε)
(εv − ζ)

, ϕ−1(v) =
εv − ζ
−ζv + ε

.

(3.7)

We note here the following symmetry in our main setup.

Lemma 3.8. Let ψ := τ(−1,−1), so ψ([x : y][z : w]) = [y : x][w : z] is the automorphism of T that
switches the coordinates in both copies of P1. Then ψ commutes with φ= τσ for all τ ∈G. Also,
ψ interchanges X and Y and interchanges the points F and Q.

We close this section with an analysis of the opposite ring of R(τ). We show that the opposite
ring lives in the same family of examples, and so we will be able to focus our attention on right
ideals and right modules.

Proposition 3.9. Let τ ∈G and let R=R(τ). Then Rop ∼=R(τ−1).

Proof. We define an automorphism ω :K→K by ω(u) = u, ω(v) = v−1. In other words, ω is
pullback by τ(1,−1) ∈G. Note that ω2 = 1.

All compositions in this proof are compositions of automorphisms of K. Now, R is the
subalgebra of K[t; ϕ] generated by H0(T,O(1, 1)) · t. The map K[t; ϕ]→K[t; ϕ−1] given by∑
ait

i 7→
∑
aφ
−i+1

i ti is an anti-isomorphism, so the subalgebra of K[t; ϕ−1] generated by
H0(T,O(1, 1)) · t is isomorphic to Rop. Next, the map

∑
ait

i 7→
∑
ω(aτi )ti gives an isomorphism

K[t; ϕ−1]→K[t; ωτϕ−1τ−1ω−1], so Rop is isomorphic to the subalgebra of K[t; ωτϕ−1τ−1ω−1]
generated by ωτ(H0(T,O(1, 1))) · t. Since ωτ :K→K is induced by an automorphism of
T = P1 × P1 which fixes linear equivalence classes of divisors, we have ωτ(H0(T,O(1, 1))) =
aH0(T,O(1, 1)) for some 0 6= a ∈K. Finally, putting t′ = at, we have K[t; ωτϕ−1τ−1ω−1] =
K[t′; ωτϕ−1τ−1ω−1], and now Rop is isomorphic to the subalgebra of K[t′; ωτϕ−1τ−1ω−1]
generated by H0(T,O(1, 1)) · t′.

We consider the automorphism ωτϕ−1τ−1ω−1 of K. Since σ and τ act via pullback on
K, we have φ∗ = ϕ= στ ∈Aut(K). Thus ωτϕ−1τ−1ω−1 = ωσ−1τ−1ω−1 = ωσ−1ωτ−1, as G is
abelian and ω2 = 1. A trivial computation shows that ωσ−1ω = σ, and so we conclude that
ωτϕ−1τ−1ω−1 = στ−1.

It follows that R(τ)op ∼=R(τ−1), as claimed. 2

Corollary 3.10. The algebras A and Aop are isomorphic.

4. Geometrizing R

We want to describe the rings R(τ) defined in the previous section in a way analogous to the
construction of a twisted homogeneous coordinate ring or a näıve blowup. In particular, we would
like to show that each graded piece of R can be identified with the global sections of a certain
sheaf on T . This will require using pullback by a birational map instead of an automorphism,
and so some sensitive calculations will be needed.

All of the notation developed in the previous section will be in force in this section. Fix τ ∈G.
Recall that we defined φ= τσ as a birational self-map of T , and we put E := H0(T, L)⊆K = k(T )
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where L=OT (W + Y )⊆K. For all n, m ∈ N we define an invertible sheaf

Lφmn := Lφm ⊗ Lφm+1 ⊗ · · · ⊗ Lφm+n−1 ⊆K.

In particular, when m= 0 this defines the invertible sheaf Ln := L ⊗ Lφ ⊗ · · · ⊗ Lφn−1
. We warn

the reader, however, that Lφ
m

n is meant to be one notational unit, and is not necessarily equal
to the pullback of Ln by the birational map φm; though if φ is a stable birational map then this
is true. (In all of our later applications, we will in fact choose τ so that φ is stable.) It is clear
that for all n> 0, Eφ

n ⊆H0(T, Lφn)⊆K, and moreover that Eφ
n

generates Lφn except possibly
at the fundamental points of φn. Since we defined R=R(τ) = k〈Et〉 ⊆K[t, t−1; ϕ], we have

Rn = (Et)n = EEφ · · · Eφn−1
tn ⊆H0(T, Ln)tn ⊆Ktn

for all n> 0.
For all m, n ∈ N, we define Rφ

m

n to be the sheaf generated by

(Rnt−n)φ
m

= Eφ
m
Eφ

m+1 · · · Eφm+n−1 ⊆H0(T, Lφmn ).

Again, Rφ
m

n is not to be construed as the pullback of Rn by φm. We use special notation for the
case A=R(1) where τ is the identity map. In this case we write Aσmn instead of Rφ

m

n .
Let Iφ

m

n be the base ideal of the sections in (Rnt−n)φ
m

, so that Rφ
m

n = Iφ
m

n Lφ
m

n ⊆K. Let
Bm
n =Bm

n (τ) be the subscheme of T defined by Iφ
m

n . Now, Bm
1 is a zero-dimensional subscheme,

supported at the fundamental points of φm. So Bm
n is zero-dimensional for all m, n also.

One of the main goals of the next few sections will be to show that for general choice of τ ,
then (Rnt−n)φ

m
is precisely equal to the global sections of the sheaf Rφ

m

n . In particular, taking
m= 0 this will show that indeed the graded pieces of the ring R have a geometric description as
the global sections of certain sheaves. To move towards this goal, we will need to study how the
sheaves Ln and the ideal sheaves In depend on the choice of τ .

It is useful in this section to write τ(ρ, θ) = µ× ν, where µ= µ(ρ) and ν = ν(θ) are
automorphisms of P1. In the next several results, we concentrate on gaining an understanding
of Iφ

m

1 for m> 1. Recall that this was defined as the base ideal of the sections

k + kuφ
m

+ kvφ
m

+ k(uv)φ
m

= Eφ
m ⊆H0(T, Lφm).

To compute this, we first compute the Weil divisors associated to these rational functions. We
obtain

(1) = 0, (uφ
m

) =Xφm − Y φm , (vφ
m

) = Zφ
m −W φm ,

and
((uv)φ

m
) =Xφm + Zφ

m − Y φm −W φm .

Thus we seek the intersection of the four effective Weil divisors:

(Y φm +W φm) ∩ (Y φm + Zφ
m

) ∩ (Xφm +W φm) ∩ (Xφm + Zφ
m

).

Notice that a general horizontal line D = P1 × [z : w] will not contain any fundamental points
of φ−m, and thus Dφm = P1 × ν−m([z : w]) since φ simply acts as ν in the second copy of P1.
Now for any horizontal line D whatsoever, since pullback respects linear equivalence, Dφm will
be another (0, 1)-curve; this forces Dφm = P1 × ν−m([z, w]) in all cases. In particular, W φm and
Zφ

m
are distinct horizontal lines and W φm ∩ Zφm = ∅. So the base locus Bm

1 is equal to the
scheme-theoretic intersection Y φm ∩Xφm .

The more specific calculation of Bm
1 is straightforward in the case that ν has infinite order,

but messier otherwise. For given m, we want to understand Bm
1 at least for an open set of τ that
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includes the identity map 1. So we will have to carefully analyze the τ with ν the identity, but
will only need to analyze the case of other finite order ν in passing.

We denote the order of the automorphism ν by o(ν) ∈ {1, 2, . . .} ∪ {∞}. The ν-orbit of any
point in P1 r {[±1 : 1]} has size o(ν).

Lemma 4.1. Let τ = τ(ρ, θ) = µ× ν ∈G. If o(ν) = 2k for some k > 1, then νk[0 : 1] = [1 : 0] and
νk[1 : 0] = [0 : 1]. If o(ν) =∞ or o(ν) is odd, then the ν-orbits of [0 : 1] and [1 : 0] are disjoint.

Proof. In the other coordinate system ( : ) for P1 introduced in § 3, ν is the diagonal map
(a : b) 7→ (θ−1a : b). In these coordinates, we have [0 : 1] = (−1 : 1) and [1 : 0] = (1 : 1). It follows
that if o(θ) = 2k for some k > 1, then θk =−1 and the first case occurs. Otherwise, clearly [0 : 1]
and [1 : 0] do not lie on the same orbit, so the second case occurs. 2

Definition 4.2. Let j > 1. Let V (j)⊆G be defined by

V (j) := {τ(ρ, θ) | o(θ)> 2j} ∪ {τ(ρ, 1) | ρ 6=−1}.

We note that V (j) (or, more properly, its complement) is defined over F, the prime subfield
of k.

Proposition 4.3. Fix j > 1 and let τ = τ(ρ, θ) ∈ V (j). Then the following hold.

(1) For all 06 i6 j, {fundamental points of φ−i} ∩ {fundamental points of φ}= ∅. Thus φ−i

is defined at both F and Q.

(2) For all 06m6 j + 1, the divisors Xφm and Y φm are (1, m)-curves, and the scheme Bm
1 has

length 2m. Also, Lφm ∼=O(1, m+ 1).

(3) For all 16 n6 j + 2 and 06m6 j + 2− n, we have Lφ
m

n
∼=O(n, k), where k =

(
n+m+1

2

)
−(

m+1
2

)
.

(4) For all 16m6 j we have {F, Q} ⊆Xφm ∩ Y φm . In particular, B1
1 = {F, Q} with reduced

subscheme structure.

Proof. (1) The fundamental points of φ= τσ are precisely the fundamental points F = [0 : 1][1 : 0]
and Q= [1 : 0][0 : 1] of σ, so we only have to prove the first statement. Similarly, the fundamental
points of φ−1 = σ−1τ−1 are τ(P ) and τ(G), since P = [0 : 1][0 : 1] and G= [1 : 0][1 : 0] are
the fundamental points of σ−1. Since σ−1 leaves the second copy of P1 alone, an inductive
argument shows that the fundamental points of φ−i are contained in P1 × {ν[0 : 1], . . . , νi[0 : 1],
ν[1 : 0], . . . , νi[1 : 0]}. It is clear from Lemma 4.1 that if o(ν)> 2j > 2i, then the set above is
disjoint from {F, Q}.

Thus we have only to consider the case θ = 1, ρ 6=−1, and i> 1. We claim that in this case the
set of fundamental points of φ−i is precisely {τ(P ), τ(G)}. Now, φ contracts only the two curves
Z and W , which it contracts to the points τ(P ), τ(G) respectively; moreover, φ is defined at
τ(P ), τ(G) since the condition θ = 1, ρ 6=−1 forces {τ(P ), τ(G)} ∩ {F, Q}= ∅. Since θ = 1, we
have τ(P ) ∈ Z, τ(G) ∈W . Thus necessarily φ(τ(P )) = τ(P ), φ(τ(G)) = τ(G). One may check
that Z and W are not the images of any curves under φ, so an inductive argument shows that
Z and W are also the only curves that φi contracts. Then {τ(P ), τ(G)} are the only images
of curves contracted by φi, and thus these are the only points which are fundamental points
for φ−i, proving the claim. These fundamental points {τ(P ), τ(G)} of φ−i are disjoint from the
fundamental points {F, Q} of φ, as we have already noted.

(2) By part (1), for any 06 i6 j, φ−i and φ have no common fundamental points, and thus
φ∗(φi)∗ = (φi+1)∗ by Lemma 2.1. By induction we see that (φ∗)m = (φm)∗ for all 06m6 j + 1.
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In particular, since we calculated earlier in (3.4) that φ∗ acts on Pic T ∼= Z2 by O(a, b)φ =
O(a, a+ b), we see that O(1, 0)φ

m ∼=O(1, m). Since X and Y are (1, 0)-curves, Xφm and Y φm are
(1, m)-curves, for all m6 j + 1. The length of the zero-dimensional scheme Bm

1 =Xφm ∩ Y φm

is equal to the intersection product (Xφm .Y φm) = (1, m).(1, m) = 2m (see [Har77, Proposition
V.1.4]). Finally, since L ∼=O(1, 1), we also get Lφm ∼=O(1, m+ 1) for all such m.

(3) Since by definition Lφ
m

n = Lφm ⊗ Lφm+1 ⊗ · · · ⊗ Lφm+n−1
, and Lφi ∼=O(1, i+ 1) for all

06 i6 j + 1 by part (2), it follows as long as m+ n− 16 j + 1 that Lφ
m

n
∼=O(n, k) where

k =
∑m+n−1

i=m (i+ 1) =
(
n+m+1

2

)
−
(
m+1

2

)
.

(4) Let C be an (a, b)-divisor on T with a > 0, b> 0. Then (τ−1(C).Z) = (τ−1(C).W ) = a > 0,
so τ−1(C) must meet both Z and W nontrivially. Recall the decomposition σ = βα−1 and its
associated notation from § 3. Then β∗(τ−1(C)) = C̃ + E where C̃ is the proper transform of
τ−1(C) and E is a sum of exceptional curves for β. If τ−1(C) ∩ Z 6= {P}, then C̃ must meet
(but not be equal to) the proper transform LQ of Z. If instead τ−1(C) ∩ Z = {P}, then the
exceptional curve LZ lying over P must appear in E. In either case, we see that Q lies on some
curve appearing in Cφ = α∗(C̃) + α∗(E). An analogous argument considering intersections with
W shows that F ∈ Cφ as well. Thus {F, Q} is contained in the support of Cφ.

This argument shows, in particular, that {F, Q} ⊆Bm
1 =Xφm ∩ Y φm for all m> 1. When

m= 1 then B1
1 has length 2 also by part (2), and so B1

1 has no choice but to be the reduced
subscheme supported at {F, Q}. 2

Corollary 4.4. Let τ ∈
⋂
j>1 V (j). Then φ= τσ is a stable birational map.

Proof. This is immediate from Definition 2.2 and part (1) of the proposition. 2

Remark 4.5. It is easy to find examples of τ ∈G for which φ is not stable. The simplest of these
is τ = τ(−1, 1). For this τ one has τ(u) = u−1, τ(v) = v and so uφ = u−1v, vφ = v. Then φ2 = 1,
but φ∗ acts on the Picard group as calculated in (3.4); in particular, (φ∗)2 is certainly not the
identity. Correspondingly, one can see that the ring R=R(τ(−1, 1)) behaves very differently
from the case of a general τ . In fact, since φ2 = 1, the 2-Veronese R(2) is a commutative ring
with graded quotient ring k(u, v)[t2], and so this R is a PI ring with GKdimR= 3. We have not
attempted to fully characterize which τ lead to a stable φ= τσ.

Let τ = τ(ρ, θ) ∈ V (j) for some j > 1. By definition, the automorphisms in V (j) come in two
types, those with o(θ)> 2j, and those with θ = 1. We now analyze the structure of the schemes
Bm

1 for m6 j in each case separately. We begin with the easier case where o(θ)> 2j.

Definition 4.6. Let τ = τ(ρ, θ) ∈ V (j) with o(θ)> 2j for some j. Proposition 4.3(1) shows that
φ−i is defined at F and Q for 16 i6 j. We set Fi := φ−i(F ) and Qi := φ−i(Q), for 06 i6 j.

Lemma 4.7. Let j > 1 and let τ = τ(ρ, θ) ∈ V (j) with o(θ)> 2j. For each 06m6 j + 1, Bm
1 is

the reduced scheme consisting of the 2m distinct points {F0, . . . , Fm−1, Q0, . . . , Qm−1}.

