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We study the statistics of passive scalars at Pr = 1, for turbulent flow within a smooth
straight pipe of circular cross section up to Reτ ≈ 6000 using direct numerical simulation
(DNS) of the Navier–Stokes equations. While featuring a general organisation similar to
the axial velocity field, passive scalar fields show additional energy at small wavenumbers,
resulting in a higher degree of mixing and in a k−4/3 spectral inertial range. The DNS
results highlight logarithmic growth of the inner-scaled bulk and mean centreline scalar
values with the friction Reynolds number, implying an estimated scalar von Kármán
constant kθ ≈ 0.459, which also nicely fits the mean scalar profiles. The DNS data are
used to synthesise a modified form of the classical predictive formula of Kader & Yaglom
(Intl J. Heat Mass Transfer, vol. 15 (12), 1972, pp. 2329–2351), which points to some
shortcomings of the original formulation. Universality of the mean core scalar profile in
defect form is recovered, with very nearly parabolic shape. Logarithmic growth of the
buffer-layer peak of the scalar variance is found in the Reynolds number range under
scrutiny, which well conforms with Townsend’s attached-eddy hypothesis, whose validity
is also supported by the spectral maps. The behaviour of the turbulent Prandtl number
shows good universality in the outer wall layer, with values Prt ≈ 0.84, as also found
in previous studies, but closer to unity near the wall, where existing correlations do not
reproduce the observed trends.
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1. Introduction

The study of passive scalars evolving within wall-bounded turbulent flows has great
practical importance, being relevant for the behaviour of diluted contaminants and/or as
a model for the temperature field under the assumption of low Mach number and small
temperature differences (Monin & Yaglom 1971; Cebeci & Bradshaw 1984). It is well
known that measurements of concentration of passive tracers and of small temperature
differences are quite difficult and, in fact, available information about even basic passive
scalar statistics are rather limited (Gowen & Smith 1967; Kader 1981; Subramanian &
Antonia 1981; Nagano & Tagawa 1988), mostly including basic mean properties and
overall mass or heat transfer coefficients. Although existing semi-empirical correlations
have sufficient accuracy for engineering design (Kays, Crawford & Weigand 1980), their
theoretical foundations are not firmly established. Furthermore, assumptions typically
made in turbulence models such as constant turbulent Prandtl number are known to be
crude approximations in the absence of reliable reference data.

Given this scenario, direct numerical simulation (DNS) is the natural candidate to
establish a credible database for the physical analysis of passive scalars in wall turbulence,
and for the development and validation of phenomenological prediction formulae and
turbulence models. Most DNS studies of passive scalars in wall turbulence have been so
far carried out for the prototype case of planar channel flow, starting with the work of Kim
& Moin (1989), at Reτ = 180 (here Reτ = uτ R/ν is the friction Reynolds number, with
uτ = (τw/ρ)1/2 the friction velocity, R the pipe radius, ν the fluid kinematic viscosity,
ρ the fluid density and τw the wall shear stress), in which the forcing of the scalar
field was achieved using a spatially and temporally uniform source term. Additional
simulations at increasingly high Reynolds number were carried out by Kawamura, Abe &
Matsuo (1999) and Abe, Kawamura & Matsuo (2004), based on enforcement of strictly
constant heat flux in time (this approach is hereafter referred to as CHF), which first
allowed scale separation effects to be appreciated and a reasonable value of the scalar von
Kármán constant kθ ≈ 0.43 to be deduced, as well as effects of Prandtl number variation
(the molecular Prandtl number is here defined as the ratio of the kinematic viscosity
to the scalar diffusivity, Pr = ν/α). Those studies showed close similarity between the
streamwise velocity and passive scalar field in the near-wall region, as after the classical
Reynolds analogy. Specifically, the scalar field was found to be organised into streaks
whose size scales in wall units, with a correlation coefficient between streamwise velocity
fluctuations and scalar fluctuations close to unit. Computationally high Reynolds numbers
(Reτ ≈ 4000, with Pr ≤ 1) were reached in the study of Pirozzoli, Bernardini & Orlandi
(2016), using spatially uniform forcing in such a way as to maintain the bulk temperature
constant in time (this approach is hereafter referred to as CMT). Recent large-scale channel
flow DNS with passive scalars using the CHF forcing at Pr = 0.71 (as representative of
air) have been carried out by Alcántara-Ávila, Hoyas & Pérez-Quiles (2021).

Flow in a circular pipe is clearly more practically relevant than planar channel flow in
view of applications such as heat exchangers, and it has been the subject of a number of
experimental studies, mainly aimed at predicting the heat transfer coefficient as a function
of the bulk flow Reynolds number (Kays et al. 1980). High-fidelity numerical simulations
including passive scalars in pipe flow have been quite scarce so far and mainly include
studies at Reτ ≤ 1000 (Piller 2005; Redjem-Saad, Ould-Rouiss & Lauriat 2007; Saha
et al. 2011; Antoranz et al. 2015; Straub et al. 2019). The current knowledge about gross
properties and mean scalar profiles across the Reynolds and Prandtl numbers envelope
thus currently rests on semi-empirical correlations (Kays et al. 1980; Kader 1981), which,
although suitable for practical applications, deserve careful scrutiny. Clearly, the state of
the art is not as well developed as for planar channel flow.
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Passive scalars in pipe flow
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Figure 1. Definition of the coordinate system for DNS of pipe flow, where z, r and φ are the axial, radial and
azimuthal directions, respectively, R is the pipe radius, Lz the pipe length and ub is the bulk velocity.

In this paper, we thus present DNS data of turbulent flow in a smooth circular
pipe up to Reτ ≈ 6000, including a passive scalar field with Pr = 1, at which some
asymptotic high-Reynolds-number effects appear which were not observed in previous
studies. Relying on the DNS database, we carry out an analysis of the structure of passive
scalars in turbulent pipe flow, revisit current theoretical inferences and discuss implications
about possible trends in the extreme-Reynolds-number regime. From a more engineering
standpoint, we also revisit formulae for heat transfer prediction, as well as assumptions
made in Reynolds-averaged Navier–Stokes (RANS) models for passive scalar turbulence.
Although, as previously pointed out, the study of passive scalars is relevant in several
contexts, the main field of application is heat transfer and, therefore, from now on we refer
to the passive scalar field as the temperature field (denoted as T), and scalar fluxes will be
interpreted as heat fluxes. Details on the velocity statistics from the present DNS database
were reported in a separate publication (Pirozzoli et al. 2021).

