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Abstract

Lie algebras whose finite-dimensional modules decompose into direct sums of modules involving
only one type of irreducible are investigated. Some vanishing theorems for the cohomology of
some infinite-dimensional Lie algebras are thereby obtained.
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1. Introduction

In [5] Mitra, Sitaram and Tripathy proved the following theorem.

THEOREM 1.1. Let L be a Lie algebra and let V bean L-module. Suppose

some element z in the centre L is represented by the identity transformation

of V. Then Hp(L,V) = 0 for all p.

In a recent paper [2, Corollary 6.3], Farnsteiner proved

THEOREM 1.2. Let L be a Lie algebra and let N be a nilpotent ideal. Let

V be a finite-dimensional L-module and let

KW = n w
n€N
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where V0(n) is the Fitting null component for the action of n on V. Then
H"(L, V) = H"(L, V0(N)) for all p.

We show that these results can be obtained more easily and generalised
using the method of [1].

2. Positive results

Throughout, L is a Lie algebra over the field F and V is an L-module.
The element x e L is represented by the linear transformation p(x): V —>
V. We write N < L if N is an ideal of L. A subalgebra N of L is called
subnormal, written N « L, if there exists a finite chain of subalgebras N(

such that
N = N0<N{<---<Nr = L.

We shall make repeated use of the following well-known result.

LEMMA 2.1. Suppose N « L and that V is an L-module. Suppose
H"{N, V) = 0 for all p<k. Then H"(L, V) = 0 for all p < k.

PROOF. We need only consider the case where N < L, the result then
following by induction over the length of the chain linking N to L. In the
Hochschild-Serre spectral sequence, we have

Ep
2

q = H"{L/N, H*(N, V)) - 0

for q < k. Hence E™ = 0 for q < k. But

oo
p+q=n

for n < k .
The following immediate consequence of Lemma 2.1 includes Theorem

1.1 as a special case.

THEOREM 2.2. Suppose the element x e L acts invertibly on V and that
thesubspace N = (x) spanned by x is subnormal in L. Then HP{L, V) = 0
for all p.

PROOF. We have

H°(N, V) = V" = ker{p(x): V -+ V) = 0, Hl(N, V) = V/imp(x) = 0

and HP(N, V) = 0 for p > 1 for dimension reasons.
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COROLLARY 2.3. Suppose x e L acts invertibly on V and that L is nilpo-
tent. Then HP{L, V) = 0 for all p.

PROOF. Since L is nilpotent, {x) « L.

COROLLARY 2.4. Suppose L is locally nilpotent and let V be a finite-
dimensional L-module with VL = 0. Then H"(L, V) = 0 for all p.

PROOF. Let K be the kernel of the representation p of L on V. Since
L/K is a finite-dimensional nilpotent algebra, every composition factor p of
V has PL = 0. Thus we need only consider the case where V is irreducible.
Take x e L, x £ K such that x + K is in the centre of L/K. Then
p(x): V -* V is invertible. Now Cq(K, V) = HomF{Kq{K), V) where
Ag(K) is the component of degree q of the exterior algebra on K. Since
ad(x) is locally nilpotent, so is the induced linear transformation of Ag(K).
By Farnsteiner [2, Lemma 4.3], JC acts invertibly on Cq{K, V). It follows
that x acts invertibly on Hq{K, V). By Corollary 2.3, HP(L/K, Hq{K, V))
= 0 for all p, q and the result follows by the Hochschild-Serre spectral se-
quence.

Let iV « L and let A be an irreducible TV-module. As defined in [1],
an ^-component of the finite-dimensional L-module V is an L-submodule
A{V) such that every TV-composition factor of A(V) is isomorphic to A
while V/A{V) has no TV-composition factor isomorphic to A. If an A-
component exists for every A, then V is their direct sum and is called
iV-sortable. We denote by FN the ground field, regarded as TV-module with
trivial TV-action. Clearly, if FN(V) exists, then FN(V) = V0(N). In [1],
only finite-dimensional Lie algebras were considered. We modify terminology
slightly to allow for infinite-dimensional Lie algebras.

DEFINITION 2.5. We say that (L, TV) is a finitely sorting pair, abbreviated
to FS pair, if TV « L and every finite-dimensional L-module is TV-sortable.
We say that L is absolutely finitely sorting, abbreviated to AFS, if every finite-
dimensional L-module is L-sortable, that is, if (L, L) is an FS pair.