Proof. We claim first that φ−1 is defined and a local isomorphism at each Fi and Qi with
06 i6 j. To see this, note that φ−1 = σ−1τ−1 is defined and a local isomorphism at any point
which does not lie on τ(Z) = P1 × ν([0 : 1]) or τ(W ) = P1 × ν([1 : 0]). Since Fi ∈ P1 × ν−i([1 : 0])
and Qi ∈ P1 × ν−i([0 : 1]) for 16 i6 j, the claim follows, using the hypothesis that o(ν)> 2j > 2i
and Lemma 4.1. It is also clear from this calculation that the points {F0, . . . , Fj , Q0, . . . , Qj}
are distinct.
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Next, we prove by induction that {F0, Q0, . . . , Fm−1, Qm−1} ⊆Xφm ∩ Y φm for all 16m6
j + 1. The case m= 1 is immediate from Proposition 4.3(4). Suppose we have proven that
{F0, Q0, . . . , Fm−1, Qm−1} ⊆Xφm ∩ Y φm for some m< j + 1. Since φ−1 is a local isomorphism
at each of these points, it is clear that φ−1 of each of these points lies on (Xφm)φ =Xφm+1

as well as (Y φm)φ = Y φm+1
(using stability of φ). So {F1, Q1, . . . , Fm, Qm} ⊆Xφm+1 ∩ Y φm+1

.
However, Xφm+1

and Y φm+1
also both vanish at F and Q, as we saw in Proposition 4.3(4). So

Xφm+1 ∩ Y φm+1
=Bm+1

1 is supported at least at the set {F0, Q0, . . . , Fm, Qm}.
Now for any m with 06m6 j + 1, Bm

1 is a scheme of length 2m by Proposition 4.3(2), so it
must be exactly the reduced scheme supported at the points {F0, Q0, . . . , Fm−1, Qm−1}. 2

Now we calculate Bm
1 in the case where θ = 1. This is more complicated because the scheme

is concentrated at two points.

Lemma 4.8. Let τ = τ(ρ, 1) ∈G with ρ 6=−1.

(1) If ρ= 1 then Xφn =X + nZ and Y φn = Y + nW for all n> 0, while if ρ 6∈ {1,−1} then
Xφn and Y φn are irreducible curves for all n> 0.

(2) For all m> 1, Bm
1 is supported at {F, Q}. Further, there are local coordinates a, b at F

so that for 16 n6m, Bn
1 is defined locally at F by (a, bn), and similarly for Q.

Proof. (1) If ρ= 1, then the calculation Xφ =X + Z, Zφ = Z was done in § 1, and the result
Xφn =X + nZ follows by induction, because φ is stable by Corollary 4.4. The calculation of Y φn

is similar.
Now assume that ρ 6∈ {1,−1}. We prove that Xφn is irreducible by induction on n, the case

n= 0 being immediate. Suppose that C =Xφn has been proven irreducible for some n> 0, and
let us prove that Xφn+1

= Cφ (where we use that φ is stable) is irreducible. The curve Cφ will be
irreducible (and equal to φ−1(C)) unless Cτ = τ−1(C) contains one of the points {P, G} which are
the images of the curves Z, W which σ contracts. We know that (τ−1(C).W ) = (τ−1(C).Z) = 1,
since deg τ−1(C) = deg C = (1, n) by Proposition 4.3(2). However, {F, P} ⊆X by definition,
while {F, Q} ⊆ C =Xφn if n> 1 by Proposition 4.3(4). Thus τ−1(F ) must be the unique point
in τ−1(C) ∩W , while if n> 1 (respectively, if n= 0) then τ−1(Q) (or τ−1(P )) is the unique point
in τ−1(C) ∩ Z. None of these points is equal to P or G since ρ 6∈ {1,−1}, so Cφ is irreducible,
completing the induction step. The proof that Y φn is irreducible follows from the symmetry
given by Lemma 3.8.

(2) If ρ= θ = 1, then Xφn =X + nZ and Y φn = Y + nW for all n> 0, by part (1). As X and
W intersect at F and Y and Z intersect at Q, the local structure of Xφn ∩ Y φn is immediate.

Suppose then that θ = 1 and ρ 6∈ {−1, 1}. Note that the set U := T r (Z ∪W ) is φ-stable; in
fact, φ|U is an isomorphism. We have {F, Q} ⊆Bm

1 for all m> 1, and B1
1 =Xφ ∩ Y φ = {F, Q},

by Proposition 4.3(4). Thus Xφ ∩ Y φ ∩ U = ∅, and by induction since φ|U is an isomorphism
we must have Xφn ∩ Y φn ∩ U = ∅ for all n> 1. Thus Bm

1 is supported on Z ∪W . Now,
(Xφm .Z) = (Xφm .W ) = 1, so set-theoreticallyXφm ∩ Z = {Q} andXφm ∩W = {F}. By a similar
argument, Y φm ∩ (Z ∪W ) = {F, Q}. Thus Bm

1 is supported on {F, Q}. Bm
1 has length 2m by

Proposition 4.3(2), and by the symmetry in Lemma 3.8, necessarily Bm
1 has length m locally at

F and length m locally at Q.
Let xf(z, w) + yg(z, w) be the (1, m)-form defining Xφm . Since F = [0 : 1][1 : 0] ∈Xφm , it

must be that w|g. Since Xφm is irreducible, w 6 |f . In the local ring OT,F , let u= x/y and let
b := v−1 = w/z. The curve Xφm is locally defined at F by a := u+ bkα, for some unit α and
some k > 1. Likewise, Y φm is locally defined at F by u+ bjβ = a+ b`β′, where j, `> 1 and β, β′
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are units. Thus Bm
1 is locally defined at F by the ideal (a, b`). Since, as we have seen, Bm

1 has
length m at F , we must have `=m.

We show now that if n <m, then Bn
1 ⊆Bm

1 . It is enough to prove this for n=m− 1. As
we have already seen, B1

1 = {F, Q} with reduced structure, and so Rφ1 (0,−1)∼= IFIQO(1, 1),
which has a two-dimensional space of global sections. Note that Xφ, Y φ, X + Z, and
Y +W are global sections of this sheaf. Thus both {Xφ, Y φ} and {X + Z, Y +W} span
the same linear system d⊆ P H0(T,O(1, 1)). Pulling back by φm−1 and using stability, we
obtain that {(X + Z)φ

m−1
, (Y +W )φ

m−1} and {Xφm , Y φm} span the same linear system inside
P H0(T,O(1, 1)φ

m−1
) = P H0(T,O(1, m)). This implies that the scheme-theoretic intersections

Bm
1 =Xφm ∩ Y φm and (X + Z)φ

m−1 ∩ (Y +W )φ
m−1

are the same, both being the base locus of
this linear system. However, the latter intersection trivially contains Xφm−1 ∩ Y φm−1

=Bm−1
1 .

Thus for n <m, (Bn
1 )F is defined by an ideal of codimension n that contains (a, bm). There

is a unique such ideal, namely (a, bn). By Lemma 3.8, the local structure at Q is symmetric. 2

Proposition 4.9. Let τ = τ(ρ, θ) ∈ V (m+ n), and recall that Bm
n is the subscheme defined

by Iφ
m

n . Then Bm
n is a zero-dimensional subscheme of length 2(m

(
n+1

2

)
+
(
n+1

3

)
). In case

o(θ)> 2(n+m), then in the notation of Definition 4.6, Bm
n is the following subscheme of fat

points:

Bm
n = nF0 + · · ·+ nFm−1 + (n− 1)Fm + · · ·+ Fn+m−2

+ nQ0 + · · ·+ nQm−1 + (n− 1)Qm + · · ·+Qn+m−2.

Proof. Note in all cases that Iφ
m

n =
∏m+n−1
j=m Iφ

j

1 . Thus this proposition will follow from our
calculations in Lemmas 4.7, 4.8 above of the n= 1 case.

Suppose first that o(θ)> 2(n+m). For all i in the range m6 i6m+ n− 1, the scheme
defined by Iφ

i

1 is the reduced subscheme supported at the points {F0, Q0, . . . Fi−1, Qi−1}, as we
saw in Lemma 4.7. Then Iφ

m

n defines the scheme of fat points of multiplicity n at the points
F0, Q0, . . . Fm−1, Qm−1, multiplicity n− 1 at the points Fm, Qm, and so on, with multiplicity 1
at Fn+m−2, Qn+m−2. Since a fat point of multiplicity a has length

(
a+1
2

)
, we calculate the length

of this scheme to be

2
[
m

(
n+ 1

2

)
+
(
n

2

)
+
(
n− 1

2

)
+ · · ·+

(
2
2

)]
= 2m

(
n+ 1

2

)
+ 2
(
n+ 1

3

)
as claimed.

Now suppose that θ = 1. In this case Lemma 4.8 applies, and shows that there is some
choice of coordinates a and b in the local ring S =OT,F ∼= k[a, b](a,b) such that Iφ

i

1 is equal
locally at F to (a, bi) for all i6m+ n− 1. Thus the sheaf Iφ

m

n is equal locally at F to
I = (a, bm) · (a, bm+1) · · · (a, bm+n−1). Then S/I has a basis consisting of the (images of the)
monomials aibj for certain i, j. It is easy to see that if

∑k−1
`=1 (m+ `− 1)6 j <

∑k
`=1(m+ `− 1),

the monomial aibj occurs for all 06 i < n− k + 1. We see that S/I has dimension nm+ (n−
1)(m+ 1) + · · ·+ 1(m+ n− 1). Since Bm

n must have the same length locally at Q because of
Lemma 3.8, Bm

n is supported at the two points {F, Q} and once again has length

2
n−1∑
i=0

(n− i)(m+ i) = 2m
(
n+ 1

2

)
+ 2
(
n+ 1

3

)
,

as claimed. 2
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We have been referring loosely to the sheaves Rφ
m

n , the schemes Bm
n , etc., as families

depending on τ . In the next result we make this explicit.

Proposition 4.10. Let n, m ∈ N and let V := V (n+m).

(1) For all 06 j 6 n+m, there are closed subschemes Hj , H
′
j of T × V , flat over V , so that

Hj |T×τ = Y φj and H ′j |T×τ =Xφj for τ ∈ V .

(2) For all 06 i6 n, there is an invertible sheaf Fmi on T × V so that Fmi |T×τ = Lφ
m

i for
τ ∈ V .

(3) For all 06 i6 n and 06 j 6m there is an ideal sheaf J ji on T × V , flat over V , so that

J ji |T×τ = Iφ
j

i for τ ∈ V .

(4) For all 06 i6 n and 06 j 6m there is a closed subscheme Cji of T × V , flat over V , so

that Cji |T×τ =Bj
i (τ) for τ ∈ V .

All these sheaves and subschemes are defined over F.

Proof. Let h : T × V → T × V be given by the formula (x, τ) 7→ (τ(x), τ), and let π : T × V → T
be projection on the first factor. Let σ̃ : T × V 99K T × V be the birational map given by the
formula (x, τ) 7→ (σ(x), τ) for x in the domain of definition U of σ. Note that h, π, and σ̃ are
defined over F.

(1) For 06 j 6 n+m, we define ideal sheaves Gj on T × V . For j = 0, put G0 := π∗OT (−Y ).
Then G0 is invertible and defines H0, which is the constant family Y × V .

Suppose that 16 j 6 n+m, and that we have defined an invertible ideal sheaf Gj−1 on T × V
so that Gj−1|T×τ =OT (−Y φj−1

) for τ ∈ V . Put Gj := σ̃∗h∗Gj−1. Here, σ̃∗ is pullback by the
birational map σ̃. We claim that Gj |T×τ =OT (−Y φj ). Certainly h∗Gj−1|T×τ =OT (−(Y φj−1

)τ )
since h restricts to the automorphism τ in each fiber T × τ over V . The verification that
Gj |T×τ =OT (−((Y φj−1

)τ )σ) is then not much different. One needs only to check that since
the domain of definition U × V of σ̃ intersects each fiber T × τ in the open set U × τ , whose
complement has codimension at least 2, then each fiber of a pullback by σ̃ is equal to the pullback
by σ of that fiber. This follows directly from the definitions in § 2. By induction on j, for all
16 j 6 n+m we get

Gj |T×τ =OT (−(Y φj−1
)φ) =OT (−Y φj )∼=O(−1,−j),

since (Y φj−1
)φ = Y φj holds for all τ ∈ V ⊆ V (j) as we saw in the proof of Proposition 4.3. This

proves the claim, and defining the subscheme Hj by the ideal sheaf Gj , it will have the required
property that Hj |T×τ = Y φj for τ ∈ V . Since each fiber of Hj is a (1, j)-curve and all (1, j)-curves
on T have the same Hilbert series, by [Har77, Theorem III.9.9], Hj is flat over V . Since σ̃, h, and
π are defined over F, so are Gj and Hj . By symmetry, H ′j exists as described for 06 j 6 n+m.

(2) An analogous argument to part (1) shows that we may find an invertible sheaf Hj on
T × V , defined over F, so that Hj |T×τ =OT (−W φj − Y φj ) for τ ∈ V . Let 06 i6 n and let
Fmi :=H−1

m H−1
m+1 · · · H

−1
m+i−1.

(3), (4) If i= 0 then the result is trivial. Let Cj1 :=Hj ∩H ′j . Note that

Cj1 |T×τ =Hj ×T×V H ′j ×T×V (T × τ) =Hj |T×τ ×T×τ H ′j |T×τ = Y φj ∩Xφj =Bj
1(τ)

for τ ∈ V . Let J j1 be the ideal sheaf defining Cj1 . For 1< i6 n, let J ji := J j1J
j+1
1 · · · J j+i−1

1 .
Let Cji be the subscheme defined by J ji .
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Now, J j1 · OT×τ = Iφ
j

1 . Thus J jn · OT×τ = Iφ
j

1 · · · I
φj+n−1

1 = Iφ
j

n . From the exact sequence

0→J jn · OT×τ →OT×τ → (O
Cjn

)|T×τ → 0

we see that Cjn|T×τ =Bj
n(τ). By Proposition 4.9, for fixed n, j the length of Bj

n(τ) is constant
for τ ∈ V . Thus by [Har77, Theorem III.9.9] Cjn and therefore J jn are flat over V .

Since T × V is flat over V , by flat base change for Tor [Wei94, Proposition 3.2.9] we have

TorT×V1 (O
Cjn
,OT×τ )∼= TorT×V1 (O

Cjn
,OT×V ⊗V Oτ )∼= TorV1 (O

Cjn
,Oτ ).

This vanishes because Cjn is flat over V . Thus for τ ∈ V we have J jn |T×τ = J jn · OT×τ = Iφ
j

n .
Finally, since Hj and H ′j are defined over F, by construction J ji and Cji are defined over F. 2

Corollary 4.11. Fix n, m ∈ N and a, b ∈ Z. There is a dense open subset U ⊆ V (m+ n)⊆G,

with 1 ∈ U , so that if τ ∈ U , then hi(T,Rφ
m

n (a, b))6 hi(T,Aσmn (a, b)) for i= 0, 1, 2. Further,
G r U is defined over F.

Proof. Let V := V (n+m). Let π : T × V → T be projection on the first factor; let Jmn and Fmn
be the sheaves on T × V defined in Proposition 4.10. Let N := Jmn ⊗Fmn ⊗ π∗O(a, b). This sheaf
is defined over F and flat over V , and for any τ ∈ V we have N|T×τ =Rφ

m

n (a, b). We now apply
upper semicontinuity [Har77, Theorem III.12.8] to obtain a open neighborhood U of 1 ∈ V so
that the statement holds. 2

To apply the corollary, we study in the next result the cohomology of the sheaves Aσmn , and
their relation to the ring A.