2. Numerical dataset

Numerical simulations of fully developed turbulent flow in a circular pipe are carried
out assuming periodic boundary conditions in the axial (z) and azimuthal (φ) directions,
as shown in figure 1. The velocity field is controlled by two parameters, namely the
bulk Reynolds number (Reb = 2Rub/ν, with ub the bulk velocity namely averaged over
the cross section), and the relative pipe length, Lz/R. The incompressible Navier–Stokes
equations are supplemented with the transport equation for a passive scalar field (hence,
buoyancy effects are disregarded), with the same diffusivity as the velocity field (hence,
we assume Pr = 1) and with isothermal boundary conditions at the pipe wall (r = R).
The passive scalar equation is forced through a time-varying, spatially uniform source
term (CMT approach), in the interest of achieving complete similarity with the streamwise
momentum equation, with the obvious exclusion of pressure. Although the total heat flux
resulting from the CMT approach is not strictly constant in time, it oscillates around
its mean value under statistically steady conditions. Differences of the results obtained
with the CMT and CHF approaches have been described by Abe & Antonia (2017) and
Alcántara-Ávila et al. (2021), which although generally small deserve some attention.

The computer code used for the DNS is the spin-off of an existing solver previously
used to study Rayleigh–Bénard convection in cylindrical containers at extreme Rayleigh
numbers (Stevens et al. 2013). That code is, in turn, the evolution of the solver originally
developed by Verzicco & Orlandi (1996), and used for DNS of pipe flow by Orlandi
& Fatica (1997). A second-order finite-difference discretisation of the incompressible
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Navier–Stokes equations in cylindrical coordinates is used, based on the classical
marker-and-cell method (Harlow & Welch 1965), whereby pressure and passive scalars
are located at the cell centres, whereas the velocity components are located at the
cell faces, thus removing odd–even decoupling phenomena and guaranteeing discrete
conservation of the total kinetic energy and passive scalar variance in the inviscid limit.
The Poisson equation resulting from enforcement of the divergence-free condition is
efficiently solved by double trigonometric expansion in the periodic axial and azimuthal
directions, and inversion of tridiagonal matrices in the radial direction (Kim & Moin
1985). An extensive series of previous studies about wall-bounded flows from this
group proved that second-order finite-difference discretisation yields in practical cases
of wall-bounded turbulence results which are by no means inferior in quality to those
of pseudo-spectral methods (e.g. Moin & Verzicco 2016; Pirozzoli et al. 2016). A crucial
issue is the proper treatment of the polar singularity at the pipe axis. A detailed description
of the subject is reported in Verzicco & Orlandi (1996), but, basically, the radial velocity
ur in the governing equations is replaced by qr = rur (r is the radial space coordinate),
which by construction vanishes at the axis. The governing equations are advanced in
time by means of a hybrid third-order low-storage Runge–Kutta algorithm, whereby
the diffusive terms are handled implicitly, and convective terms in the axial and radial
direction explicitly. An important issue in this respect is the convective time step limitation
in the azimuthal direction, due to intrinsic shrinking of the cells size toward the pipe
axis. To alleviate this limitation, we use implicit treatment of the convective terms in the
azimuthal direction (Akselvoll & Moin 1996; Wu & Moin 2008), which enables marching
in time with similar time step as in planar domains flow in practical computations. In
order to minimise numerical errors associated with implicit time stepping, explicit and
implicit discretisations of the azimuthal convective terms are linearly blended with the
radial coordinate, in such a way that near the pipe wall the treatment is fully explicit, and
near the pipe axis it is fully implicit. The code was adapted to run on clusters of graphic
accelerators (GPUs), using a combination of CUDA Fortran and OpenACC directives, and
relying on the CUFFT libraries for efficient execution of fast Fourier transforms (FFTs)
(Ruetsch & Fatica 2014).

From now on, inner normalisation of the flow properties will be denoted with the ‘+’
superscript, whereby velocities are scaled by uτ , wall distances by ν/uτ and temperatures
with respect to the friction temperature,

Tτ = α

uτ

〈
dT
dy

〉
w

. (2.1)

In particular, the inner-scaled temperature is defined as θ+ = (T − Tw)/Tτ , where T is the
local temperature and Tw is the wall temperature. Capital letters are used to denote flow
properties averaged in the homogeneous spatial directions and in time, brackets to denote
the averaging operator and lowercase letters to denote fluctuations from the mean. Finally,
bulk values of axial velocity and temperature are defined as

ub = 2
∫ R

0
r〈uz〉 dr

/
R2, Tb = 2

∫ R

0
r〈T〉 dr

/
R2. (2.2a,b)

A list of the main simulations that we have carried out is given in table 1. The mesh
resolution is designed based on the criteria discussed by Pirozzoli & Orlandi (2021).
In particular, the collocation points are distributed in the wall-normal direction so that
approximately 30 points are placed within y+ ≤ 40 (y = R − r is the wall distance),
with the first grid point at y+ < 0.1, and the mesh is progressively stretched in the

940 A45-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

26
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.265


Passive scalars in pipe flow

Dataset Lz/R Mesh (Nz × Nr × Nφ) Reb Nu Reτ Δtstat/τt Line colour

DNS-A 15 256 × 67 × 256 5300 24.8251 180.3 204.0
DNS-B 15 768 × 140 × 768 17 000 60.2341 495.3 87.4
DNS-C 15 1792 × 270 × 1792 44 000 124.178 1136.6 25.9
DNS-C-SH 7.5 1792 × 270 × 986 44 000 124.098 1144.2 31.1 NA
DNS-C-LO 30 1792 × 270 × 3944 44 000 123.958 1134.6 24.5 NA
DNS-C-FF 15 3944 × 270 × 1792 44 000 123.569 1131.0 31.3 NA
DNS-C-FR 15 1792 × 540 × 1792 44 000 124.625 1135.7 28.6 NA
DNS-C-FZ 15 1792 × 270 × 3944 44 000 122.196 1135.7 15.5 NA
DNS-D 15 3072 × 399 × 3072 82 500 202.662 1976.0 22.4
DNS-E 15 4608 × 540 × 4608 133 000 296.485 3028.1 16.6
DNS-F 15 9216 × 910 × 9216 285 000 539.975 6019.4 8.32