In [1], a number of conditions were shown to be equivalent to the assump-
tion that (L, TV) is an FS pair. By separating out the points at which use
was made of the assumption that L is finite-dimensional, we can rephrase
that result as follows.

THEOREM 2.6. Let L be a Lie algebra and let N <<L. Then the following
conditions are equivalent.

(a) (L, TV) is an FS pair.
(b) FN(V) exists for every finite-dimensional irreducible L-module V.
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(c) If V is a finite-dimensional irreducible L-module which does not con-
tain FN as N-composition factor, then H\L, V) = 0.

(d) / / V is a finite-dimensional L-module and VN = 0, then Hl{L, V) =
0.

If L is finite-dimensional, then also equivalent to these are the following
conditions.

(e) In the case where char F / 0, TV is nilpotent. In the case where
charF = 0, N = S @ R where S is semi-simple and R is nilpotent.

(f) / / V is a finite-dimensional L-module and VN = 0, then HP(L, V) =
0 for all p.

Every finite-dimensional L-module is an L/K-module for some ideal K
with L/K finite-dimensional. Clearly, (L, TV) is an FS pair if and only if
for every ideal K of L with L/K finite-dimensional, (L/K, (TV + K)/K)
is an FS pair. Thus (L, TV) is an FS pair if and only if for every ideal K of
L with L/K finite-dimensional, (TV + K)/K has the structure 2.6(e).

COROLLARY 2.7. Suppose TV << L. If either L or N isAFS, then (L, TV)
is an FS pair.

PROOF. Let K < L with L/K finite-dimensional. We have to show that
{N+K)/K has the structure 2.6(e). If L isAFS, then L/K has that structure
and (N + K)/K, being subnormal in L/K, also has that structure. If TV is
AFS, then (N + K)/K, being a finite-dimensional homomorphic image of
N, has that structure. In either case, it follows that (L, N) is an FS pair.

We can now generalise Theorem 1.2.

THEOREM 2.8. Let (L, N) be an FS pair. Suppose that, for every finite-
dimensional irreducible L-module P with PN - 0, we have HP(L, P) = 0
for all p. Then H"{L, V) = HP(L,FN(V)) for all p and every finite-
dimensional L-module V. In particular, if N « L and N is locally nilpo-
tent, then HP(L, V) = HP(L, FN(V)) for all p and every finite-dimensional
L-module V.

PROOF. Since V = @A A(V), we have HP(L, V) = ©^ HP{L, A(V)). If
A ^ FN, then HP(L, P) = 0 for every L-composition factor P of A(V),
w h e n c e i t f o l l o w s t h a t H"{L ,A(V)) = 0. T h u s H"(L ,V) = HP(L, FN(V)).

Suppose TV is locally nilpotent and that P is an irreducible L-module
with PN = 0. Since P is sortable as an TV-module, it follows that ev-
ery TV-composition factor Q of P satisfies QN = 0. By Corollary 2.4,
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H"(N,Q) = 0 for all p. It follows that HP(N, P) = 0 for all p. By
Lemma 2.1, HP(L, P) — 0 for all p and the result follows.

THEOREM 2.9. Suppose the Lie algebras Ni for i e / are AFS. Then
N = @ieINi is AFS.

PROOF. Let K be an ideal of N and let f:N-+ N/K be the natural
homomorphism. Suppose N/K is finite-dimensional. Then /(#,-) has the
structure of 2.6(e) and f(N) is the sum (not necessarily direct) of the ideals
f(Nt). But a finite-dimensional sum of nilpotent ideals is nilpotent. A finite-
dimensional sum of semi-simple ideals is semi-simple. Thus f{N) also has
the structure 2.6(e).

By Theorem 2.6, locally nilpotent algebras and, if charF = 0, semi-simple
algebras are AFS. So too, trivially, are infinite-dimensional simple algebras.
If N is AFS and V is an iV-module having no non-zero finite-dimensional
quotients, then any extension of V by N is AFS. Some more interesting ex-
amples are provided by a well-known construction (see Jacobson [3, Chapter
VII, §1], Serre [5, VI • 19-VI • 26 ]).

EXAMPLE 2.10. Let F be a field of characteristic 0 and let A — {Atj) be
an / x / Cartan matrix. Let L be the Lie algebra over F generated by
elements Hi, Xi,, Yt for / = 1 , . . . , / , with defining relations

where <J( is the Kronecker delta. Then L — H © X ®Y as vector space,
where H is an abelian subalgebra spanned by the Hi and X, Y are free
Lie algebras freely generated by the Xi and the Y, respectively. Put

Pu - adiX^'Xj, Qij = uKY^-^Yj

for i^j. Let P be the ideal of X generated by the Ptj and let Q be the
ideal of Y generated by the Q(j. Then P, Q are ideals of L and L/{P+Q)
is the split semi-simple Lie algebra with Cartan matrix A . For an ideal K
of L, L/K is finite-dimensional if and only if K 3 P + Q • Since every
finite-dimensional quotient L/K is semi-simple, L is AFS.