Lemma 4.12. Let m, n ∈ N.

(1) There is a k-basis for (Ant−n)σ
m ⊆K consisting of all monomials

{uivj |06 i6 n, a(i)6 j 6 b(i)} where a(i) = im+
(
i

2

)
,

b(i) = im+
(
n+ 1

2

)
−
(
n− i

2

)
.

In particular, dimk An =
(
n+3

3

)
for all n> 0 and A has Hilbert series hA(s) = 1/(1− s)4.

(2) We have (Ant−n)σ
m

=H0(T,Aσmn ) and H1(T,Aσmn ) = 0.

Proof. (1) Recall that we write E = k + ku+ kv + kuv, so A= k〈Et〉 ⊆ k(u, v)[t; σ]. We need to
calculate Eσ

m

n := (Ant−n)σ
m

= Eσ
m
Eσ

m+1 · · · Eσm+n−1
. It is enough to prove the case m= 0, for

Eσ
m

n is formed by sending each monomial uivj occurring in En to (uivj)σ
m

= uivj+im, and the
bounds a(i) and b(i) simply adjust by im for each i.

Now Eσ
i

is the k-span of {1, uvi, v, uvi+1} for each i> 0, so En is spanned by all possible
products of n monomials, one from each Eσ

i
with 06 i6 n− 1. Consider which monomials

uivj are in this spanning set for a given fixed i with 06 i6 n. Clearly the smallest value
of j occurs when one chooses u, uv, uv2, . . . uvi−1 from E, Eσ, . . . , Eσ

i−1
respectively, and

1 from the remaining spaces Eσ
i
, . . . , Eσ

n−1
; while the largest value of j occurs by taking

v from each of the spaces E, Eσ, . . . , Eσ
n−i−1

, and then uvn−i+1, . . . , uvn from the spaces
Eσ

n−i
, . . . , Eσ

n−1
, respectively. Thus 1 + 2 + · · ·+ i− 1 =

(
i
2

)
6 j 6 (n− i) + (n− i+ 1) +

· · ·+ n=
(
n+1

2

)
−
(
n−i
2

)
, and it is easy to see that every j in this range actually occurs. Thus En
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has the claimed basis, and as a consequence

dimk An = dimk En =
n∑
i=0

[(
n+ 1

2

)
−
(
n− i

2

)
−
(
i

2

)
+ 1
]

=
(
n+ 3

3

)
.

(2) T is covered by the four open sets

U+
+ := Spec k[u, v], U+

− := Spec k[u, v−1], U−− := Spec k[u−1, v−1], U−+ := Spec k[u−1, v],

and by definition Aσmn is the sheaf globally generated on T by the sections in W := Eσ
m

n . On any
affine open set U of the cover, Aσmn (U) =WOT (U) has an easily calculable k-basis of monomials
uivj . In particular,

WOT (U+
− ) = k{uivj |i> p, j 6 q, some upvq ∈W},

WOT (U−+ ) = k{uivj |i6 p, j > q, some upvq ∈W}.

Now, H0(T,Aσmn ) =WOT (U+
+ ) ∩WOT (U+

− ) ∩WOT (U−− ) ∩WOT (U−+ ). If uivj ∈WOT (U+
− ) ∩

WOT (U−+ ), then (i) i> p, j 6 q for some upvq ∈W and (ii) i6 p′, j > q′ for some up
′
vq
′ ∈W .

Note that (i) forces i> 0 and (ii) forces i6 n, so 06 i6 n. Then since a(i) and b(i) are
increasing functions of i for 06 i6 n, (i) forces j 6 b(i) and (ii) forces j > a(i). It follows that
WOT (U+

− ) ∩WOT (U−+ ) =W already, so H0(T,Aσmn ) =W = (Ant−n)σ
m

.

In particular, we obtain from the above that
(
n+3

3

)
= dimk An = dimk E

σm
n = h0(T,Aσmn ).

Recall that Aσmn = Iσmn Lσ
m

n , where Iσmn is the ideal sheaf defining the scheme Bm
n (1).

By Proposition 4.3(3), we have Lσmn ∼=O(n,
(
n+m+1

2

)
−
(
m+1

2

)
). By the Künneth formula,

H1(T,O(n,
(
n+m+1

2

)
−
(
m+1

2

)
)) = 0. Consider the exact sequence

0→Aσmn →O
(
n,

(
n+m+ 1

2

)
−
(
m+ 1

2

))
→OBmn (1)→ 0.

Proposition 4.9 and the associated long exact cohomology sequence give us that

h1(T,Aσmn ) = −h0

(
T,O

(
n,

(
n+m+ 1

2

)
−
(
m+ 1

2

)))
+ h0(T,Aσmn ) + len(OBmn (1))

= −(n+ 1)
((

n+m+ 1
2

)
−
(
m+ 1

2

)
+ 1
)

+
(
n+ 3

3

)
+ 2
(
m

(
n+ 1

2

)
+
(
n+ 1

3

))
= 0.

Therefore, H1(T,Aσmn ) = 0 for all n, m> 0. 2

Remark 4.13. It easily follows from the explicit basis given in the preceding lemma that A is not
noetherian, since the right ideal

∑
n>1 uv

2n−1tnA is infinitely generated.

Recall that we say that U ⊆G is a general subset if it is the complement of a countable union
of proper closed subvarieties.

Proposition 4.14. There is a general subset U of G such that for all τ ∈ U and for allm> 0, the
Hilbert series of

⊕
n∈N H

0(T,Rφ
m

n ) is 1/(1− s)4 and H1(T,Rφ
m

n ) = 0 for all n> 0. In particular,

for τ ∈ U we have dimk Rn 6
(
n+3

3

)
. Further, U contains τ(ρ, θ) for all pairs (ρ, θ) that are

algebraically independent over F.

Proof. Fix n, m> 0. We have computed in Lemma 4.12 that H1(T,Aσmn ) = 0. Therefore,
by Proposition 4.11, there is a nonempty open subset U(n, m)⊆ V (n+m)⊆G such
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that H1(T,Rφ
m

n (τ)) = 0 for τ ∈ U(n, m). Since the complement of U(m, n) is defined over F,
we have τ(ρ, θ) ∈ U(n, m) for all algebraically independent pairs (ρ, θ).

Take U =
⋂
n,m>0 U(n, m), and let τ ∈ U . We have that Lφ

m

n
∼=O(n,

(
n+m+1

2

)
−
(
m+1

2

)
)

by Proposition 4.3(3). The scheme Bm
n (τ) defined by Iφ

m

n has length 2(m
(
n+1

2

)
+
(
n+1

3

)
), by

Proposition 4.9. Since H1(T,Rφ
m

n (τ)) = 0, we may deduce from the long exact cohomology
sequence associated to Rφ

m

n ⊆O(n,
(
n+m+1

2

)
−
(
m+1

2

)
) that

h0(T,Rφmn ) = (n+ 1)
((

n+m+ 1
2

)
−
(
m+ 1

2

)
+ 1
)

− 2
(
m

(
n+ 1

2

)
+
(
n+ 1

3

))
=
(
n+ 3

3

)
.

Since Rnt−n ⊆H0(T,Rn), all statements are now immediate. 2

We will see in the next section that for general (ρ, θ) (in particular for a pair algebraically
independent over F) then we have dimk Rn =

(
n+3

3

)
for all n ∈ N.

Remark 4.15. There is a fair amount of literature on regularity of fat point schemes on
multiprojective spaces. However, the cohomology vanishing in Proposition 4.14 does not seem
to be given by these results. In particular, it follows from [SV06, Theorem 5.1] that, if τ is
general, then H1(T, In(i, j)) = 0 for any i, j with i, j > n− 2 and i+ j > 2

∑n−1
k=1 k = 2

(
n
2

)
. For

Proposition 4.14, however, we need (i, j) = (n,
(
n+1

2

)
).

5. Presentation, Hilbert series and free resolution of k

In this section, we analyze the resolution of the trivial module kR, and more specifically the
presentation of R by generators and relations. We show that there is a uniform description of
the resolution of k for general τ , and compute the Hilbert series and some homological properties
of (general) R(τ). Our main technique is to prove these results for A and analyze their behavior
under deformation.

We will rely heavily on the notation and formulas established in § 3. In particular, recall that
for given τ = τ(ρ, θ) we set γ = ρ+ 1, δ = ρ− 1, ε= θ + 1, and ζ = θ − 1, as these expressions
simplify the formulas for uφ and vφ as in (3.7). Write r1 = t, r2 = ut, r3 = vt, r4 = uvt, so that
R=R(τ) = k〈r1, r2, r3, r4〉 ⊆ k(u, v)[t; ϕ]. It is easy to calculate some quadratic relations among
the ri. For example, suppose that t(ft) = (vt)(gt) for some ft, gt ∈R1, so f, g ∈ E = k + ku+
kv + kuv. Then fφ = vgφ, or equivalently f = vφ

−1
g. Then, using (3.7), (−ζv + ε)f = (εv − ζ)g

and there are two linearly independent solutions: f = εv − ζ, g =−ζv + ε, and f = u(εv − ζ),
g = u(−ζv + ε). Similarly, one can find two relations of the form r2(ft) = r4(gt) and two
relations of the form r1(ft) = r4(gt). Let k〈x1, x2, x3, x4〉 be the free algebra, and consider
the surjection π : k〈x1, x2, x3, x4〉 →R; xi 7→ ri. The process above produces the following six
quadratic elements in the ideal of relations J = ker π:

f1 = x1(ζx1 − εx3) + x3(εx1 − ζx3), f2 = x1(ζx2 − εx4) + x3(εx2 − ζx4),
f3 = x2(ζx1 − εx3) + x4(εx1 − ζx3), f4 = x2(ζx2 − εx4) + x4(εx2 − ζx4),
f5 = x1(δx1 − γx2) + x4(γx1 − δx2), f6 = x1(δx3 − γx4) + x4(γx3 − δx4).

(5.1)

Since the coefficients in these relations depend only on τ , we set S(τ) := k〈x1, x2, x3, x4〉/(f1, f2,
. . . , f6). We shall see that for general τ , the surjection S(τ)→R(τ) is an isomorphism. For
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now note that the relations f1–f6 give precisely the relations in Theorem 3.5(2) in the case
γ 6= 0, ε 6= 0.

We set up some additional notation which will be useful throughout this section.

Notation 5.2. It is convenient to name the following special elements in R(τ)1:

z1 = (ζ − εv)t, z2 = (ε− ζv)t, z3 = (ζu− εuv)t, z4 = (εu− ζuv)t,
z5 = (δ − γu)t, z6 = (γ − δu)t, z7 = (δv − γuv)t, z8 = (γv − δuv)t,

z9 = (γu− δ)(−ζv + ε)t, z10 = (δu− γ)(εv − ζ)t.

Lemma 5.3. Assume Notation 5.2. The following relations hold in R(τ):

r1z1 + r3z2 = 0, r1z3 + r3z4 = 0, r2z1 + r4z2 = 0, r2z3 + r4z4 = 0,
r1z5 + r4z6 = 0, r1z7 + r4z8 = 0, z5z1 + z7z2 = 0, z5z3 + z7z4 = 0,

z6z1 + z8z2 = 0, z6z3 + z8z4 = 0, z9z1 + z10z2 = 0,
z9z3 + z10z4 = 0, z1z9 + z3z10 = 0, z2z9 + z4z10 = 0.

Proof. The first six relations are just f1 through f6. The others are checked easily,
using (3.7). 2

The next result gives a complex which is a potential free resolution over R(τ) of the trivial
module k. We will prove later that this complex is exact for general τ . For notational purposes,
we will think of the right module Rn as a column vector. An R-module map M :R[a]n→R[b]m

is therefore an m× n matrix of elements of Rb−a, acting by left multiplication.

Proposition 5.4. For any τ ∈G, there is a complex of right R=R(τ)-modules

0→R[−4] M−−→R[−3]⊕4 N−−→R[−2]⊕6 P−−→R[−1]⊕4 Q−−→R→ k→ 0, (5.5)

where here

M =


0
0
z9
z10

 , N =



z9 0 0 0
z10 0 0 0
0 z9 0 0
0 z10 0 0
0 0 z1 z3
0 0 z2 z4

 ,

P =


z1 z3 0 0 z5 z7
0 0 z1 z3 0 0
z2 z4 0 0 0 0
0 0 z2 z4 z6 z8

 , Q=
(
r1 r2 r3 r4

)
.

(5.6)

Proof. The fact that this is a complex is equivalent to the matrix equations QP = 0, PN = 0,
NM = 0, which are in turn equivalent to the relations computed in Lemma 5.3. 2

In the case that τ = 1, we can analyze the Hilbert series of R(τ) =A, and show that
(5.5) is exact, fairly directly. We do this in the next two results. We note that such basic
properties of A were also obtained by Paul Smith and James Zhang in unpublished work
[YZ06, Proposition 7.6]. Given a, b ∈A, we use the notation syzr(a, b) for the module of right
syzygies between a and b; in other words, syzr(a, b) = {(x, y) | ax+ by = 0} ⊆A2. Similarly,
syz`(a, b) = {(x, y) | xa+ yb= 0} ⊆A2 is the module of left syzygies.
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Lemma 5.7. Consider A=R(1).

(1) We have A∼= S(1) = k〈x1, x2, x3, x4〉/(f1, f2, . . . , f6); in particular, hA(s) = hS(1)(s) =
1/(1− s)4.

(2) We have syzr(r1, r2) = (r2,−r3)A= syzr(r3, r4).

(3) We have syzr(r1, r3) = (r3,−r1)A+ (r4,−r2)A= syzr(r2, r4).

(4) Dually to parts (2) and (3), we have syz`(r1, r2) =A(r4,−r1) = syz`(r3, r4), and
syz`(r1, r3) =A(r3,−r1) +A(r4,−r2) = syz`(r2, r4).

Proof. (1) Take lexicographic order on the monomials in the xi, with x2 < x1 < x3 < x4. In the
case τ = 1 at hand, we have γ = ε= 1, δ = ζ = 0, and so the relations of S(1) become especially
simple binomial relations:

f1 = x3x1 − x1x3, f2 = x3x2 − x1x4, f3 = x4x1 − x2x3,

f4 = x4x2 − x2x4, f ′5 = x1x2 − x2x3, f6 = x4x3 − x1x4.

Here, we have replaced f5 by f ′5 = f3 − f5 so that the leading terms x3x1, x3x2, x4x1, x4x2, x1x2,
x4x3 of the relations with respect to the order are distinct. It is routine to check that all of the
overlaps between these relations are resolvable, and so by Bergman’s diamond lemma [Ber78]
the set of irreducible words {xi2x

j
1x
k
3x

`
4 | i, j, k, `> 0} is a k-basis for S(1). The Hilbert series

hS(1)(s) = 1/(1− s)4 is immediate. Since A has the same Hilbert series by Lemma 4.12, the
surjection π : S(1)→A must be an isomorphism.

(2) By part (1), we may work with the ring S = S(1) instead, which we do for the rest of
the proof. Consider the monomial ordering and basis of irreducible words given in part (1).
Let M := syzr(x1, x2) = {(f, g) ∈ S2 | x1f + x2g = 0}. Obviously (x2,−x3) ∈M by relation f ′5.
If (f, g) ∈M where f is a linear combination of irreducible words, we can subtract an element
in (x2,−x3)S to yield (f ′, g′) ∈M where f ′ is a linear combination of irreducible words not
containing x2.