Table 1. Flow parameters for DNS of pipe flow. Cases are labelled in increasing order of Reynolds number,
from A to F. Suffixes SH and LO indicate DNS in short and long domains, respectively; FF, FR and FZ denote
refinement along the φ, r and z directions, respectively.

outer wall layer in such a way that the mesh spacing is proportional to the local
Kolmogorov length scale, which there varies as η+ ≈ 0.8y+1/4 (Jiménez 2018). Regarding
the axial and azimuthal directions, finite-difference simulations of wall-bounded flows
yield grid-independent results as long as Δx+ ≈ 10, R+Δφ ≈ 4.5 (Pirozzoli et al. 2016),
hence we have selected the number of grid points along the homogeneous flow directions
as Nz = Lz/R × Reτ /9.8, Nφ ∼ 2π × Reτ /4.1. According to the established practice
(Hoyas & Jiménez 2006; Ahn et al. 2015; Lee & Moser 2015), the time intervals used
to collect the flow statistics (Δtstat) are reported as a fraction of the eddy-turnover time
(R/uτ ).

The sampling errors for some key properties discussed in this paper have been estimated
using the method of Russo & Luchini (2017), based on extension of the classical batch
means approach. The results of the uncertainty estimation analysis are listed in table 2,
where we provide expected values and associated standard deviations for the Nusselt
number (Nu), mean temperature at the pipe centreline (Θ+

CL) and peak temperature
variance and its wall distance (〈θ2〉+IP and y+

IP, respectively). We find that the sampling
error is generally quite limited, being larger in the largest DNS, which have been run
for shorter time. In particular, in DNS-F, the expected sampling error in Nusselt number,
centreline temperature and peak temperature variance is approximately 0.5 %. Additional
tests aimed at establishing the effect of axial domain length and grid size have been carried
out for the DNS-C flow case, whose results are also reported in table 2. We find that even
halving the pipe length yields minimal change in the basic flow properties, which is well
within the uncertainty bounds. This is in contrast to properties related to the velocity field,
which are significantly affected from use of a short domain (Pirozzoli et al. 2021). The
interesting consequence of this observation is the possibility to carry out DNS of scalar
fields in more limited domains, as also noted by Alcántara-Ávila et al. (2021). In order
to quantify uncertainties associated with numerical discretisation, additional simulations
have been carried out by doubling the number of grid points in the azimuthal, radial and
axial directions, respectively. Based on the data reported in the table, after discarding the
short-pipe case, we can thus quantify the uncertainty due to numerical discretisation and
limited pipe length to be approximately 0.2 % for the Nusselt number, 0.4 % for the pipe
centreline temperature and 0.7 % for the peak temperature variance.
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Dataset Nu Θ+
CL 〈θ2〉+IP y+

IP

DNS-A 24.8251 ± 0.16 % 18.31 ± 0.054 % 7.667 ± 0.24 % 15.40 ± 0.24 %
DNS-B 60.2341 ± 0.072 % 19.86 ± 0.099 % 7.988 ± 0.11 % 14.69 ± 0.29 %
DNS-C 124.178 ± 0.11 % 21.83 ± 0.083 % 8.668 ± 0.18 % 14.93 ± 0.064 %
DNS-C-SH 124.098 ± 0.11 % 22.21 ± 0.091 % 8.760 ± 0.28 % 14.89 ± 0.082 %
DNS-C-LO 123.958 ± 0.12 % 21.84 ± 0.093 % 8.636 ± 0.26 % 14.88 ± 0.048 %
DNS-C-FF 123.569 ± 0.12 % 21.89 ± 0.12 % 8.591 ± 0.18 % 14.88 ± 0.053 %
DNS-C-FR 124.625 ± 0.18 % 21.79 ± 0.079 % 8.537 ± 0.22 % 14.62 ± 0.074 %
DNS-C-FZ 122.196 ± 0.16 % 22.25 ± 0.10 % 9.011 ± 0.25 % 15.40 ± 0.10 %
DNS-D 202.662 ± 0.19 % 23.12 ± 0.19 % 9.034 ± 0.32 % 15.00 ± 0.068 %
DNS-E 296.485 ± 0.26 % 23.96 ± 0.16 % 9.326 ± 0.42 % 15.05 ± 0.13 %
DNS-F 539.975 ± 0.32 % 25.37 ± 0.23 % 9.794 ± 0.60 % 15.30 ± 0.17 %

Table 2. Uncertainty estimation study: mean values of representative quantities and standard deviation of their
estimates, where Nu is the Nusselt number, Θ+

CL is the mean pipe centreline temperature, 〈θ2
z 〉+IP is the peak

temperature variance and y+
IP is its distance from the wall.

3. Results

3.1. General organisation of the temperature field
Qualitative information about the structure of the flow field is provided by instantaneous
perspective views of the axial velocity and temperature fields, which we show in figure 2.
Although finer-scale details are visible at the higher Reb, the flow in the cross-stream
planes is always characterised by a limited number of bulges distributed along the
azimuthal direction, which correspond to alternating intrusions of high-speed fluid from
the pipe core and ejections of low-speed fluid from the wall. Streaks are visible in the
near-wall cylindrical shells, whose organisation has clear association with the cross-stream
pattern. Specifically, R-sized low-speed streaks are observed in association with large-scale
ejections, whereas R-sized high-speed streaks occur in the presence of large-scale inrush
from the core flow. At the same time, smaller streaks scaling in wall units appear,
corresponding to buffer-layer ejections/sweeps. Hence, organisation of the flow on at least
two length scales is apparent here, whose separation increases with Reτ . As figure 2
shows, the temperature field has the same qualitative organisation as axial velocity, and
low-speed streaks correspond to low-temperature thermal streaks. This is not surprising,
given the formal similarity of the controlling equations at Pr = 1, and close association
of the two quantities pointed out in many previous studies (e.g. Abe & Antonia 2009;
Pirozzoli et al. 2016; Alcántara-Ávila, Hoyas & Pérez-Quiles 2018). It is interesting that
this association includes both the large flow scales in the pipe core and the small, near-wall
streaks. Zooming in closer (see figure 3), one can nevertheless detect some differences
between the two fields, in that temperature tends to form sharper fronts, whereas the axial
velocity field tends to be more blurred. As noted by Pirozzoli et al. (2016), this is due to the
fact that the axial velocity is not passively advected, but rather it can react to the formation
of fronts through feedback pressure. As a result, whereas the organisation at large scales
is similar, smaller features are found in the temperature fields, as clearly highlighted in the
corresponding spectral densities.