3. Negative results

From the finite-dimensional case, one might conjecture that if (L, N) is
an FS pair, then iV is AFS. This is false.

EXAMPLE 3.1. Let L be the Lie algebra over a field of characteristic 0
constructed in Example 2.10 from a Cartan matrix A of rank / > 2 . Then
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(L, P) is trivially an FS pair since P is contained in the kernel of every
finite-dimensional representation of L. But P, being a subalgebra of the
free Lie algebra X, is a free Lie algebra by the Sirsov-Witt Theorem [4, page
331]; P is infinite-dimensional, so it is free on more than one generator and
therefore has finite-dimensional quotients not of the type 2.6(e).

EXAMPLE 3.2. Let X be the Lie algebra over the field F of characteristic
p ^ 0 defined by {x, y, z\xy = z, xz = yz = 0), and let A — (a0, a{,...).
We make A into an A"-module by defining

xat = at_,, ya,. = (/ + 1 )ai+l, zat = ar

Then A has submodules An — (aQ, a , , . . . , anp_l), and it is easily seen that
these are the only proper submodules of A. Let E be the split extension of
A by X. If K is an ideal of E with E/K finite-dimensional, then K D A
and E/K is nilpotent. Thus E is AFS. Let JV = {z, A). Then N < E,
(E, N) is an FS pair, but N has the non-abelian 2-dimensional algebra as
homomorphic image and so is not AFS.

From Theorem 2.6(f) and Corollary 2.4, one might conjecture that if
L is AFS and V is a finite-dimensional /.-module with VL = 0, then
H"{L, V) = 0 for all p . This is false.

EXAMPLE 3.3. We again use the construction and notations of Example
2.10, this time with Cartan matrix (02)- L ^ a(: H -*• F be the root given
by a^Hj) = 2<5. for /, j — 1, 2 , and put amn = mal + na2 for m, n e Z.
Let V be the irreducible L-module with highest weight an .

We shall show that H2(L, V) ^ 0 by constructing a 2-cocycle z: LxL —>
F such that

(•) z(H, L) = z(P2, L) = z(Q2 ,L) = z(X,X) = z(Y,Y) = 0

which we shall show is not a coboundary. For this, it is convenient to use a
different set of generators for L. We put h{ = \Ht so a,-(A •) = <$,- •, and put
x. = iX.,>>. = r(.. We put

*„ = a d ^ r 1 a d ^ r V ^ ) and yrj = ad^,)^1 &A(y2)
s-\yxy2)

for r, 5 > 1, and observe that the hi, xt, yi, xrs, yrs form a basis of L
modulo P2 + Q2 . We have

mod Q*, y,x.. = ( " )x. „_, mod P^.

Now V is 9-dimensional and has a basis consisting of eigenvectors for the
weights a for m, n — -1, 0, 1. We shall denote the chosen eigenvector
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for the weight amn by va or vmn interpreting this to be 0 if either m or
n is outside { -1 ,0 , 1}. As p(yx) and p{y2) commute, we may choose vn

arbitrarily and take u,_r ,_s = p(y{)r p(y^fvn . We then have

lmn mn> XlVmn = Vm+X ,n ' V^mn = Vm-l,n'
h2Vmn = nVmn> X2Vmn = Vm,n+\ ' y2

Vmn = Vm , „ - ! '

for m, « = - 1 , 0, 1.

LEMMA 3.4. The recurrence relations

(a) 0 ( p + l , 0 , r , s ) = 0(p,fl , r,s)+ \C\d{p,q, r- \, s) ifp<r,

(b) 0{p,q+\,r,s) = 0{p,q,r,s)+\V\0{p,q,r,s-\) ifq<s,

(c) 6(p,q,r + \,s) = d(p, q,r,s)+

(d)

together with (9(1, 1, 1, 1) = 2 and 6{p, q, r, s) = 0 / / |/> - r\ > 1 or
\q - s\ > 1 or //"any of p, q, r, s is 0, define a function 8: N4 -+ Z.