Define Zi to be the k-span of all irreducible words which begin with xi; thus S>1 =
Z2 ⊕ Z1 ⊕ Z3 ⊕ Z4 as vector spaces. Now x1f

′ ∈ Z1 by the previous paragraph, and rewriting
g′ if necessary so that it is a linear combination of irreducible words, clearly x2g

′ ∈ Z2. So x1f
′ =

−x2g
′ ∈ Z1 ∩ Z2 = 0, which forces f ′ = g′ = 0 since S(1) =A is a domain. Thus M = (x2,−x3)S.

Now since x3 = vx1 and x4 = vx2, it is easy to see that syzr(x1, x2) = syzr(x3, x4).
(3) Maintain the notation of part (2). First, an easy argument using the basis of irreducible

words shows that x1S ⊆ Z1 + Z2. Then the result follows from a similar argument to that in part
(2), which we leave to the reader.

(4) It is straightforward to check using the relations that the vector space bijection S1→ S1

defined by x1 7→ x3, x2 7→ x4, x3 7→ x1, x4 7→ x2 extends to an anti-isomorphism S→ S. We note
(without proof) that this anti-isomorphism is the map given by Corollary 3.10. 2

Proposition 5.8. As above, consider A=R(1).

(1) The complex (5.5) is exact and so is a free resolution of kA.

(2) We have Ext1A(k, A) = 0.

Proof. (1) In this case, the entries zi of the matrices in the complex (5.5) simplify to be scalar
multiples of the ri. Exactness of the complex at the A[−1]⊕4 spot is now easily seen to be
equivalent to the fact that f1, f2, . . . , f6 generate the kernel of k〈x1, . . . , x4〉 →A, as was proved
in Lemma 5.7(1). Exactness at the A[−4] spot follows because A is a domain. Finally, it is
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straightforward to see that exactness of the complex in the remaining A[−2]⊕6 and A[−3]⊕4

spots requires precisely the right syzygy results proved in Lemma 5.7(2)(3). So (5.5) is exact in
this case.

(2) Since (5.5) is exact, we can compute ExtiA(k, A) as the ith homology of the complex

0→A
Q∗−−−→A[1]⊕4 P ∗−−−→A[2]⊕6 N∗−−−→A[3]⊕4 M∗−−−→A[4]→ 0, (5.9)

given by applying HomA( , A) to (5.5). Since this is a complex of left modules, we will write
the free modules as row vectors, and write Q∗, P ∗, etc., as right multiplication by the matrices
giving Q, P , etc. Now to prove Ext1A(k, A) = 0 we need to prove that ker P ∗ = imQ∗, where
clearly imQ∗ =A(r1, r2, r3, r4). However, an easy argument using the left syzygies computed in
Lemma 5.7(4) shows that ker P ∗ =A(r1, r2, r3, r4) as needed. 2

Now we will study the complex (5.5) as τ ∈G varies.

Lemma 5.10. Let R=R(τ).

(1) For each n> 1, there is an open set Un ⊆G, with 1 ∈ Un, such that dimk R(τ)n =
(
n+3

3

)
for all τ ∈ Un.

(2) For each n> 1, there is an open subset Vn ⊆ Un ⊆G such that (5.5) is exact in degree n
for τ ∈ Vn; moreover, 1 ∈ Vn and the complement of Vn is defined over F.

Proof. To save notation, let us identify G with k∗ × k∗. We first fix some degree n and consider
the degree n component of any one of the maps occurring in the complex (5.5); in more general
notation, this looks like Ω(τ) :R[−m]⊕in →R[−m+ 1]⊕jn , where the map Ω(τ) is given by a matrix
with entries in R(τ)1. We think of ρ, θ as parameters now and note that the nonzero entries zi in
the matrix are fixed elements in F[ρ, θ][u, v]t. We assume that n>m, since otherwise Ω(τ) = 0.
Writing down all possible words of degree n−m in the elements r1, r2, r3, r4 and multiplying
them out using (3.7), one gets a k-spanning set Y for Rn−m consisting of 4n−m elements of the
form ftn−m, where f ∈ F(ρ, θ, u, v). Then one gets a k-spanning set for R[−m]⊕in consisting
of i · 4n−m i-tuples of such elements. Applying Ω(τ), we get a k-spanning set for im Ω(τ)
consisting of j-tuples of elements in F(ρ, θ, u, v)tn−m+1. We multiply by t−n+m−1, obtaining
a set Z ⊆ F(ρ, θ, u, v)⊕j .

Following through the construction of Z, one may check that every element of Z has a well-
defined evaluation at any (ρ, θ) ∈G; in other words, each fraction appearing has a denominator
which is not identically 0 when evaluated at any (ρ, θ) ∈G. Indeed, this must be true since by
construction, specializing Z at any particular (ρ, θ) should give a set whose k-span (times tn−m+1)
is equal to im Ω(τ(ρ, θ)). Now it is standard that dimk Z(ρ, θ) behaves lower-semicontinuously in
(ρ, θ); in other words, for every d> 0, the condition dimk Z 6 d is a closed condition on (ρ, θ) ∈G;
moreover, this closed set is cut out by the vanishing of polynomials in F[ρ, θ]. In conclusion, there
is an open subset of G, whose complement is defined over F, on which dimk im Ω(τ) achieves its
maximum.

(1) We apply the argument in the preceding two paragraphs to the map Q in (5.5). It shows
that for all n> 1, there is an open set Un ⊆G of τ for which dimk R(τ)n achieves a maximum
value dn. Note that dn > dimk An =

(
n+3

3

)
by Lemma 4.12(1). By Proposition 4.14, there is also

a general subset of G for which dimk R(τ)n 6
(
n+3

3

)
. This forces dn =

(
n+3

3

)
and 1 ∈ Un.

(2) Fix n> 1 and define Un as above. Then for all τ ∈ Un, dimk R(τ)n =
(
n+3

3

)
is constant

by part (1). Thus for all τ ∈ U ′n = Un ∩ Un−1 ∩ · · · ∩ Un−4, (omit any term Ui with i6 0), the k-
dimension in degree n of each term in the complex (5.5) is the same. Let Ω(τ) be any degree nmap
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occurring in the complex, in the notation of the first paragraph of the proof. Since dimk im Ω(τ)
behaves lower-semicontinuously for τ ∈ U ′n, by the rank-nullity formula dimk ker Ω(τ) must
behave upper-semicontinuously in τ ∈ U ′n. Then for any i, the k-dimension of the degree-n piece
of the ith homology of the complex (5.5) will also behave upper-semicontinuously in τ ∈ U ′n, and
so will achieve a minimum along an open subset of U ′n. However, we saw in Proposition 5.8 that
(5.5) is exact when τ = 1. Thus the minimum dimensions for the homology groups are 0 in each
degree; in other words, there is an open subset Vn ⊆ U ′n ⊆ Un ⊆G, with 1 ∈ Vn, such that (5.5) is
exact in degree n as claimed. The closed subset of U ′n where each dimk ker Ω(τ) does not achieve
its minimum is the same as the closed subset where dimk im Ω(τ) does not achieve its maximum,
and we already saw in the first part of the proof that this closed subset is defined over F. 2

The next result shows, among other things, that for general τ parts (2)–(4) of Theorem 3.5
hold for R(τ).

Proposition 5.11. There is a general subset U ⊆G, with 1 ∈ U and (ρ, θ) ∈ U for any pair
(ρ, θ) algebraically independent over F, such that R=R(τ) has the following properties for any
τ ∈ U .

(1) The complex (5.5) is exact, R is Koszul of global dimension 4 with hR(s) = 1/(1− s)4,
and R∼= S(τ) = k〈x1, x2, x3, x4〉/(f1, f2, . . . , f6).

(2) We have Ext1R(k, R) = 0.

(3) For i= 2, 3, 4 we have dimk ExtiR(k, R) =∞.

(4) The algebra R is not AS-Gorenstein, and so R is not a regular algebra; R fails χ2 on the
right; and depthR= 2, so the Auslander–Buchsbaum formula fails for the module M := kR.

Proof. Let Vn ⊆G be the open subset occurring in Lemma 5.10(2) for each n> 1, and let
V :=

⋂
n>1 Vn.

(1) Let τ ∈ V . The complex (5.5) is exact by the construction of Vn in Lemma 5.10(2).
Then R is Koszul, and gl. dimR= pd k = 4 by [Li96]. The Hilbert series of R(τ) also follows
immediately from the shape of the free resolution of k in (5.5). The fact that the kernel of the
map k〈x1, x2, x3, x4〉 →R(τ) is generated as an ideal by {f1, . . . , f6} follows from the exactness
of (5.5) at the R[−1]⊕4 spot.

(2) As in Proposition 5.8(2), we examine the complex

0→R
Q∗−−−→R[1]⊕4 P ∗−−−→R[2]⊕6 N∗−−−→R[3]⊕4 M∗−−−→R[4]→ 0, (5.12)

given by applying HomR( , R) to (5.5), where the free modules are rows and the maps M∗, N∗,
etc., are right multiplication by M, N , etc. By part (1) we can calculate ExtiR(k, R) as the ith
homology of (5.12) for τ ∈ V .

Now, however, analogous arguments as in Lemma 5.10 apply to the complex (5.12). In
particular, the dimensions of the nth graded pieces of the part of this complex relevant to
the calculation of Ext1R(k, R), namely

R
Q∗−−−→R[1]⊕4 P ∗−−−→R[2]⊕6,

are all constant for τ on an open set U ′′n := Un ∩ Un+1 ∩ Un+2, in the notation of the proof
of Lemma 5.10(1). The same argument as in the proof of Lemma 5.10(2) shows that the
first homology of (5.12) in any degree n>−2 is upper-semicontinuous for τ ∈ U ′′n . Since
Ext1A(k, A) = 0 by Proposition 5.8, we conclude that for n> 1 there are open subsets, Wn ⊆ U ′′n ,
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containing 1 and all pairs (ρ, θ) which are algebraically independent over F, such that (5.12)
is exact in the R[1]⊕4 spot (in degree n) for τ ∈Wn. In particular, Ext1R(k, R) = 0 for all
τ ∈ U := V ∩

⋂
n>−2 Wn.

(3) Assume that τ ∈ U throughout this part. Since τ ∈ V , then ExtiR(k, R) is the ith
homology of (5.12). Clearly Ext4R(k, R) =R[4]/ imM∗ =R/(Rz9 +Rz10)[4]. There is a relation
z1z9 + z3z10 = 0 by Lemma 5.3. Let g(s) be the Hilbert series of R/(Rz9 +Rz10). Then

g(s)> 1/(1− s)4 −
[
2s/(1− s)4 − s2/(1− s)4] = 1/(1− s)2,

and in particular dimk Ext4R(k, R) =∞.

Similarly, we have Ext3R(k, R) = kerM∗/ imN∗, and obviously {(a, b, 0, 0) | a, b ∈R} ⊆
kerM∗. On the other hand, imN∗ ∩ {(a, b, 0, 0) | a, b ∈R}= {(a, b, 0, 0) | a, b ∈Rz9 +Rz10}.
Thus Ext3R(k, R) has a subfactor isomorphic to R/(Rz9 +Rz10)⊕2[3]; in particular,
dimk Ext3R(k, R) =∞ also.

It follows from the exactness of (5.5) that

hR(s)− hR[1]⊕4(s) + hR[2]⊕6(s)− hR[3]⊕4(s) + hR[4](s) = s−4.

This also gives the alternating sum of the Hilbert series of the homology groups of (5.12);
in other words we must have

∑4
i=0(−1)ihExtiR(k,R)(s) = s−4. Then we have ExtiR(k, R) =

0 for i= 0, 1 (since τ ∈W ), and, by the calculations above, hExt4R(k,R)(s) = g(s)s−4 and
hExt3R(k,R)(s)> 2g(s)s−3. It follows that hExt2R(k,R)(s)> 2g(s)s−3 − g(s)s−4. Write g(s) =

∑
gis

i.
Now, if Ext2R(k, R) is finite-dimensional, for i� 0 we have 0< 2gi 6 gi+1. Thus R/(Rz9 +Rz10)
has exponential growth; as we know R has GK-dimension 4 this is impossible.

(4) For τ ∈ V , the failure of the AS-Gorenstein property for R follows from part (3) above.
The failure of χ2 is also immediate from part (3). Parts (2) and (3) show that depthR= 2 for
τ ∈ U . Therefore, for such τ the Auslander–Buchsbaum formula fails for the module M := k,
since depth k = 0 and pd k = 4. 2

We remark that [Jør98, Theorem 3.2] shows that if R is connected graded and noetherian, and
the smallest nonvanishing ExtiR(k, R) is finite-dimensional, then R must satisfy the Auslander–
Buchsbaum property. Since we show later in the paper that R is noetherian for general τ , this
shows that once we know that Ext2R(k, R) 6= 0, it must necessarily be infinite-dimensional. Note
that [Jør98, Proposition 3.5] also shows that any noetherian connected graded algebra that
satisfies χ and has finite global dimension must be Artin–Schelter regular. The algebras R show
that the χ conditions are in some sense necessary for Jørgensen’s results.

6. Critical density

An infinite subset C of a variety S is called critically dense if every infinite subset of C is Zariski
dense in S. This property arises naturally, among other places, in the study of the noetherian
property for näıve blowup algebras R(S, c, L, σ) as in [KRS05]: a necessary condition for such a
näıve blowup algebra to be noetherian is that the point c ∈ S being blown up lies on a critically
dense orbit of the automorphism σ. Bell et al. have studied this condition further in [BGT08] and
have shown the that critical density of such an orbit of an automorphism is simply equivalent
to density in the case char k = 0. (In positive characteristic, on the other hand, there are easy
examples of orbits of automorphisms, even of P2, which are dense but not critically dense.)
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The aim in this section is to prove that the forward φ−1-orbits of the special points F and
Q (when these are defined) are critically dense subsets of T , when τ is general. As we will see
in the next section, this is a necessary condition for the ring R(τ) to be noetherian, by a similar
argument as in the näıve blowup case. Since critical density for an orbit of a birational map
has not really been studied, we will prove critical density holds for general τ more or less from
scratch, using a method similar to that used in [Rog04].

In the proof of critical density, the alternative coordinate system ( : ) for P1 introduced in § 3
is especially useful, and we use it throughout this section. We begin with a simple computation
that gives the general form of the points on the forward φ−1-orbit of F = (1 :−1)(1 : 1); the
behavior of the orbit of Q is symmetric.

Lemma 6.1. Let τ = τ(ρ, θ) ∈G be a general element of G, thinking of ρ and θ as parameters.
There are polynomials pn = pn(ρ, θ), qn = qn(ρ, θ) in F[ρ, θ] such that φ−n(F ) is defined and
equal to (pn : qn)(θn : 1) for all (ρ, θ) such that pn(ρ, θ), qn(ρ, θ) are not both zero. Moreover,
pn = ρn + θp′n and qn =−1 + θq′n for some polynomials p′n, q

′
n ∈ F[ρ, θ].

Proof. An easy calculation using the formulas in § 3 shows that in terms of the coordinate system
( : ), the formula for the birational map φ−1 is

φ−1(a : b)(c : d) = σ−1τ−1(a : b)(c : d) = σ−1(ρa : b)(θc : d) = (ρad− θbc : bd− ρθac)(θc : d).

Let p0 := 1, q0 :=−1, and inductively define pn+1 := ρpn − θn+1qn and qn+1 := qn − ρθn+1pn.
Induction on n shows that φ−n(F ) = (pn : qn)(θn : 1) for all n> 0 (for (ρ, θ) such that pn, qn
are not both zero). Clearly pn, qn ∈ F[ρ, θ] for all n. The last claim also follows easily
by induction. 2

Proposition 6.2. There is a general subset U of G, containing τ(ρ, θ) for all pairs (ρ, θ)
which are algebraically independent over F, such that, for τ ∈ U , the points Fn = φ−n(F ) and
Qn = φ−n(Q) are defined for all n> 0 and {Fn}n>0 and {Qn}n>0 are critically dense subsets
of T .