The spectral maps of uz and θ are depicted in figure 4, for the DNS-F flow case. In order
to isolate changes in the typical length scales, in the figure we show the azimuthal spectral
densities normalised by the respective variances, defined as

Êx(kφ) = Ex(kφ)/〈x2〉, (3.1)
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uz/〈u〉��, T/〈T 〉��

(a) (b)

(c) (d )
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Figure 2. (a),(c) Instantaneous axial velocity and (b),(d) temperature contours in turbulent pipe flow as
obtained from (a),(b) DNS-A and (c),(d) DNS-F. Thirty contours (from zero to the mean centreline value)
are shown on a cross-stream plane and on a near-wall cylindrical shell (y+ ≈ 15), in colour scale from blue to
red.

where kφ = 2π/λφ is the relevant wavenumber for the φ direction and x is the generic flow
property. The axial velocity spectra clearly bring out a two-scale organisation of the flow
field, with a near-wall peak associated with the wall regeneration cycle (Jiménez & Pinelli
1999), and an outer peak associated with outer-layer large-scale motions (Hutchins &
Marusic 2007). The latter peak is found to be centred around y/R ≈ 0.3, and to correspond
to eddies with typical wavelength λφ ≈ 1.5R, consistent with that found by Ahn et al.
(2015) for pipe flow at Reτ = 3000. Secondary peaks corresponding to harmonics of this
fundamental wavelength are also observed here, suggesting that the typical outer modes
are not purely sinusoidal with respect to the azimuthal direction. Notably, very similar
organisation is found in the temperature field, the main difference being a somewhat
broader peak at large wavelengths. Both the axial velocity and the temperature field exhibit
a prominent spectral ridge corresponding to modes with typical azimuthal length scale
λφ ∼ y, extending over about two decades, which can be interpreted as the footprint of
a hierarchy of wall-attached eddies following Tonwsend’s hypothesis (Townsend 1976).
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0 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.85 0.90 1.00

(a) (b)

uz/〈u〉��, T/〈T 〉��

Figure 3. (a) Instantaneous axial velocity and (b) temperature contours in a subregion of the pipe cross
section for DNS-F.
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Figure 4. Variation of pre-multiplied, normalised azimuthal spectral densities of uz (Êuz , (a)) and θ (Êθ , (b))
with wall distance, for flow case DNS-F. Wall distances and wavelengths are reported both in inner units
(bottom, left), and in outer units (top, right). The solid diagonal line marks the trend λφ = 7.16y. Contour
levels from 0.05 to 0.5 are shown, in intervals of 0.05.

Hence, we may expect that inferences of the attached-eddy hypothesis regarding the
behaviour of the axial velocity field also carry on to the temperature field.

Differences between velocity and scalar spectra are better scrutinised in figure 5, where
we show spectral densities at a discrete set of wall distances. Figure 5(a) clearly brings
out the bi-modal distribution of energy between the inner and the outer energetic sites. At
intermediate wall distances (y+ ≈ 100) there is some mild evidence for a Êx ∼ λφ range
which is also predicted from Townsend’s theory (Nickels et al. 2005). Most importantly,
the figure shows extra energy at small wavelengths in the temperature spectra, with
exception of the nearest wall location. This difference is emphasised in figure 5(b),
which shows spectra at y/R = 0.3 (at which the Taylor microscale Reynolds number is
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Figure 5. (a) Pre-multiplied, normalised spectral densities of uz (solid) and θ (dashed), at y+ = 15 (gold),
y+ = 50 (green), y+ = 100 (cyan) and y/R = 0.3 (purple), for the DNS-F flow case. (b) Normalised spectral
densities of uz (solid) and θ (dashed) at y/R = 0.3, compensated by k5/3 (top inset) and by k4/3 (bottom inset).

Reλ ≈ 400) in the classical log–log, non-pre-multiplied representation. Whereas the uz and
θ spectra are very similar at the largest scales of motion, temperature tends to have a more
shallow decay in the inertial and dissipative regions. This is well seen in the compensated
representations shown in the insets. Whereas the classical k−5/3 behaviour can be traced
in the uz spectra (at least in a tiny range of wavenumbers), the θ spectra seem to feature
instead a k−4/3 range, which is the theoretically expected behaviour for passive scalars in
sheared turbulence (Lohse 1994).

Differences between axial velocity and temperature fields are also apparent in the close
proximity of the wall. In figure 6 we show the probability density functions (p.d.f.s) for the
wall-normal derivatives of uz and θ . Both variables seem to tend to limit distributions in
the infinite-Re limit, however whereas θ is mathematically bound to be positive, hence
its wall-normal derivative must also be positive, uz can have instantaneously negative
values corresponding to local flow reversal. As a result, we find that the p.d.f. of the
temperature gradient is well approximated by a log–normal distribution, as resulting from
random multiplicative events. On the other hand, the p.d.f. of uz obviously deviates from
log–normality near the origin, but also its positive tail seems to be less prominent than
for θ . The existence of local flow inversion at the wall, although with small probability
(about 0.1 % overall) was noted in several previous studies (e.g. Lenaers et al. 2012), and
related to the presence of oblique vortices inducing negative pressure fluctuations. This
again corroborates the interpretation of different behaviour of uz and θ as being due to the
action of pressure.