PROOF. It is clear that reductions using (a) or (c) commute with reductions
using (b) or (d). We fix q, s denote 6(p, q, r, s) by 6(p, r) and prove that
d(p, r) is well-defined (assuming 6(1, 1) = 6(1, q, 1, s) is defined). We
suppose that 6(p, r) is well-defined for all p, r < k and satisfies

(i) 6(p,r) = 6(r,p),
(ii) 0( r , r ) = r 0 ( r , r - l ) .
We have two ways of calculating 6(k + 1, k) which we must show give

the same result. The rule (c) requires 6(k + 1, k) to be

since 6(k + 1, fc - 1) = 0, while the rule (a) gives the value

by (ii). As these are equal, 6(k + 1, k) is well-defined and we have
(iii) 6(k+l,k) = (k+l)6(k, k - 1).

S i m i l a r l y w e h a v e 6 ( k , k + 1) = ( * £ ' ) 0 ( f c - 1 , k ) . S i n c e 8 ( k , k - \ ) =
6(k-\,k), it follows that 6(k + 1, k) = 6(k, k + 1).
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We have two ways of calculating 6(k + 1, k+ 1) which, by symmetry, give
the same result. Thus 6(k + 1, k + 1) is well-defined, and

0(k + 1, k + 1) - 6{k + 1, k) + (k ^ M d(k, k) (by (c))

) (by (ii))

= 6(k + l,k) + kd(k + 1, k) (by (iii))

which completes the induction.
We put

z(xt ,yj)= Suva_aj, z(xpq,yrs) = 0(p,q,r, s)vp_r _ q_

Together with (*) and the requirement that z be bilinear and alternating,
this defines z: L x L —• V .

LEMMA 3.5. z is a cocycle.

PROOF. We have to show that

Sz(a, b,c) = az(b, c)-bz(ai c) + cz(a, b)-z{ab, c) + z(ac, b)-z(bc, a)

vanishes for all triples a, b, c chosen from the h{, xt, yt, xpq, yrs. Non-
zero terms appear only if at least one of a, b, c is chosen from each of
X, Y. Suppose beXp and ceYy. Then z(b,c)e Vp+y and

6z(h,b,c) = hz{b, c) - z(hb -c) - z(b, he)

= {p + y)(h)z(b, c) - z{p{h)b, c) - z(b, y(h)c) = 0

for all h e H. By symmetry, we need only consider cases with a, b e X and
c € Y. One easily verifies that Sz(xl, x2, y}.) — 0 . Using (**) we obtain

We need only consider the cases r, s = 1 ,2 . We then have (r
2) = 52r and

as 0(1, 1, r, s) = (9(1, 1, 1, 1) = 2 , it follows that dz(x1, x2, yrs) = 0.
All terms of dz(xi, xpq , y^ are zero unless i = j . That <5z(x,, xpq, yl) =

0 can easily be verified. All terms of ^z(xpq, xrs, y^) and of Sz(xpq, xrs, y^)
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are zero. There remains

A P q n P+i,<,rs

= (d(p,q,r,s)-d(p+l,q,r, s)

by 3.4(a).

LEMMA 3.6. z is not a coboundary.

PROOF. Suppose z — Sf. Then

f{hx) = ̂ 2aijVij a n d

for some a , , , i , , e F. By replacing / by / - <5(X),- iiaavn)> w e m a v

suppose afj — 0 for / ^ 0 . Now

Thus ZJJ7 = 0 for / ^ 0 and aOj = 0 for ;' / 0. By replacing / by
f-d(52j jbOjvOj), we may further suppose btj = 0 if j ^ 0. We then have
/(/?() = fl^oo for some a, , a2 e F . Now

0 - z(A,, x2) = hj(x2) - x2f{hx) = A,/(x2) - a,u01.

But vQl £ imp(/i1). Therefore a{ - 0. Similarly a2 = 0. For any h e H
and x e ^ a ,

0 = z(A, x) = */(*) - x/(A) - f{hx) = hf{x) - a(h)f(x).

Thus f{x) e Va, so /(*,.) = A,^ and similarly f(y() = Htv_a for some
A, ,nteF. But then

and we require /i7 - kt = <5;J for i, j = 1,2. These equations have no
solution.

This completes the demonstration that Example 3.3 has the claimed prop-
erties.

EXAMPLES 3.7. Let E be the algebra over a field of characteristic p ^ 0
constructed in 3.2 as the split extension of the X-module A . Let L = E/A{.
Then L is isomorphic to E, so L is AFS. Now A{ is an irreducible L-
module and A\ — 0. But E is a non-split extension of Al by L. Thus

2
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