Proof. By the usual symmetry argument using Lemma 3.8, it is enough to prove the claims for
the point F and its φ−1-orbit. We use the notation and the result of Lemma 6.1.

Suppose we are given any m> 0, s> 0, and an increasing sequence 06 n1 < n2 < · · ·< nN of
N = (m+ 1)(s+ 1) nonnegative integers. An arbitrary hypersurface of degree (m, s) on T is the
vanishing of some nonzero multi-homogeneous form

∑m
k=0

∑s
`=0 ck`x

kym−kz`ws−`. We totally
order monomials of bidegree (m, s) as follows: we set xiym−izjws−j < xkym−kz`ws−` if j > ` or
if j = ` and i > k. Let f1 = xmzs < f2 < · · ·< fN = ymws be the enumeration of all monomials
of degree (m, s) in this order. Consider the N ×N matrix

Mm,s,{nj} = (aij)16i,j6N = (fi(pnj , qnj , θ
nj , 1))16i,j6N (6.3)

which has entries in F[ρ, θ]. We claim that detMm,s,{nj} is a nonzero polynomial in F[ρ, θ].
Supposing we have proven this claim, then note that if the points Fn happen to be defined for all
n> 0, but the set {Fn|n> 0} is not critically dense in T , there will be some hypersurface H of
degree (m, s) and some infinite subset of N, say {n1, n2, . . .}, such that Fnj ∈H for all nj . This
will force (ρ, θ) to be in the vanishing set of detMm,s,{nj}Nj=1

. Moreover, by Proposition 4.3(1)

we already know that the points φ−n(F ) are well defined for all n> 0 as long as θ does not
have finite order. In conclusion, {Fn|n> 0} is a well-defined critically dense set of points as long
as (ρ, θ) is not in the vanishing set of any of the countably many polynomials detMm,s,{nj},
or contained in the countably many horizontal lines where θ is a root of unity. Let U ⊆G be
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the complement of these countably many proper closed subsets. Since all of the removed closed
sets are defined over F, any point (ρ, θ) with coordinates algebraically independent over F must
belong to U .

It remains to prove the claim thatD = detMm,s,{nj} is a nonzero polynomial. For this, think of
D as a sum of N ! signed products of entries of (aij). Order monomials in F[ρ, θ] lexicographically
with θ < ρ, so θiρj < θkρ` if i < k or if i= k and j < `. We want to consider, for each such signed
product, the smallest possible monomial in this ordering occurring with nonzero coefficient.
Since we have shown in Lemma 6.1 that pn has a single term ρn of degree 0 in θ and qn also
has a single term −1 of degree 0 in θ, it follows that aij = fi(pnj , qnj , θ

nj , 1) has a unique term
of lowest degree in θ, namely fi(ρnj ,−1, θnj , 1). More specifically, if fi = xkym−kz`ws−`, where
k = k(i) and `= `(i), then this is (−1)m−kρknjθ`nj . So clearly ρknjθ`nj is the smallest monomial
occurring in aij . Now if χ is any permutation of {1, 2, . . . , N}, and Pχ =

∏N
i=1 ai,χ(i) is one of

the products occurring in the expansion of D, we may calculate the smallest monomial occurring
in this product by multiplying the smallest monomials occurring in each factor. The resulting
smallest monomial in Pχ is

Lχ =
N∏
i=1

ρk(i)nχ(i)θ`(i)nχ(i) .

Let χ be any nonidentity permutation of {1, 2, . . . , N}; hence there is i1 < i2 such that
χ(i1)> χ(i2). Define χ′ = χ ◦ τ , where τ = (i1, i2) is the transposition interchanging i1 and i2.
We show that Lχ′ < Lχ. Since only the i1, i2 terms in the products Lχ, Lχ′ differ, we just need
to show that

ρk(i1)nχ(i1)θ`(i1)nχ(i1)ρk(i2)nχ(i2)θ`(i2)nχ(i2) > ρk(i1)nχ(i2)θ`(i1)nχ(i2)ρk(i2)nχ(i1)θ`(i2)nχ(i1) . (6.4)

By the way the fi were enumerated, since i1 < i2, we have `(i1)> `(i2) and if `(i1) = `(i2) then
k(i1)> k(i2). It is then straightforward to verify that (6.4) holds. In particular, this implies that
Le, where e is the identity permutation, is strictly smaller than the smallest monomial occurring
in Lχ for any nonidentity χ. This finishes the proof that D is not identically 0, since Le cannot
be canceled by any other term in the expansion of D. 2

Let us pause and take stock of our progress so far. We have shown that almost all of
Theorem 3.5 holds for general τ ∈G, as well as proving a number of additional results about the
map φ and the cohomology of the sheaves Rφ

m

n . More specifically, we have the following.

Theorem 6.5. Let (ρ, τ) be a pair algebraically independent over F, and let τ := τ(ρ, θ). Then
R(τ) and R(τ) satisfy the following properties.

(1) For any n, m ∈ N and i, j ∈ Z, we have h1(T,Rφ
m

n (i, j))6 h1(T,Aσmn (i, j)).

(2) We have h1(T,Rφ
m

n ) = 0 for all m, n ∈ N.

(3) We have (Rnt−n)φ
m

=H0(T,Rφ
m

n ) for all n, m ∈ N.

(4) For any m ∈ N, the rational map φ−m is defined at F and Q and the φ−1-orbits of F and
Q are infinite.

(5) The set {φ−mF}m>0 ∪ {φ−mQ}m>0 is a critically dense subset of T .

(6) We have dimk Rn =
(
n+3

3

)
and R∼= k〈x1, x2, x3, x4〉/(f1, f2, . . . , f6) where the relations

f1, . . . , f6 are as in (5.1).
(7) The algebra R has left and right global dimension 4, and (5.5) is a free resolution of kR.

(8) The algebra R fails left and right χ2.

(9) The Auslander–Buchsbaum property fails for R on the left and the right.
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Proof. Since R(τ)op ∼=R(τ−1) by Proposition 3.9, it is enough to show that for such τ each of
the properties claimed for R(τ) hold individually on the right. Then part (1) is Corollary 4.11,
part (2) is Proposition 4.14, and part (3) follows from Proposition 4.14 and Lemma 5.10(1).
Parts (4) and (5) are Proposition 6.2, and the remaining parts are Proposition 5.11. 2

The ring-theoretic properties of a (general) R(τ) shown in parts (6)–(9) of the theorem are
not terribly surprising, since the pathological example A has all of these properties. What is less
expected is that in the general case R(τ) becomes noetherian, unlike A. Proving this is the goal
of the remainder of the paper.

7. Cohomology modules

For the rest of the paper, we assume that τ = τ(ρ, θ) where the pair (ρ, θ) is algebraically
independent over k. ThusR=R(τ) andR=R(τ) will satisfy all of the properties in Theorem 6.5.

In this and the following two sections, we prove that R is noetherian and thus complete the
proof of Theorem 3.5. We begin with some comments on the proof strategy.

There is a method of attack that has successfully shown that many classes of birationally
commutative algebras are noetherian (cf. [KRS05, RS07, Sie08, Sie10]). Ultimately, this goes
back to Artin and Van den Bergh’s original paper [AV90] on twisted homogeneous coordinate
rings. Suppose that one is interested in a graded algebra S, given as global sections of some
quasicoherent graded sheaf S ∼=

⊕
Sn on a projective scheme X. Roughly speaking, the method

is as follows. First, one puts a multiplicative structure on S that induces the multiplication on S;
that is, one makes S into a bimodule algebra, as in [Van96]. One shows that the bimodule algebra
S is noetherian; one may think of this as saying that S is noetherian at the level of geometry.
Then one shows that the sheaves Sn form an ample sequence in the sense of [Van96]. This forces
certain cohomology groups to vanish, and one then applies [Van97, Theorem 5.2] to show that
S itself is noetherian.

This method fails for the algebras R(τ). As we shall see in Remark 8.8, the sheaves Rn
do not form an ample sequence, and thus one cannot force cohomology to vanish. We will see,
in fact, that there are infinite-dimensional cohomology modules over R that form an extremely
interesting class of objects. In this section, we will define cohomology modules, and reduce the
problem of showing that R is noetherian to that of showing that (particular) cohomology modules
are noetherian.

We begin, however, by showing that R is noetherian at the level of geometry. This amounts
to showing that there is a well-behaved correspondence between graded right ideals of R and
ideal sheaves on T .

Proposition 7.1. Let J (1) ⊆ J (2) ⊆ · · · be an ascending chain of graded right ideals of R. There

are a number k ∈ N and an ideal sheaf J ⊆ Ik so that the sections in J
(`)
n generate JLk · Rφ

k

n−k
for n> k, `� 0.

Proof. Let H be any graded right ideal of R. Let Hn be the subsheaf of the constant sheaf
K generated by Hnt

−n. That H is a right ideal means that HmRn ⊆Hm+n ⊆Ktn+m, and
so HmRφ

m

n ⊆Hm+n for all m, n ∈ N. Now, since Hn ⊆Rn =H0(T, In ⊗ Ln), we can write
Hn = Gn ⊗ Ln, where Gn ⊆ In is also an ideal sheaf. Then the condition that H is a right
ideal becomes GmIφ

m

n ⊆ Gn+m for all m, n ∈ N. Obviously this is equivalent to the conditions
GmIφ

m

1 ⊆ Gm+1 for all m> 0.

We call any sequence of ideal sheaves {Gm|m> 0} satisfying Gm ⊆ Im and GmIφ
m

1 ⊆ Gm+1

for all m> 0 a standard sequence. It is enough to prove that for any standard sequence,
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we have GmIφ
m

1 = Gm+1 for m� 0. For supposing we have proved this, let {G(i)
m } be the

standard sequence associated to the ideal J (i). For fixed m, the ascending chain G(1)
m ⊆ G(2)

m ⊆ · · ·
stabilizes to a fixed sheaf, call it Gm. Clearly {Gm} is again a standard sequence. We will have
GmIφ

m

1 = Gm+1 for m>m0. Let J := Gm0 . For `� 0, we have G(`)
m0 = J . Then the proposition

holds, with this J and k =m0.
Thus we must show that GmIφ

m

1 = Gm+1 for m� 0, for any standard sequence {Gm}. Let
m′ be the smallest m such that Gm 6= 0. By redefining Gm = Gm′ for m<m′, we obtain another
standard sequence, and it is enough to prove the claim for this sequence. Thus we may assume
that G0 defines a proper subscheme C of T . Since D := {φ−n(F )|n> 0} ∪ {φ−n(Q)|n> 0} is a
critically dense set by the hypothesis that τ is general, S := C ∩D is a finite set of points.

Let x := φ−j(F ) for some j > 0. In this case, using Lemma 4.7 we have that

(Iφ
m

1 )x =

{
mx if m> j + 1,
OT,x if m6 j,

where we write mx for the maximal ideal of OT,x. It follows similarly that (Im)x = m
m−j−1
x for

m> j + 1, while (Im)x =OT,x for m6 j. Similar formulas obviously hold if x= φ−j(Q) for some
j > 0. In particular, we deduce from the equation GmIφ

m

1 ⊆ Gm+1 that the scheme defined by Gm
is supported on the set C ∪D for all m> 0.

Let y ∈ T . We study the local behavior of the standard sequence at y. We know that

(Gm)y ⊆ (Im)y and (GmIφ
m

1 )y ⊆ (Gm+1)y. (7.2)

We now consider cases. Suppose that y 6∈ C ∪D. In this case, (7.2) specializes to (GmIφ
m

1 )y =
OT,y = (Gm+1)y for all m> 0. Next, suppose that y ∈D r C, say y = φ−j(F ) (the case of a
point on the orbit of Q is similar). Then (7.2) again specializes to (Gm)yOT,y ⊆ (Gm+1)y for
06m6 j, and it specializes to (Gm)ymy ⊆ (Gm+1)y ⊆m

m−j
y for m> j + 1. Since y 6∈ C, we will

have (G0)y =OT,y. Now induction on m using the equations above shows that (Gm)y =OT,y for
06m6 j + 1, and (Gm)y = mm−j−1 for m> j + 2. In particular, all inclusions are equalities
above and (Gm)y(Iφ

m

1 )y = (Gm+1)y holds for all m> 0.
Next, let y ∈ U := C rD. Since C ∩D is finite, U is an open subscheme of C. Specializing

(7.2), we obtain (Gm)yOT,y ⊆ (Gm+1)y, since y 6∈D. In other words, the sequence {Gm|U} gives an
ascending chain of ideal sheaves on U . Since U is a noetherian scheme, (Gm)y(Iφ

m

1 )y = (Gm)y =
(Gm+1)y for all y ∈ U and m>m1, for some m1.

The finitely many points in S = C ∩D are left. Suppose that y ∈ C ∩D, say y = φ−j(F ).
Then for m> j + 1, (7.2) says (Gm)y ⊆m

m−j−1
y and (Gm)ymy ⊆ (Gm+1)y. These conditions can

be reinterpreted as follows:
⊕∞

i=0(Gi+j+1)y is a graded ideal of the Rees algebra OT,y ⊕my ⊕
m2
y ⊕ · · · . This Rees algebra is noetherian, so the ideal is finitely generated. This means precisely

that (GmIφ
m

1 )y = (Gm+1)y for m� 0. The case that y = φ−j(Q) is similar. Repeating finitely
many times, we conclude there is a single m2 such that (GmIφ

m

1 )y = (Gm+1)y for m>m2, and
for all y ∈ S. Thus GmIφ

m

1 = Gm+1 for m>max(m1, m2), and the claim is proved. 2

It is not immediately clear from Proposition 7.1 that R is right noetherian. As we will
see, the obstruction lies in the cohomology of sheaves of the form F ⊗Rφ

m

n . To begin to
analyze this issue, we make some definitions. For m> 0, let Rφm :=

⊕
n R

φm
n . For m, n, ` ∈ N,

let νmn,` :Rφ
m

n ⊗Rφ
m+n

` →Rφ
m

n+` be the natural multiplication onRφm induced by the embeddings
of these sheaves in the constant sheaf K.
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Definition. Suppose that G :=
⊕

n∈N Gn is a quasicoherent sheaf on T , and that for all n, ` ∈ N
there are action maps µn,` : Gn ⊗Rφ

n+m

` →Gn+` so that the diagram

Gn ⊗Rφ
n+m

` ⊗Rφ
n+`+m

k µn,`⊗1
//

1⊗νn+m
`,k

��

Gn+` ⊗Rφ
n+`+m

k

µn+`,k

��
Gn ⊗Rφ

n+m

`+k µn,`+k
// Gn+`+k

(7.3)

commutes for all n, `, k ∈ N. Then we call G anRφm-module. For anyRφm-module G and 06 i6 2
we call H i(T, G) a cohomology module.

An important special case is G = F ⊗Rφm for some quasicoherent sheaf F , with the maps
µn,` induced by the multiplication maps on Rφm . In this case we use the special notation

Hi(F , m) :=
⊕
n∈N

H i(T, F ⊗Rφmn )

for the cohomology module H i(T, G).

We must show that cohomology modules do in fact have an R-action, as the name suggests.
We prove this and other important formal properties of this construction in the next result.

Lemma 7.4. Let m ∈ N.