3.2. Mean temperature field
The mean temperature profile in turbulent pipes has received extensive attention from
theoretical and experimental studies, and the general consensus (Kader 1981) is that a
logarithmic law well fits the experimental data. Recent studies have instead questioned
the validity of the logarithmic law for the mean velocity field at finite Reynolds number
(Jiménez & Moser 2007; Pirozzoli, Bernardini & Orlandi 2014; Lee & Moser 2015),
and corrections to account for the effect of the core flow on the overlap layer have been
proposed (e.g. Luchini 2017; Cantwell 2019; Monkewitz 2021). Such corrections mainly
amount to addition of a linear term to the logarithmic profile which can be justified as a
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Figure 6. Probability density function of wall-normal derivatives of (a) axial velocity and (b) temperature.
The colour codes are as in table 1. The dashed grey lines denote a log–normal distribution made to fit the
DNS-F data.
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Figure 7. (a) Inner-scaled mean temperature profiles and (b) corresponding log-law diagnostic functions.
Deviations from the assumed logarithmic wall law, Θ+

log = log y+/0.459 + 5.78, are highlighted in the inset
of (a). Circles denote the functional approximation proposed by Kader (1981), here evaluated for Reτ = 6019,
Pr = 1. In (b), the dashed horizontal line denotes the inverse of the Kármán constant, 1/kθ , and the dash-dotted
lines in the inset denote the linear fit (3.3), with kθ = 0.459, αθ = 1.81. See table 1 for colour codes.

higher-order term in the asymptotic matching between the inner and the outer layer (Afzal
& Yajnik 1973), or as due to the presence of a mean pressure gradient in internal flows
(Luchini 2017). Deviations of the profiles of passive scalars from the assumed logarithmic
distribution were also observed in DNS of channel flow by Pirozzoli et al. (2016) and
Alcántara-Ávila et al. (2021), amounting to a linear correction whose inner-scaled slope
decreases with Reτ . In figure 7, we show a series of temperature profiles computed
with the present DNS, fitted with a logarithmic function with inverse slope kθ = 0.459,
determined as described in the next section. The additive constant resulting from best
fitting of the DNS data is Cθ ≈ 5.78. As shown in the inset of figure 7(a), the velocity
profiles for Reτ ≥ 103 follow this distribution with deviations smaller than 0.1 wall units
from y+ ≈ 30 to y/R ≈ 0.1. Hence, the standard log law is a good approximation of
the temperature profile in the overlap layer for most practical purposes. The functional
expression proposed by Kader (1981, (9), circles in panel (a)) is also found to provide
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Passive scalars in pipe flow

reasonable approximation of the data throughout the wall layer, even if with somewhat
unnatural behaviour in the buffer layer and slight overprediction in the outer wall layer.

Very similar considerations apply to the mean axial velocity profiles (Pirozzoli et al.
2021, figure 3), which are visually well fitted with a logarithmic distribution, with
estimated value of the von Kármán constant k ≈ 0.387 (Pirozzoli et al. 2021), hence
much less than kθ , as consistently noted in previous studies on the subject. Based on
the results presented in § 3.1, this difference can be justified by recalling that in the log
layer (if present), k/kθ ≈ νt/αt, where νt and αt are the turbulent kinematic and thermal
diffusivities. As noted previously, the temperature field has a tendency to form sharper
fronts, with steeper gradients, hence its effective diffusivity is expected to be larger than
for the axial momentum. Accordingly, one may expect k to be smaller than kθ , and the
turbulent Prandtl number to be less than unity in the outer layer. More formal arguments to
justify this difference, based on the properties of the similarity solution for the logarithmic
mean profile over the inertial (non-diffusive) domain, were offered by Zhou, Klewicki &
Pirozzoli (2019).

More detailed scrutiny about the behaviour of the mean temperature profile is carried
out in figure 7(b), where we show the logarithmic diagnostic function,

Ξθ = y+ dΘ+/dy+, (3.2)

which is expected to be constant in the presence of a genuine logarithmic layer. As found
previously for the axial velocity field (Pirozzoli et al. 2021, figure 4), no region with flat
distribution of this indicator is, in fact, present. Rather, we note the occurrence of a nearly
linear distribution from y+ ≈ 100 to y/R ≈ 0.4, whose slope is approximately constant in
outer units, hence the diagnostic function can be expressed as

Ξθ ≈ 1
kθ

+ αθ

y
R

, (3.3)

with αθ ≈ 1.81. In other words, whereas a simple logarithmic profile is a reasonable
approximation for engineering estimates, a linear correction yields significant
improvement in the representation of the temperature profile, over a wider range of wall
distances. Based on (3.3), a genuine log layer in the mean temperature profile would only
emerge at infinite Reynolds number.

The structure of the core region of the flow is inspected in figure 8, where the mean
temperature profiles are shown in defect form. Disregarding the DNS at the lowest
Reynolds number (DNS-A and DNS-B) the scatter across the various temperature profiles
for y/R ≥ 0.2 is less than 1 %, which suggests that outer-layer similarity is very nearly
achieved. As suggested by Pirozzoli (2014) and Orlandi, Bernardini & Pirozzoli (2015), the
core velocity and temperature profiles can be closely approximated with simple universal
quadratic distributions, which one can derive under the assumption of constant eddy
diffusivity of momentum and temperature. In particular, we find that the formula

Θ+
CL−Θ+ = CO(1 − y/R)2, (3.4)

with CO = 5.5, fits the mean temperature distribution in the pipe core quite well. Closer
to the wall, the corrected logarithmic profile sets in at y/R � 0.44, here expressed in outer
coordinates,

Θ+
CL−Θ+ = − 1

kθ

log( y/R) − αθ

y
R

+ Bθ , (3.5)

where data fitting yields Bθ = 0.732. Although more elaborate descriptions of the outer
velocity profiles are possible (e.g. Krug, Philip & Marusic 2017; Luchini 2018), the
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Figure 8. Mean defect temperature profiles in (a) linear and (b) semi-logarithmic scale. The dashed grey line
marks a parabolic fit of the DNS data (Θ+

CL − Θ+ = 5.5(1 − y/R)2) and the dot-dashed purple line in (b)
the corrected outer-layer logarithmic fit Θ+

CL − Θ+ = 0.732 − 1/0.459 log( y/R) − 1.81( y/R). Only datasets
DNS-C to DNS-F are shown here, see table 1 for colour codes.

composite profile compounding (3.4) and (3.5) yields accurate representation of the whole
outer-layer mean temperature profile to within the scatter of the available DNS data.