(1) For any Rφm-module G, there is an R-module action on H i(T, G) induced by the maps µn,`.

(2) Let G be an Rφm-module such that for all n > 0 the map µ0,n : G0 ⊗Rφ
m

n →Gn is surjective
with zero-dimensional kernel. Then µ0,• induces a surjective map Hi(G0, m)→H i(T, G) of
R-modules that is an isomorphism for i> 1.

(3) The correspondence Hi( , m) is a functor from OX -Mod to Gr-R. Moreover, for an exact
sequence 0→F →G →H→ 0 of quasicoherent sheaves on T , there is a long exact sequence
of R-modules

H0(F , m)→H0(G, m)→H0(H, m)→H1(F , m)→H1(G, m)→H1(H, m)
→H2(F , m)→H2(G, m)→H2(H, m)→ 0.

Proof. The proof of this lemma is routine, and so we leave some details to the reader.

(1) Fix m, n, ` ∈ N. Now, Rφ
n+m

` is globally generated, and by Theorem 6.5(3) we have
H0(T,Rφ

n+m

` ) = (R`t−`)φ
n+m

. We write (loosely) Rφ
n+m

` =H0(T,Rφ
n+m

` ). There is thus a
surjective map

OT ⊗R`→OT ⊗Rφ
n+m

` →Rφ
n+m

` . (7.5)

Tensor (7.5) with Gn and follow this by the multiplication map µn,` : Gn ⊗Rφ
n+m

` →Gn+`;
then applying H i(T, ) gives a map H i(T, Gn)⊗R`→H i(T, Gn+`) which provides the desired
R-action on H i(T, G). Associativity of this action follows from (7.3).

(2) Consider the action map µ0,• : G0 ⊗Rφ
m →G; applying H i(T, ) induces the map

Hi(G0, m) =H i(T, G0 ⊗Rφ
m

)→H i(T, G).

It is an R-module map by a diagram chase, using (7.3) again. From the long exact sequence in
cohomology and our assumption on the kernel of µ0,n, we deduce that this map is surjective for
i> 0 and is an isomorphism for i> 1.
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(3) Given an exact sequence 0→F →G →H→ 0 of sheaves, there are exact sequences

0→Kn→G ⊗Rφ
m

n →H⊗Rφ
m

n → 0 and 0→K′n→F ⊗Rφ
m

n →Kn→ 0, (7.6)

where the sheaves K′n have zero-dimensional support.
Since θ :

⊕
n>0 G ⊗R

φm
n →

⊕
n>0 H⊗R

φm
n is a morphism of Rφm-modules (in other words,

θ commutes with the multiplication maps in the obvious sense), it is routine to check that
ker θ =K =

⊕
n>0 Kn obtains an induced Rφm-module structure, and so H i(T,K) is a right

R-module.
For any `> 0, the multiplication map Rφ

m

n ⊗Rφ
n+m

` →Rφ
m

n+` induces a morphism of exact
sequences.

0 // Kn ⊗Rφ
n+m

`
//

��

G ⊗Rφ
m

n ⊗Rφ
n+m

`
//

��

H⊗Rφ
m

n ⊗Rφ
n+m

`

��

// 0

0 // Kn+`
// G ⊗Rφ

m

n+`
// H⊗Rφ

m

n+`
// 0

(7.7)

Consider the morphism of long exact sequences in cohomology induced from (7.7), which begins
the following diagram.

0 // H0(T,Kn)⊗Rφ
n+m

`
//

��

H0(T, G ⊗Rφ
m

n )⊗Rφ
n+m

`
//

��

H0(T,H⊗Rφ
m

n )⊗Rφ
n+m

`
//

��

· · ·

0 // H0(T,Kn+`) // H0(T, G ⊗Rφ
m

n+`)
// H0(T,H⊗Rφ

m

n+`)
// · · ·

Because this diagram commutes, the cohomology long exact sequence

0→H0(T,K)→H0(G, m)→H0(H, m)→H1(T,K)→ · · · (7.8)

that we obtain by taking `= 0 and summing over n is in fact a long exact sequence of R-modules.
Note that K0 = F . Now, from (7.6) and part (2) of the lemma, we obtain for all i> 0

a surjective map of R-modules Hi(F , m)→H i(T,K), which is an isomorphism for i> 1.
Combining these maps with (7.8), we obtain the desired long exact sequence of R-modules.
Functoriality of Hi( , m) easily follows also. 2

Cohomology modules allow us to make an important reduction.

Proposition 7.9. To show that R is right noetherian, it is enough to show that all cohomology
modules H1(F , m) are noetherian, where F is a coherent sheaf on T and m ∈ N.

Proof. Suppose that H1(F , m) is noetherian for all F , m. Let J (1) ⊆ J (2) ⊆ · · · be an ascending
chain of graded right ideals of R. By Proposition 7.1, there are an ideal sheaf J and integers m
and `0 so that, for n>m and `> `0, the sections in J (`)

n generate JLm · Rφ
m

n−m. Without loss of
generality, we may assume that `0 = 1.

In particular, for all j, the sections in J (j)
m generate H := JLm ⊆Rm. Clearly, it is enough to

show that the chain J
(1)
>m ⊆ J

(2)
>m ⊆ · · · stabilizes, so we may assume that all J (i) are contained

in the right ideal

H :=
⊕
n>m

H0(T,HRφ
m

n−m)⊆R>m.
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Let H ′ be the shifted cohomology module

H ′ := H0(H, m)[−m] =
⊕
n>m

H0(T,H⊗Rφ
m

n−m).

By Lemma 7.4(2), there is a surjection H ′→H; since Rφ
m

0 =OT , this map is an isomorphism
in degree m. Let V be the preimage of J (1)

m in H ′m. Since H/J (1)
>m is a factor of H ′/V R, it suffices

to show that H ′/V R is noetherian.
Recall that V generates H. Consider the exact sequence 0→F → V ⊗OT →H→ 0, for the

appropriate F . By Lemma 7.4(3), there is a long exact sequence of cohomology modules that
reads, in part,

V ⊗H0(OT , m)
f // H0(H, m) d // H1(F , m) // V ⊗H1(OT , m).

By choice of τ , H1(T,Rφ
m

n ) = 0 for all n ∈ N, and the last term of the exact sequence above
vanishes. The first term is V ⊗Rφm . The cohomology module H0(H, m) is H ′[m]. The connecting
homomorphism d thus induces an injection from

(
H ′/V R

)
[m] into H1(F , m). Since H1(F , m)

is noetherian by assumption, so is H ′/V R. 2

We observe that the cohomology modules H2(F , m) are easily seen to be finite-dimensional.

Lemma 7.10. For any coherent F and m ∈ N, the cohomology module H2(F , m) is finite-
dimensional.

Proof. Fix F and m. There is a natural map F ⊗Rφ
m

n →F ⊗Lφ
m

n , whose kernel and cokernel
have zero-dimensional support. In particular, taking cohomology we obtain that

H2(F , m)n =H2(T, F ⊗Rφmn )∼=H2(T, F ⊗ Lφmn ).

Let P be a finite direct sum of invertible sheaves so that there is a surjection P � F .
Then H2(T, P ⊗ Lφ

m

n ) surjects onto H2(T, F ⊗ Lφ
m

n )∼= H2(F , m)n. Now, H2(T, P(a, b)) = 0 for
all a, b� 0. Recall that Lφ

m

n
∼=O(n, mn+

(
n+1

2

)
). As n→∞ so does mn+

(
n+1

2

)
. Therefore,

H2(T, P ⊗ Lφ
m

n ) = 0 for n� 0, and H2(F , m) is finite-dimensional, as claimed. 2

Let p : T → P1 be projection onto the second factor. Our next goal is to show that the Leray
spectral sequence associated to p induces a decomposition of a cohomology module.

Proposition 7.11. Fix a coherent sheaf F on T and m ∈ N. Then there are natural R-actions
on

K(F , m) :=
⊕
n∈N

H1(P1, p∗(F ⊗Rφ
m

n )) (7.12)

and

Q(F , m) :=
⊕
n∈N

H0(P1, R1p∗(F ⊗Rφ
m

n )). (7.13)

Further, there is a natural exact sequence of R-modules,

0→K(F , m)→H1(F , m)→Q(F , m)→ 0.

Proof. The R-action on (7.12) (respectively, on (7.13)) is given by applying H1(P1, p∗ )
(respectively, H0(P1, R1p∗ )) to the multiplication map

F ⊗Rφmn ⊗R`→F ⊗Rφ
m

n ⊗R
φn+m

` →F ⊗Rφ
m

n+`, (7.14)
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as in the proof of Lemma 7.4(1). By [Wei94, 5.8.6], for any quasicoherent sheaf M on T , there
is a convergent Leray spectral sequence H i(P1, Rjp∗M)⇒H i+j(T,M). Further, by [Wei94,
Theorem 5.8.3], the exact sequence of low degree terms is

0→H1(P1, p∗M)→H1(T,M)→H0(P1, R1p∗M)→H2(P1, p∗M) = 0, (7.15)

and the maps in this exact sequence are natural in M.

Fix n, ` ∈ N. We apply the exact sequence (7.15) to the multiplication map (7.14). By
naturality, the diagram

0 // H1(P1, p∗(F ⊗Rφ
m

n ))⊗R` //

��

H1(T, F ⊗Rφ
m

n )⊗R` //

��

H0(P1, R1p∗(F ⊗Rφ
m

n ))⊗R` //

��

0

0 // H1(P1, p∗(F ⊗Rφ
m

n+`))
// H1(T, F ⊗Rφ

m

n+`)
// H0(P1, R1p∗(F ⊗Rφ

m

n+`))
// 0

commutes. This precisely says that the maps

0→K(F , m)→H1(F , m)→Q(F , m)→ 0

given by (7.15) preserve the R-module structure. 2

Note that naturality of (7.15) also implies that Q( , m) and K( , m) are functors from
OT -Mod to Gr-R.

The strategy of the remainder of the proof that R is noetherian will be to verify the hypotheses
in the following corollary, which we do in the final two sections of the paper.

Corollary 7.16. To show that R is right noetherian, it suffices to show that the modules
K(O(a, b), m) and Q(O(a, b), m) defined above are noetherian for all a, b ∈ Z and m ∈ N.

Proof. Since any invertible sheaf is isomorphic to some O(a, b), the hypothesis together with
Proposition 7.11 shows that H1(H, m) is noetherian for any invertible sheaf H.

By Proposition 7.9, it is enough to show that for any coherent F and m ∈ N, the cohomology
module H1(F , m) is noetherian. There is an exact sequence 0→F ′→H→F → 0 where H is
isomorphic to a direct sum of invertible sheaves on T . By Lemma 7.4(3), there is an exact
sequence of R-modules

H1(H, m) α→H1(F , m)→H2(F ′, m).

By Lemma 7.10, the cokernel of α is finite-dimensional and is thus noetherian. Since H1(H, m)
is noetherian by the first paragraph, H1(F , m) is noetherian. 2

8. Noetherianness of Q(O(a, b), m)

In this section, we calculate the modules Q(O(a, b), m) and show that they are noetherian. In
fact, we given even more details of their structure: these modules are finite extensions of point
modules.

We continue to assume that τ = τ(ρ, θ) ∈G where the pair (ρ, θ) is algebraically independent
over the prime subfield F, so that all of the properties in Theorem 6.5 hold. For j > 0, recall that
Fj = φ−j(F ) and Qj = φ−j(Q). Recall also that Iφ

m

n is defined as the base ideal of the subsheaf
of Lφ

m

n generated by the rational functions in (Rnt−n)φ
m

. We saw in Proposition 4.9 that Iφ
m

n
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defines the fat point subscheme that we may write as

nF0 + · · ·+ nFm−1 + (n− 1)Fm + · · ·+ Fn+m−2

+ nQ0 + · · ·+ nQm−1 + (n− 1)Qm + · · ·+Qn+m−2. (8.1)

As in the last section, we write p : T → P1 for the projection of T onto the second factor. Let
qj := p(Qj) and fj := p(Fj), and write f := f0 and q := q0. By choice of τ , the points Fj and Qi
all lie on distinct fibers of p, and so the qi and fj are all distinct.

We need a notation for a general (fat) fiber of p. If c ∈ P1 and `> 1, define `Tc by the following
fiber square.

`Tc //

��

T

p

��
`c // P1

The main idea of this section is to reduce the calculation of Q(O(a, b), m) to the calculation of
H1(F , m) for certain sheaves F supported entirely on a single fiber of p. These latter cohomology
modules are then computed directly with Čech cohomology and shown to be noetherian. The
result of this computation is given in the following main technical lemma. The proof is somewhat
sensitive because of the need to carefully track the R-action on the cohomology, and so we defer
it until the end of the section.

Lemma 8.2. Let `> 1, d> 0, a, b ∈ Z. For n>max(d, 1), let

H(`)n := In−dQ · O`Z(aX + bW )⊗ Ln.

This is an R-module since H(`)n · Rφ
n

k ⊆H(`)n+k, and so H(`) :=
⊕

n>max(d,1) H
1(T,H(`)n) is

an R-module by Lemma 7.4(1).

Let `0 := max(1,−a− 1); let n0 :=max(d, 1,−a− 1). For all n> n0, `> `0, the natural
restriction map H1(T,H(`+ 1)n)→H1(T,H(`)n) is an isomorphism, and multiplication by
t ∈R1 gives a bijection µt :H(`)n→H(`)n+1.

Moreover,

H1(T,H(`)n)∼=

{
0 a>−d− 1,
Oq ⊕O2q ⊕ · · · O(−a−d−1)q a6−d− 2.

(Note that since H(`)n is supported along the fat fiber `Z, then H1(T,H(`)n) =H1(`Z,H(`)n)
obtains an O`q-module structure from the base.) In particular, dimk H(`)n =

(−a−d
2

)
is constant

for n> n0, `> `0. Furthermore, H(`) is noetherian and is, up to finite dimension, an extension
of
(−a−d

2

)
point modules.

A symmetric result holds for the sheaves H∨(`)n := In−dF · O`W (aX + bW )⊗ Ln, and we will
use this without further comment.

We now note some consequences of the lemma above. First, some special cohomology modules
are noetherian.

Lemma 8.3. Let c= qk or c= fk for some k ∈ N. Let a, b ∈ Z. For `> 1 let F` :=OT (a, b)|`Tc .
Let m ∈ N. Then the cohomology module H1(F`, m) is noetherian and is, up to finite dimension,
an extension of finitely many point modules.
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Proof. We do the case that c= qk; the case that c= fk is symmetric. The idea is to show that
the cohomology module in question can be shifted twice to obtain a tail of a module already
studied in Lemma 8.2. One must be careful, as it seems problematic to shift Rφm-modules in
general, though it works for the special cases considered here; cf. [KRS05, Lemma 5.5].

Fix `> 1, and let Gn :=O`Tc(a, b) · R
φm
n . Then G :=

⊕
n∈N Gn is clearly an Rφm-module, and,

by Lemma 7.4(2),

N :=
⊕
n∈N

H1(T, Gn)

is an R-module isomorphic to H1(F`, m).
Now, by (8.1), Iφ

m

n vanishes at Qk to order
0 if k > n+m− 1,
n+m− k − 1 if m− 16 k 6 n+m− 1,
n if k 6m− 1.

(8.4)

For r = max(m, k + 1), we have for n> 0 that

Gn ∼= In+m−r
Qk

· O`Tc(a, b)⊗ Lφ
m

n
∼= In+m−r

Qk
· O`Tc(a, b)⊗ L−1

m ⊗ Ln+m.

(Here our convention is that IjQk =OT if j 6−1.) For appropriate a′, b′, there is thus an
isomorphism Gn ∼= In+m−r

Qk
· O`Tc(a′, b′)⊗ Ln+m that respects the action by Rφm on each side.

Shifting by (−m) and applying cohomology, we get an isomorphism⊕
n∈N

H i(T, Gn)[−m]∼=
⊕
n>m

H i(T, Gn−m)

of R-modules. In particular, letting Hn := In−rQk
· O`Tc(a′, b′)⊗ Ln, we have

N [−m]>r ∼=
⊕
n>r

H1(T,Hn).

Next, given our assumption that τ is general, φ−k : T 99K T is defined and is a local
isomorphism from a neighborhood U of Z to a neighborhood φ−k(U) of φ−k(Z) = Tc. The
R-module

⊕
Hn has action maps µn,` :Hn ⊗Rφ

n

` →Hn+` involving sheaves supported along

φ−k(U). Thus we can pull back these action maps by φ−k and reindex to get µ′n,` : (Hφ
−k

n+k ⊗
Rφ

n

` )→Hφ
−k

n+k+`. These action maps make H′ =
⊕

n∈N H
φ−k

n+k into another R-module. Explicitly,
since Hn = In−rQk

· O`Tc(a′, b′)⊗ Ln, we have an isomorphism

Hφ
−k

n+k
∼= (In−r+kQk

· O`Tc(a′, b′)⊗ Ln+k)φ
−k ∼= In−r+kQ · O`Z(a′′, b′′)⊗ Ln

for the appropriate a′′, b′′. Since φ−k is an isomorphism on U , pulling back by φ−k induces
an isomorphism in cohomology of any sheaf supported on φ−k(U). Thus the pullback by φ−k

induces a bijection H1(T,H)[k]>0
∼=H1(T,H′), and this is an isomorphism of R-modules since

the pullback commutes with the action maps by construction. Combining this with the first shift
we calculated, we get

N [−m+ k]>r−k ∼=
⊕
n>r−k

H1(T, In−r+kQ · O`Z(a′′, b′′)⊗ Ln),

where the right-hand side is a tail of a module considered in Lemma 8.2. Recalling that N ∼=
H1(F`, m), the result thus follows immediately from Lemma 8.2, with d= r − k > 0, a= a′′. 2
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Another consequence of Lemma 8.2 is that it tells us R1p∗ of certain twists of a fat point
on T . We record this as following lemma.

Lemma 8.5. Let I be the ideal sheaf of the point z ∈ T , and let a, b ∈ Z. Let g = p(z). If a6−2
and n>−a− 1, then

R1p∗In(n+ a, b)∼=O(−a−1)g ⊕ · · · Og.
Further, for `, n>−a− 1 the natural map

γ :R1p∗In(n+ a, b)→R1p∗(In(n+ a, b)|`Tg)

is an isomorphism.

If a>−1, then R1p∗In(n+ a, b) = 0 for all n> 0.

Proof. The result of the lemma does not depend on the choice of point z, so we may assume that
z =Q. Let U := P1 r {q}. On V := p−1(U) we have In(n+ a, b)|V ∼=O(n+ a, b)|V . Since R1p∗
is local on the base, then

(R1p∗O(n+ a, b))|U ∼=H1(V,O(n+ a, b)|V )∼=H1(P1
U ,OP1

U
(n+ a)) = 0

since n+ a>−1 in all cases. Thus R1p∗In(n+ a, b) is supported at {q}.
We apply the theorem on formal functions [Har77, Theorem III.11.1]. For some `, n> 0,

consider the following commutative diagram.

̂(R1p∗In(n+ a, b))q

��

∼= // lim←−` H
1(`Z, In(n+ a, b)|`Z)

��
R1p∗In(n+ a, b)⊗OP1,q/m

`
q

// R1p∗(In(n+ a, b)|`Z)

(8.6)

Here, the top row is the isomorphism guaranteed by the theorem on formal functions, and the
bottom row is the natural morphism between the `th terms of the respective inverse limits. Note
that

H1(`Z, (In(n+ a, b))|`Z)→H1(`Z, In · (OT (n+ a, b)|`Z))

is an isomorphism, since moving the In outside of the restriction changes the sheaf on a zero-
dimensional set at most. Thus taking d= 0 in Lemma 8.2 tells us exactly about the inverse limit
lim←−` H

1(`Z, In(n+ a, b)|`Z). That lemma shows that the limit is trivially 0 if a>−1; if a6−2,
then the maps in the limit stabilize for all `, n>−a− 1, and thus the right-hand map in (8.6)
is an isomorphism for such `, n. So the limit is isomorphic to O(−a−1)z ⊕ · · · Oz as claimed. This
also shows that the limit is supported on OP1,q/m

`
q and so the left-hand map in (8.6), and in fact

the natural map

R1p∗In(n+ a, b)→R1p∗In(n+ a, b)⊗OP1,q/m
`
q,

are isomorphisms. Then for `, n>−a− 1 the bottom arrow of (8.6) is an isomorphism, and
finally it follows that the natural map γ of the lemma statement is an isomorphism as well. 2

We now apply the lemma to compute R1p∗O(a, b)⊗Rφm .

Corollary 8.7. Let a, b ∈ Z and m, n ∈ N. If n>−a− 1, the length of R1p∗Rφ
m

n (a, b)
is 2(m

(−a
2

)
+
(−a

3

)
); in particular, R1p∗Rφ

m

n (a, b) = 0 if a>−1. When a6−2, the
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(scheme-theoretic) support of R1p∗Rφ
m

n (a, b) is equal to

C(a, m) := (−a− 1)f0 + · · ·+ (−a− 1)fm−1 + (−a− 2)fm
+ · · ·+ fm−a−3 + (−a− 1)q0 + · · ·+ qm−a−3.

In particular, this support does not depend on n>−a− 1.

Proof. By our choice of τ , the points fi, qj are all distinct. Let n>−a− 1. We have Rφ
m

n (a, b)∼=
Iφ

m

n (n+ a, b′), where b′ :=
(
n+1

2

)
+ nm+ b. For fixed k > 0, the multiplicity ek of Iφ

m

n locally at
Qk can be calculated as in (8.4). In particular, if I is the ideal sheaf of Qk, then in a small
enough neighborhood V of qk we have (Iφ

m

n (n+ a, b′))|p−1(V )
∼= Iek(ek + [n+ a− ek], b′)|p−1(V ).

Here, a′ := n+ a− ek satisfies a′ = a if k 6m− 1, a′ = a−m+ k + 1 if m− 16 k 6 n+m− 1,
and a′ = n+ a>−1 if k > n+m− 1. It is now immediate from Lemma 8.5 that R1p∗Rφ

m

n (a, b)
has multiplicity max(0,−a′ − 1) at qk; since a symmetric result holds locally at the fk, this shows
exactly that R1p∗Rφ

m

n (a, b) is supported scheme-theoretically at C(a, m).
A consideration of the lengths of the sheaves in Lemma 8.5 gives

len(R1p∗Iφ
m

n (n+ a, b′)) = 2
(
m

(
−a

2

)
+
(
−a− 1

2

)
+
(
−a− 2

2

)
+ · · ·+

(
2
2

)
+ 0
)

= 2
(
m

(
−a

2

)
+
(
−a

3

))
.

This gives the first statement. 2

Remark 8.8. We can now justify the earlier assertion that the sheaves {Rφ
m

n }n∈N do not form
an ample sequence in the sense of [Van97]. By the corollary, if m> 1 and a6−2, then using
Proposition 7.11 we have

dimk H
1(T,O(a, b)⊗Rφmn )> dimk H

0(P1, R1p∗O(a, b)⊗Rφmn )> 0

for all n>−a− 1. If m= 0 we must take a6−3.

We are now ready to finish the proof that the modules Q(O(a, b), m) are noetherian.

Theorem 8.9. Let F be an invertible sheaf on T and let m ∈ N. Then the right R-module
Q(F , m) is noetherian and is, up to finite dimension, an extension of finitely many point modules.

Proof. Recall that

Q(F , m) =
⊕
n>0

H0(P1, R1p∗(F ⊗Rφ
m

n )).

Let F ∼=O(a, b) for some a, b ∈ Z. If a>−1, then Q(F , m) = 0 by Corollary 8.7. Thus without
loss of generality we may assume that a6−2. Let C := C(a, m) as defined in Corollary 8.7.

For any `> 1, consider the natural map

F →
⊕
c∈C
F|`Tc (8.10)

of sheaves on T . This induces a natural map

R1p∗(F ⊗Rφ
m

n ) //
⊕
c∈C

R1p∗(F|`Tc ⊗Rφ
m

n ). (8.11)

By Lemma 8.5, this map is an isomorphism for n, `>−a− 1.
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Notice that if we sum (8.11) over all n and take global sections, we have precisely the module
homomorphism Q(F , m)→

⊕
c∈C Q(F|`Tc , m) induced by (8.10). Setting n0 = `0 =−a− 1, then

Q(F , m)>n0
∼=
⊕
c∈C

Q(F|`Tc , m)>n0

for all `> `0. Since each F|`Tc is supported on a (fat) fiber of p, the modules K(F|`Tc , m) all
vanish, and from Proposition 7.11 we obtain that Q(F|`Tc , m)∼= H1(F|`Tc , m). Thus

Q(F , m)>n0
∼=
⊕
c∈C

H1(F|`0Tc , m)>n0 .

The result follows from Lemma 8.3. 2

We now give the delayed proof of the main technical lemma, Lemma 8.2.

Proof of Lemma 8.2. The proof is somewhat long, so we break it up into steps.

Step 1. Setting up identifications. Recall that d> 0, a, b ∈ Z are fixed, and we have
sheaves H(`)n := In−dQ · O`Z(aX + bW )⊗ Ln and a cohomology module H(`) :=

⊕
n>max(1,d) H

1

(T,H(`)n). Fix `> `0 = max(1,−a− 1) and let Hn :=H(`)n and H :=H(`).

Let U+ := `Z ∩ (T r Y ) and let U− := `Z ∩ (T rX) be charts on `Z. Let S+ := k[u, v]/(v`)
and let S− := k[u−1, v]/(v`). We identify U+ with Spec S+ and U− with Spec S−. Let U± :=
U+ ∩ U− and let S± :=O(U±) = k[u, u−1, v]/(v`). We will use Čech cohomology on this open
cover to compute Hn =H1(T,Hn) and to study the R-action on H. We will show that
dimk Hn =

(−a−d
2

)
for n� 0 and that H is (up to finite dimension) an extension of

(−a−d
2

)
noetherian torsion-free modules, each of which is a shifted point module. It will follow that H
itself is noetherian.

Let n0 = max(d, 1,−a− 1) and let n> n0 in the following calculations. We will regard both
Hn and Ln(aX + bW )|`Z as subsheaves of the constant sheaf

(
k(u)[v]/(v`)

)
tn on `Z, where tn

is a placeholder to remind us that the action of R is twisted by the appropriate power of ϕ. Let
V be an open subset of `Z. If s= α(u, v)t ∈R1 then the multiplication map

Hn(V )⊗ ks→Hn+1(V )⊆ (k(u)[v]/(v`))tn+1

is given explicitly by f(u, v)tn ⊗ s 7→ fαφ
n
tn+1.

Step 2. Identifying a basis for the cohomology group. Since τ is general, W φi 6= Z for any i.
Recalling that L=OT (Y +W ) and so

Ln =OT (Y + Y φ + · · ·+ Y φn−1
+W +W φ + · · ·+W φn−1

),

we get

Ln(aX + bW )|`Z =O`Z(aX + Y + Y φ + · · ·+ Y φn−1
)tn.

As a divisor, (aX + Y + Y φ + · · ·+ Y φn−1
)|Z is concentrated at P and Q. We thus have

Hn(U±) =O`Z(U±)tn = S±tn under these identifications. Further, if U = U+ or U = U−, then
under these identifications Hn(U) is contained in S±tn. The image of the Čech differential

∂n :Hn(U+)⊕Hn(U−)→Hn(U±)

is thus equal to Hn(U+) +Hn(U−)⊆Hn(U±).
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We claim that for n> n0, the image of ∂n is equal to the vector space Ltn, where

L = span(uivj | max(0,−a− d)6 j < `, or 06 j 6−a− d− 1 and i>−a,
or 06 j 6−a− d− 1 and i6 j + d).

In particular, L= S± if a+ d>−1. Assume the claim for the moment. This allows us to identify
Hn with (S±/L)tn, that is with the span of (the images of) the monomials

{uivj | 06 j 6 i− d− 1, d+ 16 i6−a− 1} · tn.

If we fix i in the range d+ 16 i6−a− 1, we obtain the i− dmonomials {ui, uiv, . . . , uivi−d−1} ·
tn. We see that uik[v]/(vi−d)tn is a direct summand of H1(`Z,Hn) as a k[v]/(v`)-module. Since
v is a local coordinate on the base P1 at q,

H1(`Z,Hn)∼=Oq ⊕O2q ⊕ · · · ⊕ O(−a−d−1)q

as claimed in the statement of the lemma.
For any d> 0, multiplication by t ∈R1 takes Hn(U±) = S±tn to Hn+1(U±) = S±tn+1 and

takes im ∂n = Ltn to im ∂n+1 = Ltn+1. Since Hn = coker ∂n, multiplication by t induces a
bijection µt :Hn→Hn+1. The claim that restriction induces an isomorphism H(`+ 1)n→H(`)n
is also immediate.

Step 3. Proving the claim that im ∂n = Ltn. We drop the tn coefficients and identify Hn(U) with
a subspace of S±, for U = U+, U−, U±. Let Jk := vkS±. We will show that Jk ∩ L= Jk ∩ im ∂n
for all k > 0.

By Proposition 4.3, Q ∈ Y φi ∩ Z for i> 0. Since (Y φi .Z) = 1, the curve Y φi meets Z
transversely at Q, and nowhere else. On the other hand, X ∩ Z = {P}. Since U+ = U r {Q},

Hn(U+) =O`Z(aX + Y + Y φ + · · ·+ Y φn−1
)(U+) = u−aS+.

To compute Hn(U−), let xη + yξ be the (1, i)-form defining Y φi , where η, ξ are homogeneous
of degree i in k[w, z]. Since Y φi meets Z transversely at Q, the germ of η in k[v]/(v`) is contained
in the maximal ideal of k[v]/(v`), and the germ of ξ is invertible. Thus Y φi is defined on U− by
ri := u−1 + αi, where αi ∈ vk[v]/(v`). In S± we have r−1

i = u(1− αiu+ (αiu)2 − · · · ± (αiu)`−1).
Let s := r0r1 · · · rn−1, and let h := s−1u−n. Thus

Ln(aX + bW )|`Z(U−) = (aX + Y + Y φ + · · ·+ Y φn−1
)|`Z(U−) = s−1S− = unhS−.

For 06 i6 `− 1, there are elements εi ∈ vik[v]/(v`) so that h= 1 + ε1u+ ε2u
2 + · · ·+

ε`−1u
`−1. Multiplying by In−dQ , we have

Hn(U−) = (u−1, v)n−dunhS− = udhS− + ud+1vhS− + · · ·+ unvn−dhS−.