3.3. Heat transfer coefficients
The primary subject of engineering interest in the study of passive scalar fields is the
transfer coefficient at the wall, which can be expressed in terms of the Stanton number,

St =
α

〈
dT
dy

〉
w

ub(Tm − Tw)
= 1

u+
b θ+

m
, (3.6)

where Tm is the mixed mean temperature (Kays et al. 1980),

Tm = 2
∫ R

0
r〈uz〉〈T〉dr

/
(ubR2), (3.7)

with θm = (Tm − Tw)/Tτ or, more frequently, in terms of the Nusselt number,

Nu = St Reb Pr. (3.8)

A predictive formula for the heat transfer coefficient in wall-bounded turbulent flows
was derived by Kader & Yaglom (1972), based on the assumed existence of logarithmic
layers for the mean velocity and temperature profiles as a function of the wall distance,
and on universality of the core layer in defect representation. For the purpose of critically
evaluating the assumptions made in the derivation of Kader’s formula, we show (in
figure 9) the distributions of the bulk and mean centreline values (namely, at r = 0) of
velocity (figure 9a) and temperature (figure 9b), as a function of the friction Reynolds
number, Consistently with theoretical expectations (e.g. Monkewitz 2021), the data
suggest logarithmic increase of the bulk and centreline velocity with Reτ according to

u+
b = 1

k
log Reτ + B, U+

CL = 1
k

log Reτ + BCL, (3.9a,b)

with k = 0.387, B = 1.229 and BCL = 5.85 (Pirozzoli et al. 2021). The relative standard
deviation of the above formulae with respect to DNS data is approximately 0.2 % for ub
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Figure 9. Bulk and centreline values of (a) axial velocity and (b) temperature. Bulk values (u+
b , θ+

b ) are
denoted with squares and centreline values (U+

CL, Θ+
CL) with circles. Diamonds in (b) denote the mixed mean

temperature (θ+
m ). The dashed lines denote logarithmic fits of the DNS data. The dash-dotted line in (b) refers

to the fit (3.11).

and 0.5 % for UCL. Similar trends are here observed for the temperature field, which also
exhibits logarithmic growth of the mean and centreline temperature with Reτ , according
to

θ+
b = 1

kθ

log Reτ + β, Θ+
CL = 1

kθ

log Reτ + βCL, (3.10a,b)

with θ+
b = (Tb − Tw)/Tτ , and fit of the DNS data suggests kθ = 0.459, β = 2.96 and

βCL = 6.46. The relative standard deviation of the above formulae with respect to DNS
data is approximately 0.06 % for θb and 0.5 % for ΘCL, hence the quality of the fits is
excellent as for the axial velocity field, and the resulting estimates of the flow constants,
and especially of the scalar von Kármán constant appear to be quite robust.

Considering a large number of experimental works, Kader & Yaglom (1972) suggested
kθ ≈ 0.47, and provided empirical formulae for the additive constants as a function of
the Prandtl number, β(Pr) = 12.5Pr2/3 + 1/kθ log Pr − 5.3 and βCL = β + 0.6. Studies
carried out by means of DNS in planar channel flows with CHF show some scatter in the
prediction of kθ , likely due to low-Reynolds-number effects. For instance, Kawamura et al.
(1999) reported 0.40 ≤ kθ ≤ 0.42, Abe et al. (2004) reported kθ ≈ 0.43, whereas more
data at higher Reynolds number suggest kθ ≈ 0.44 (Alcántara-Ávila et al. 2021). Studies
carried out with CMT typically tend to yield slightly higher values, namely kθ ≈ 0.46
(Pirozzoli et al. 2016), thus closer to Kader’s prediction. It should be noted that all the
above estimates were based on attempting to fit the temperature profiles with a logarithmic
law, which as shown previously may not be a good approximation, especially at low
Reynolds number. The method herein used to estimate the scalar von Kármán constant
from the bulk and centreline temperatures yields greater accuracy and robustness, resulting
in a value similar to that suggested by Kader & Yaglom (1972), and to values obtained
using a similar approach, based on channel flow DNS data (Abe & Antonia 2017). It is
also worth pointing out that the additive constants β, βCL in (3.10a,b) do depend on the
molecular Prandtl number (Kader & Yaglom 1972), hence the values herein reported are
specific to the Pr = 1 case.

Determination of the appropriate Reynolds number trends of the mixed mean
temperature is not as straightforward as for the bulk or the centreline temperature, because
it involves integrating the product of the mean velocity and temperature distributions.
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Simple developments (Kader & Yaglom 1972) suggest the expected behaviour to be

θ+
m = Θ+

CL−β2 + β3

u+
b

, (3.11)

with β2 and β3 universal constants, hence, on account of (3.9a,b) and (3.10a,b), deviations
from logarithmic dependence on Reτ are to be expected. Figure 9 shows that it is
indeed the case, and the mixed mean temperature (diamond symbols) seems to follow
a near logarithmic distribution only at the highest Reynolds numbers under consideration.
Values of the constants β2 = 4.92, β3 = 39.6, in (3.11) yield a fair fit of the DNS data.
Although the scatter in the analytical fit (see the dash-dotted line) is more significant
than for the other flow properties, this is clearly more accurate than a simple logarithmic
fit. Corrections to the logarithmic law in the mixed mean temperature were generally
disregarded in previous studies (Kader & Yaglom 1972; Abe & Antonia 2017), although
they can be included in the analysis without additional difficulty.

Proceeding as proposed by Kader & Yaglom (1972), it is straightforward to derive a
predictive formula for the inverse Stanton number,

1
St

= k
kθ

8
λ

+
(

βCL − β2 − k
kθ

B
) √

8
λ

+ β3, (3.12)

where the friction factor λ = 8/u+
b

2 can be obtained from (3.9a,b). Assuming strictly
logarithmic variation of the mixed mean temperature with Reτ (hence, setting β3 = 0),
Kader & Yaglom (1972) arrived at the following expression,

1
St

= 2.12 log(Reb
√
λ/4) + 12.5Pr2/3 + 2.12 log Pr − 10.1√

λ/8
, (3.13)

which could also be rearranged to a form more similar to (3.12). Additional correlations
which are in wide use in the engineering practice were proposed by Gnielinski (1976),

Nu = Prλ/8(Reb − 1000)

1 + 12.7(λ/8)1/2(Pr2/3 − 1)
, (3.14)

and by Kays et al. (1980),

Nu = 0.022 Re0.8
b Pr0.5. (3.15)