Now that we have a detailed description ofHn(U−) andHn(U+), we make some observations.
First, im ∂n ⊆ L. To see this, note that since S− is spanned by monomials in k[u−1, v], then
Hn(U−) is spanned by elements of the form

uivjh= uivj + ui+1vjε1 + ui+2vjε2 + · · ·+ ui+`−1vjε`−1

where i6min(n, j + d) and 06 j 6 `. Since vk|εk for each k, uivjh is a sum of terms of
the form ui

′
vj
′

with i′ 6 j′ + d, and these are all in L by definition. Obviously Hn(U+)⊆ L,
so the first observation follows. Second, we observe that for each monomial uivj ∈ L there
is an element in im ∂n of the form uivj + s where s ∈ Jj+1 ∩ L. If i>−a this is obvious
since u−aS+ =Hn(U+)⊆ im ∂n; otherwise, we have uivj with i6 j + d and i6−a− 1, so in
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particular i6 n by the choice of n. The observation now follows by the analysis above of the
elements uivjh which span Hn(U−).

Given the two observations above, a simple downward induction on k proves that Jk ∩ L=
Jk ∩ im ∂n for all 06 k 6 `. Taking k = 0, we obtain that L= im ∂n as claimed.

Step 4. Finding the filtration by point modules. We next show that there is a complete flag on
the vector space S±/L that induces an R-module filtration of H whose subfactors are point
modules. To see this, let us study further the action of R on the sheaf H :=

⊕
Hn. As we have

already noted, any s ∈R1 acts on Hn and its cohomology as the image of sφ
n

under the natural
maps

H0(T,Rφ
n

1 )→H0(T,Rφ
n

1 |`Z)→H0(`Z, IQ · Lφ
n

1 |`Z) · t.
Let R′ := IQ · Lφ

n

1 |`Z .
We use the open cover U+, U− of `Z to compute H0(`Z,R′). Recall that Y φn |`Z is defined

on U− by rn = u−1 + αn, for some αn ∈ vk[v]/(v`). Let g := 1− uαn + (uαn)2 − · · · ± (uαn)`−1,
so r−1

n = ug. Note that g ∈ S+ r uS+. Since

Lφ
n

1 |`Z =O(W φn + Y φn)|`Z =O`Z(Y φn),

we compute that

H0(`Z,R′) = ((u−1, v) · ugS− ∩ S+) = (gk[v]/(v`) + uvgk[v]/(v`)). (8.12)

We now begin to construct the flag on S±/L. For d6 e6−a− 1, define

V (e) := span(uivj + L | i6 j + e)⊆ S±/L.

By (8.12), if f ∈H0(`Z,R′), then V (e) · f ⊆ V (e). Since R1 acts on Hn = (S±/L)tn as its
image in H0(T,R′) · t, the vector spaces V (e) :=

⊕
n>n0

V (e)tn are R-submodules of H>n0 . We
therefore have a chain of R-modules

0 = V (d)⊆ V (d+ 1)⊆ · · · ⊆ V (−a− 1) =H>n0 .

Note from Step 2 that the multiplication-by-t map µt induces a bijection from V (e)n to V (e)n+1,
for n> n0.

Fix d+ 16 e6−a− 1 and consider the subfactor
V (e)

V (e− 1)
=
⊕
n>n0

V (e)
V (e− 1)

tn.

Now, V (e)/V (e− 1) has basis

ue + V (e− 1), ue+1v + V (e− 1), . . . , u−a−1v−a−1−e + V (e− 1).

For 06 c6−a− e, let

W (c) := span(uj+evj + V (e− 1) | j > c)⊆ V (e)/V (e− 1).

By (8.12), multiplication by f ∈H0(`Z,R′) preserves the spaces W (c). Thus W (c) :=⊕
n>n0

W (c)tn is an R-submodule of V (e)/V (e− 1), and there is a chain

0 =W (−a− e)⊆W (−a− e− 1)⊆ · · · ⊆W (0) = V (e)/V (e− 1)

of R-modules. Again, the map µt gives a bijection from W (c)n→W (c)n+1 for n> n0.
For 06 c6−a− e− 1 and n> n0, the element an := (uc+evc +W (c+ 1))tn generates the

one-dimensional vector space (W (c)/W (c+ 1))n. Our analysis of µt above shows that ant= an+1.
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Thus W (c)/W (c+ 1) is cyclic and torsion free, with Hilbert series sn0/(1− s). It is thus a
(shifted) point module, and is noetherian. Since H is, up to finite dimension, an extension of
such modules, H itself is noetherian.

Finally, since the filtration of H is induced from a complete flag on S±/L, the number of
point modules appearing as subfactors is equal to dimk S

±/L=
(−a−d

2

)
. 2

9. Completing the proof of Theorem 3.5

In this section we prove that the modules K(O(a, b), m) are noetherian (in fact, finite-dimensional
over k), and complete the proof of Theorem 3.5.

We will work with both R and A=R(1). We begin by making some computations of
cohomology of the sheaves Aσmn (a, b).

Lemma 9.1. Let m ∈ N and a, b ∈ Z. For all n>−a− 1, R1p∗Aσ
m

n (a, b) is a zero-dimensional
sheaf of length 2(m

(−a
2

)
+
(−a

3

)
).

Proof. The proof uses similar methods to those in the last section: we use the theorem on
formal functions followed by an explicit Čech cohomology computation. Recall that we write
Aσmn = Iσmn Lσ

m

n for an ideal sheaf Iσmn , which in this case defines a zero-dimensional subscheme
supported at F and Q.

First, a similar argument to the proof of Lemma 8.5 shows that the sheaf R1p∗Aσ
m

n (a, b)
is zero-dimensional, and in fact is supported at {f = p(F ), q = p(Q)}. Of course the structure
at those two points will be symmetric and in this proof we concentrate on the point f . For
`> 1, let F` := Iσmn · O`W ((a+ n)Y ). Note that the natural map Aσmn (a, b)|`W →F` induces an
isomorphism on H1.

The theorem on formal functions shows that

(R1p∗Aσ
m

n (a, b))f ∼= lim←−̀H
1(`W, F`). (9.2)

Let w := v−1 and let u, u−1 be local coordinates on W . We define S− := k[u−1, w]/(w`),
S+ := k[u, w]/(w`), and S± := k[u, u−1, w]/(w`). Let U+, U−, U± respectively be the spectra
of S+, S−, and S±, as open subsets of `W .

For brevity of notation, write F = F`. By Lemma 4.8(2), the ideal sheaf Iσi1 is equal locally
at F to (u, wi), and so we get

F(U+) = (u, wm)(u, wm+1) · · · (u, wm+n−1)S+.

Further, F(U−) = un+aS−, and F(U±) = S±. We need to calculate

H1(`W, F)∼= F(U±)/(F(U+) + F(U−)).

If we take ` large enough, a basis of monomials for the factor S+/F(U+) is the same as a basis
of monomials for k[u, w]/(u, wm)(u, wm+1) · · · (u, wm+n−1), and this was already calculated in
Proposition 4.9. Namely, setting jh =m+ h− 1 for 16 h6 n, for the indices j with

∑k−1
h=1 jh 6

j <
∑k

h=1 jh we get uiwj for all 06 i < n− k + 1. Thus we see that F(U±)/(F(U+) + F(U−))
has the following basis of monomials: for the indices j with

∑k−1
h=1 jh 6 j <

∑k
h=1 jh, we get uiwj

for all i satisfying n+ a < i < n− k + 1.
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There are

m(−a− 1) + (m+ 1)(−a− 2) + · · ·+ (m− a− 2)(1)

=m

−a−1∑
i=1

i+
−a−2∑
i=1

i(−a− 1− i) =m

(
−a
2

)
+
(
−a
3

)
of these. Thus lenH1(`W, F`) =m

(−a
2

)
+
(−a

3

)
for all `� 0. In addition, since we get the same

k-basis for all large `, clearly the maps in the inverse limit in (9.2) are isomorphisms for all large
`, and so we have calculated the length of R1p∗Aσ

m

n (a, b) at f . By symmetry the length at q is
the same, and so we have

lenR1p∗F = 2
(
m

(
−a
2

)
+
(
−a
3

))
,

as claimed. 2

Proposition 9.3. For any m ∈ N and a, b ∈ Z, we have H1(P1, p∗Aσ
m

n (a, b)) = 0 for n� 0.

Proof. Let F := Iσmn ((n+ a)Y ), and suppose that a6−1. We begin by computing p∗F . We let
u, u−1, v, v−1 be local coordinates on T , where u± give coordinates along the fibers of p and v±

give coordinates along the base of p. We denote the four open affines covering T by U+
+ , U−+ ,

U+
− , and U−− , where for example U+

− = Spec k[u, v−1]. Note that in this coordinate system, F is
defined by u= 0, v−1 = 0, and Q is defined by u−1 = 0, v = 0. Then by Lemma 4.8(2) we have:

F(U+
− ) = (u, v−m)(u, v−(m+1)) · · · (u, v−(m+n−1))k[u, v−1]; F(U−− ) = un+ak[u−1, v−1];

F(U−+ ) = un+a(u−1, vm)(u−1, vm+1) · · · (u−1, vm+n−1)k[u−1, v]; and F(U+
+ ) = k[u, v].

Let U+ = Spec k[v] and U− = Spec k[v−1] be charts for P1. Now, if n>−a, then we have

(p∗F)(U−) = F(U+
− ) ∩ F(U−− ) =

n+a⊕
i=0

uiv−
(
m(n−i)+(n−i2 )

)
k[v−1]

and

(p∗F)(U+) = F(U+
+ ) ∩ F(U−+ ) =

n+a⊕
i=0

uivm(i−a)+(i−a2 )k[v].

Note that the intersections p∗F(U+) ∩ uik[v, v−1] and p∗F(U−) ∩ uik[v, v−1] give a compatible
direct sum decomposition of p∗F(U+) and p∗F(U−). Therefore, if n>−a> 1, then

p∗F ∼=
n+a⊕
i=0

O
(
−
(
m(n− i) +

(
n− i

2

)
+m(i− a) +

(
i− a

2

)))
∼=

n+a⊕
i=0

O
(
−
(
m(n− a) +

(
n− i

2

)
+
(
i− a

2

)))
.

By the projection formula,

p∗Aσ
m

n (a, b)∼= p∗F
(

0, nm+
(
n+ 1

2

)
+ b

)
∼= (p∗F)

(
nm+

(
n+ 1

2

)
+ b

)
.
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To show that H1(P1, p∗(Aσ
m

n (a, b))) = 0 for n� 0, it suffices to show that there is some n0 > 0
such that the sheaf

Gn,i := O
(
−
(
m(n− a) +

(
n− i

2

)
+
(
i− a

2

))
+ nm+

(
n+ 1

2

)
+ b

)
= O

((
n+ 1

2

)
−
(
n− i

2

)
−
(
i− a

2

)
+ b′

)
(where b′ =ma+ b does not depend on n or i) has vanishing H1 for all n> n0 and 06 i6 n+ a.

Consider the function −
(
n−i
2

)
−
(
i−a
2

)
as i varies. On the interval 06 i6 n+ a this is equal

to
1
2 [−(n− i)(n− i− 1)− (i− a)(i− a− 1)]

which is quadratic in i with leading term −i2. It is symmetric around i= (n+ a)/2 and thus
attains its minimum at the endpoints i= 0 and i= n+ a. This minimum value is −

(
n
2

)
−
(−a

2

)
.

Now we may choose n0 so that
(
n+1

2

)
−
(
n
2

)
−
(−a

2

)
+ b′ >−1 for all n> n0. Then for any n> n0

and 06 i6 n+ a, we have(
n+ 1

2

)
−
(
n− i

2

)
−
(
i− a

2

)
+ b′ >

(
n+ 1

2

)
−
(
n

2

)
−
(
−a

2

)
+ b′ >−1.

Thus H1(P1, Gn,i) = 0 for all i, and so H1(P1, p∗Aσ
m

n (a, b)) = 0.
If n, a> 0, then a similar computation as above gives that

p∗F ∼=
a⊕
i=0

O
(
−
(
m(n− i) +

(
n− i

2

)))⊕2

⊕
n−1⊕
i=a+1

O
(
−
(
m(n− a) +

(
n− i

2

)
+
(
i− a

2

)))
.

The proof that H1(P1, p∗Aσ
m

n (a, b)) = 0 for n� 0 is similar to that for a6−1, and we leave the
details to the reader. 2

Theorem 9.4. Let τ = τ(ρ, θ) for a pair (ρ, θ) algebraically independent over F. For any a, b ∈ Z
and m ∈ N, the R-module K(O(a, b), m) is finite-dimensional and therefore noetherian.

Proof. Fix a, b. Recall that K(O(a, b), m) =
⊕

n∈N H
1(P1, p∗Rφ

m

n (a, b)). By Theorem 6.5,

dimk H
1(T,Rφmn (a, b))6 dimk H

1(T,Aσmn (a, b)).

By Corollary 8.7 and Lemma 9.1, if n>−a− 1 we have

lenR1p∗Rφ
m

n (a, b) = 2
(
m

(
−a

2

)
+
(
−a

3

))
= lenR1p∗Aσ

m

n (a, b).

Now, however, by the Leray spectral sequence we have

dimk H
1(P1, p∗Rφ

m

n (a, b)) = dimk H
1(T,Rφmn (a, b))− dimk H

0(P1, R1p∗Rφ
m

n (a, b))
6 dimk H

1(T,Aσmn (a, b))− dimk H
0(P1, R1p∗Aσ

m

n (a, b))
= dimk H

1(P1, p∗Aσ
m

n (a, b)).

By Proposition 9.3, this last term vanishes for n� 0. So K(O(a, b), m) is finite-dimensional, as
claimed. 2

We are finally ready to give the proof of the main theorem.

Proof of Theorem 3.5. Let τ = τ(ρ, θ) for a pair (ρ, θ) algebraically independent over F. Let
R :=R(τ). For any a, b ∈ Z and m ∈ N, by Theorem 8.9 Q(O(a, b), m) is a noetherian right
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R-module. By Theorem 9.4, K(O(a, b), m) is noetherian. By Corollary 7.16, R is therefore right
noetherian.

Now, Rop ∼=R(τ−1) by Theorem 3.9. Since τ−1 = τ(ρ−1, θ−1), R is also left noetherian.
By Proposition 5.11, R is defined by the relations (5.1); setting c := ζ/ε= (θ − 1)/(θ + 1) and
d := δ/γ = (ρ− 1)/(ρ+ 1) we obtain the given presentation of R. The remaining properties of R
are given by Proposition 5.11. 2

We conclude with a brief discussion of some questions suggested by the results in this paper,
which we hope to address in further work. We still do not have a very deep understanding of
the category of graded R-modules. For instance, is it closely related to some more geometrically
defined category? Some other important questions are whether R satisfies the Artin–Zhang χ1

condition, and what the structure of the point modules over R is.

Now that we know that noetherian GK-4 birationally commutative surfaces exist, this
naturally raises the question of whether they can be classified, thus completing the classification
of noetherian birationally commutative surfaces. The work of Diller and Favre in [DF01] shows
that the GK-4 growth type arises in a fairly limited situation: the field automorphism ϕ must
be induced by a birational self-map φ of some ruled surface which preserves the ruling. Thus
there is some hope that the general GK-4 birationally commutative surface is not too different
in behavior from the examples we consider in this paper, although it probably will not have such
special homological properties.

Finally, what are the implications of the fact that connected graded noetherian Koszul
algebras of finite global dimension are not automatically AS-Gorenstein? Let R :=R(τ), for
general τ . We note that R is not strongly noetherian: by a proof similar to that of [KRS05,
Theorem 9.2], R is not generically flat, and therefore there is a commutative noetherian k-algebra
C so that R⊗ C is not noetherian. If a connected graded strongly noetherian k-algebra R has
finite global dimension and is Koszul, must it be AS-Gorenstein? Conversely, a counterexample
to this question would be extremely interesting.
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