Last, direct fitting of the DNS data (at Pr = 1) with a power-law expression yields

Nu = 0.0219 Re0.804
b . (3.16)

All the above predictive formulae are tested in figure 10, showing the predicted inverse
Stanton number (figure 10a) and Nusselt number (figure 10b). With little surprise, we find
that (3.12) with DNS-informed definition of the coefficients matches the DNS data quite
well, with maximum relative error of 0.8 %. Despite minor differences in the coefficients
with respect to the baseline predictive formula (3.15), the direct power-law fit given in
(3.16) is also quite accurate, except at low Reb. All other formulae fall short of the DNS
data for St by up to 5 %. This difference may be partly due to inaccuracy of correlations
based on old experimental data, to the fact that those are mainly tuned for the Pr = 0.71
case, whereas here Pr = 1, but also to the fact that the CMT setup herein used tends to
slightly overpredict the heat flux as compared with the CHF approach (Abe & Antonia
2017; Alcántara-Ávila et al. 2021). It is interesting that differences are levelled off when
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Figure 10. Distribution of (a) inverse Stanton number and (b) Nusselt number obtained from DNS (circles),
and as predicted from (3.12) (solid line), from Kader’s formula ((3.13), dashed), from the power-law data fit
(3.16) (dotted), from Gnielinski analogy ((3.14), dot-dot-dashed) and from Kays–Crawford correlation ((3.15),
dot-dashed). The inset in (b) shows the Nusselt number in compensated form (Nu × Re−0.8

b ).

the popular representation in terms of the Nusselt number is used, as in figure 10(b). This
suggests that the 1/St representation should be used when relatively small differences must
be discriminated, or perhaps the compensated Nusselt representation used in the inset of
figure 10(b).

3.4. Temperature fluctuations statistics
The distributions of the axial velocity and temperature variances are shown in figure 11,
in inner scaling. All the profiles feature a prominent peak in the buffer layer at y+ ≈ 15,
and an outer-layer shoulder which starts to form at sufficiently high Reynolds number. The
most notable Reynolds number effect on the temperature variance profiles is sustained
increase, as is the case of the axial velocity variance (Marusic & Monty 2019). According
to Townsend’s attached eddy model (Townsend 1976), growth of the wall-parallel velocity
variances is expected to be logarithmic with Reτ , on account of increased influence of
‘distant’ eddies. According to the spectral maps presented in figure 4, the attached-eddy
hypothesis is also expected to apply to the temperature field. In fact, logarithmic growth
of the peak temperature variance in turbulent planar channels was observed by Pirozzoli
et al. (2016). This is confirmed by the present pipe DNS data, see figure 11(b), which
compare the growth of the peak temperature variance with the axial velocity variance.
Although the inferred growth rate is the same, the magnitude of the temperature variance
peak is larger than for the axial velocity. This is the consequence (Pirozzoli et al. 2014) of
near equality of the corresponding production terms in the buffer layer, however with extra
energy draining in the axial velocity variance equation from the pressure term which tends
to equalise kinetic energy across all the velocity components. No evidence is found based
on the present data for saturation of the logarithmic growth, which has been inferred for
the axial velocity variance in recent theoretical studies (Chen & Sreenivasan 2021).

The distributions of the turbulent heat flux, 〈urθ〉, shown in figure 12, are visually
indistinguishable from the corresponding turbulent shear stresses (reported with dashed
lines). This is a further confirmation that the lift-up mechanism which is responsible
for the establishment of correlation of uz and θ with vertical velocity fluctuations, ur,
is nearly the same, and of essentially linear nature (Jiménez 2013). In both cases, the peak
position grows approximately as the square root of Reτ , corresponding to the minimal wall
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Figure 11. Distribution of (a) temperature variances and (b) corresponding peak value as a function of Reτ .
The dashed lines in (a) denote the distributions of the axial velocity variance. In (b), circles correspond to
the peak temperature variance and squares to the peak axial velocity variance. Dash-dotted and dashed lines
correspond to the associated logarithmic fits, namely 〈θ2〉+IP = 0.68 log Reτ + 3.9, 〈u2

z 〉+IP = 0.67 log Reτ +
3.3. Refer to table 1 for colour codes.
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Figure 12. Distribution of (a) turbulent heat flux and (b) corresponding peak value (complement to one
and premultiplied by Re1/2

τ ) as a function of Reτ . The dashed lines in (a) (barely visible) correspond to the
distributions of the turbulent shear stress. In (b), circles correspond to the peak turbulent heat flux and squares
to the peak turbulent shear stress. Dashed and dash-dotted lines correspond to the theoretical predictions (3.17)
and (3.18), respectively. Refer to table 1 for colour codes.

distance for a logarithmic layer to develop (Klewicki, Fife & Wei 2009). Slight differences
between the two distributions are nevertheless responsible for differences in the mean
axial velocity and temperature profiles, on account on mean momentum balance and mean
thermal balance (Saha et al. 2015; Zhou, Pirozzoli & Klewicki 2017). These differences
are better appreciated in figure 12(b), where we show the peak turbulent heat flux and
shear stress as a function of Reτ . Based on mean momentum balance, and assuming the
presence of a logarithmic layer (which is a bit inaccurate in view of what previously said),
Orlandi et al. (2015) inferred that the peak turbulent shear stress should scale as

max〈uruz〉 ≈ 1 − 2√
kReτ

. (3.17)

Similarly, it can be readily shown, based on mean thermal balance and assuming a
log layer in the mean temperature distribution, that the peak turbulent heat flux should
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Figure 13. Distribution of turbulent Prandtl number, in (a) inner and (b) outer coordinates. The dashed line
denotes Pr = k/kθ = 0.843. In (a), the dash-dotted line denotes the prediction of (3.20) with the original set
of constants and the dotted line the same formula, with B = 32.2. The dotted line in (b) denotes the fitting
function (3.21). Refer to table 1 for colour codes.

scale as

max〈urθ〉 ≈ 1 − 2√
kθReτ

. (3.18)

These two trends are compared in figure 12(b). Whereas the data points coincide at low
Reynolds number, some segregation is observed at the highest Reynolds numbers, at which
the peaks tend to follow their respective theoretical distributions.

A quantity of great relevance in turbulence models of scalar transport is the turbulent
Prandtl number, defined as (Cebeci & Bradshaw 1984)

Prt = νt

αt
= 〈uruz〉

〈urθ〉
dΘ/dy
dU/dy

, (3.19)

whose distributions are shown in figure 13. As expected based on its definition, Prt ≈
k/kθ ≈ 0.843, through a large part of the outer layer, say from y+ ≈ 100 to y/h ≈ 0.25.
This is quite similar to what was found in channels (Pirozzoli et al. 2017; Alcántara-Ávila
et al. 2021) and in general agreement with the values Prt ≈ 0.85 suggested in reference
publications (Kader 1981; Cebeci & Bradshaw 1984). Closer to the wall, the turbulent
Prandtl number tends to exhibit a plateau with nearly unit value within the buffer layer
(5 ≤ y+ ≤ 40), as a result of the close similarity of the velocity and temperature fields
in that region. At y+ � 1 the eddy viscosity tends to exceed the eddy diffusivity, and
as a consequence Prt > 1. Theoretical estimates for the near-wall behaviour of Prt were
proposed by Cebeci (1973), based on a mixing length model with van Driest near-wall
damping. This results in the estimate

Prt = k
kθ

1 − exp(−y+/A)

1 − exp(−y+/B)
, (3.20)

where A and B are the damping functions for the velocity and scalar fields, respectively.
The original choice of those two parameters, A = 26, B = 34.96 (for Pr = 1), captures
the near-wall growth of Prt, although its value is overpredicted. Changing the damping
constant for the temperature field to B = 32.2 (see the dotted grey line in figure 13a)
improves the fit significantly, although the buffer-layer plateau is not captured. Regarding
the outer layer, figure 13(b) seems to show tendency to universality in outer scaling at
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sufficiently high Reynolds number. As suggested by Rotta (1962) and Abe & Antonia
(2017), the data are well fitted by a quadratic correlation, and we find

Prt = 0.87 − 0.3( y/R)2, (3.21)

for y/R � 0.25.

4. Concluding comments

We have analysed the dynamics of passive scalars in turbulent pipe flow up to Reτ ≈
6000, at unit Prandtl number. Compared with previous studies, the Reynolds number
is sufficiently high here that the results are representative of realistic fully developed
turbulence. A general expected finding, at least at Pr = 1, is that passive scalars exhibit
a behaviour similar to the axial velocity field, being organised into streaks in the buffer
layer and featuring low-wavenumber azimuthal modes in the bulk of the flow. The spectral
maps also highlight close similarities at the large scales, which at the higher Reynolds
number under study (Reτ ≈ 6000), exhibit a prominent ridge with eddy size proportional
to the wall distance, as suggested by Townsend’s attached-eddy model. Besides overall
similarity, differences are found as the passive scalar field has stronger tendency to form
steep fronts, which are prevented in the velocity field by the action of pressure. Hence,
scalar spectra tend to exhibit shallower k−4/3 inertial range, for which the present DNS
data provide convincing evidence.

Regarding the one-point statistics, we find that the mean scalar profiles in the overlap
layer can be conveniently approximated by logarithmic distributions. However, significant
improvement is obtained through addition of a linear corrective term scaling in outer units,
which yields good fit of the data up to y/R ≈ 0.44. Further away from the wall, the mean
scalar profile is approximated with excellent accuracy by a simple quadratic distribution.
Notable differences are found in the von Kármán constants, which we estimate to be kθ ≈
0.459 for the scalar field, and k ≈ 0.387 for the axial velocity field, which we obtain by
fitting the trends of the respective bulk values with the friction Reynolds number, with
estimated error much less than 1 %. The DNS data help explaining this difference as the
result of greater effective diffusivity of the scalar field resulting from the formation of
smaller scales. Reynolds number effects are apparent in the distributions of the passive
scalar variance, which show sustained logarithmic growth of the inner peak magnitude,
as after Townsend’s attached-eddy hypothesis. No evidence for saturation of this growth
is found, at the Reynolds numbers under scrutiny. Notably, the growth rate is found to be
very nearly the same as for the axial velocity variance.

Full insight into the scalar and velocity statistics provided by DNS allows to pinpoint
possible limitations of classical analyses of heat transfer in smooth pipes and of
classical modelling assumptions for passive scalar transport. In particular, whereas
logarithmic dependence of the mixed mean temperature over Reτ was assumed by Kader
(1981), we find that finite-Re deviations should be accounted for, thus obtaining the
predictive formula (3.12), which is found to be more accurate than the classical Kader’s
formula (3.13). It is noteworthy that deviations of empirical formulae employed in the
engineering practice are sometimes hidden in the traditional Nu versus Reb representation,
whereas they show up much more clearly when the inverse Stanton number is reported,
as in figure 10(a). Regarding the distributions of the turbulent Prandtl number, which
is needed for turbulence modelling, the DNS data show that in the overlap layer the
assumption Prt ≈ 0.843 is quite appropriate. However, significant deviations are found
farther from the wall, with quadratic decrement with the wall distance. Deviations are also
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found in the near-wall region, where Prt exceeds unity. This fact is roughly acknowledged
in existing engineering correlations (Cebeci 1973; Kays et al. 1980), but the accuracy
is far from acceptable. Whereas the above-noted shortcoming of common modelling
assumptions and predictive formulae may be minor to be appreciated in practical contexts,
as may be related with the assumed unit Prandtl number, with the particular form of
volumetric heating used as forcing and with assumed isothermal wall, the procedure
herein outlined nevertheless serves to illustrate a general use of DNS as a way for testing
hypotheses in more general situations, for instance at higher Prandtl number, at which the
thermal boundary layer is thinner than the kinematic one.

A natural extension of the present study would be, in fact, considering the case of
lower and higher Prandtl numbers, which we could not include in the present DNS owing
to memory restrictions. That would allow to verify the Prandtl number dependence of
the βCL constant in the main predictive equation for the heat transfer (3.12). Equally
interesting would be carrying out the present DNS within the CHF approach, whereby
strictly constant heat flux is retained in time. That would allow the reasons for the small
(but sizeable) deviations observed in figure 10 to be elucidated with respect to engineering
correlations in current use.
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