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ISOMORPHISMS BETWEEN GENERALIZED

CARTAN TYPEWLIE ALGEBRAS
IN CHARACTERISTICO

KAIMING ZHAO

ABSTRACT. In this paper, we determine when two simple generalized Cartan type
W Lie algebras Wy (A, T, ) are isomorphic, and discuss the relationship between the
Jacobian conjecture and the generalized Cartan type W Lie algebras.

1. Introduction. Thispaperisasequel tothepapers[1] and[2] inwhich generalized
Cartan type W Lie algebras Wy (A, T, ¢) over afield F of characteristic O were studied.
We havetried to make this paper independent of [ 1] and [2], and so, in Section 2, we give
ashort description of general Lie algebras, generalized Witt algebras, generalized Cartan
type W Lie agebras, and recall some basic facts about them. In Section 3, we show
that every isomorphism between two simple generalized Cartan type W Lie algebras
arises from an isomorphism between the two associative algebras corresponding to the
two Lie algebras, and, determine when two of the simple Lie algebras Wy(A, T, ) are
isomorphic. In Section 4, we pose a conjecture on the general Lie algebras, and prove
that the validity of this conjecture implies the validity of the Jacobian conjecture.

This research was carried out during the author’s visit to University of Wisconsin-
Madison. He wishes to thank Professor J.M. Osborn for his hospitality and helpful
discussions. He would like to thank also the referee for athorough reading of the original
manuscript and for pointing out an inaccuracy.

2. Generalized Cartan type W Lie algebras. In this section, for the convenience
of the reader, we recall the definition of general Lie algebras, generalized Witt algebras,
generalized Cartan type W Lie algebras and some basic facts concerning them. For more
details we refer the reader to the papers[1] and [2].

Let n beapositiveinteger, andty, ..., t, independent and commuting indeterminates

over F. Denote by P, and Q, the polynomial algebra F[ty, ..., to], and the Laurent

polynomial algebra F[t;L,... ., t-1] respectively. By W, = W,(F) we denote the Wtt
algebra, i.e., the Lie algebra of all formal vector fields

n.od
(2.2) E fi 7t
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CARTAN TYPE W LIE ALGEBRAS 211
with coefficientsfi € Qn. The bracketin W, is

[fi i]_f@i_ af) o
at Yoyl ot oy oty oy’

wheref,g € Qy, andi.j € {1,2...., n}. The subalgebraW; = W (F) of W, consisting
of al vector fields (2.1) with polynomial coefficients, i.e, fi € Py, is known as the
general Lie algebra, or the Lie algebra of Cartan type W. (There are aso topologized
versions of W, and W} where the coefficientsf; are formal Laurent and power seriesin
t1, ..., t, respectively, and F is the real or complex field. For more details, please refer
[10]). It iswell known that W, and W, are simple Lie algebras.

For any ring R, we can similarly definethe Lie algebra W (R) over R.

Let A be an abelian group, F afield of characteristic 0, and T a vector space over F.
We denote by FA the group algebra of A over F. The elementst*, x € A, form a basis of
this algebra, and the multiplication is defined by t* - t¥ = t**Y, We shall write 1 instead
of t9. The tensor product W = FA®¢ T is a free left FA-module. We denote an arbitrary
element of T by 9 (to remind us of differential operators). For the sake of simplicity,
we shall write t*9 instead of t* ® 9. We now choose a pairing ¢: T x A — F whichis
F-linear in the first variable and additive in the second one. For convenience we shall
also use the following notations:

0(9.%) = (3. %) = (3

for arbitrary 0 € Tandx € A.
Thereis aunique F-bilinear map W x W — W sending (t*9;. tY9,) to

(22) [t*01. ¥02] = £Y(01(y)02 — 92(X)91 ).

for arbitrary x,y € Aand d,. 9, € T. It iseasy to verify that this map makesWintoalLie
algebra. We refer to this algebraW = W(A, T, ) as a generalized Wtt algebra.

The subspacesW = t*T, x € A, define an A-gradation of W, i.e., W is the direct sum
of the Wy's, and [Wy, Wy] C Wiy foral x,y € A.

It follows from (2.2) that ad(9) acts on W, as a scalar 9 (x). Henceeach o € T is
ad-semisimple, and T isatorus (i.e., an abelian subalgebra consisting of ad-semisimple
elements). In fact T is the only maximal torus of W (see[1, Lemma4.1]).

The following theorem is due to Kawamoto [5].

THEOREM 2.1. Suppose that the characteristic of F is 0. The Lie algebra W =
W(A. T, ) issimple if and only if A # 0 and ¢ is nondegenerate in the sense that the
following conditions hold:

(2.3) (3,x)=0, Vo €eT=x=0
and
(2.9) (0.x)=0, ¥YxeA=9=0 "
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Notethat (2.3) impliesthat Aistorsion free. Thisimpliesthat FAisanintegral domain
and it impliesthat theinvertible elements of FA havetheform at*, wherea € F*, x € A.

As mentioned earlier, W is afree left FA-module. There is also a natural structure of
aleft W-module on FA, namely the structure is such that

(2.5) %o -tV =9 (y)t*Y
forx,y € Aand g € T. These two module structures are related by the identity
(2.6) [fu,gv] =f(u-g)v—g(v-flu+fgu,v]

wheref,g € FAand u,v € W are arbitrary. The W-module structure on FA givesrise to
ahomomorphism

@.7) W — Der(FA)

because eachw € W actson FA as a derivation. Clearly (2.7) is also a homomorphism
of FA-modules.

Suppose that W = W(A, T, ¢) denotes a simple generalized Witt algebra over afield
F of characteristic 0. Let | beanindex set, d: | — T aninjective map, and write d; = d(i)
fori € I. We say that d isadmissible if the following two conditions hold:
(Ind) di.i €1, arelinearly independent;
(Int) di(A) =Zfordliel.

We assume throughout that an admissible d has been fixed. We set

Aj={xeA di(¥) >0.Yiel}
A= {xeA:d(X=0.Yiell
Agi = (X €A di(¥) =-10() >0,V €1\ {i}},
A= {xeATd(K) = —1d(x) =0 €1\ {i}}.
Ag=AgU (IL€J| Ad.i)-
We now introduce some subspaces of W

W= 3 W

A
XEA]

Wy = <x§d_. th)di. icl:

and
Wy = Wa(A. T, ¢) = Wi + 5~ Wa;.

iel

In fact al of these subspacesare subalgebras of W.
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We also introduce the subalgebra FA] of FA, whichis the span of al elementst* with
x € Aj. Since W is aleft FA-module, we can view W also as aleft FAj-module. Then it
is easy to see that the subspaces W} and Wy are FAj-submodules of W.
Letx € Agj andy € Aj. Then either x +y € Aj or X +y € Aq; and di(y) = 0. In both
caseswe have
t*d; - Y = di(y)t*”Y € FA;.

Hence, by restricting the action of W on FA, we can view FA as a left Wy-module,
and then FA] is aWy-submodule of FA.
When d isfixed, and there is no danger of confusion, we shall write

ALOAL AL WL WLFAT

instead of
AL Agi Aj Wi Wai FAG,

respectively.
Thefollowing theorem is proved in [2].

THEOREM 2.2. The Lie algebra Wy is simple if and only if the following conditions
hold:
(i) ifo e Tand9(x) = Ofor all x € Ay, thend =0;
(ii) if x € Aq, thend;(x) = Ofor almostall i € I;
(i) A¥ #Dforalliel. n

From now on (throughout the paper) we shall assume that Wy is simple, and in that
case W is called an algebra of generalized Cartan type W. For more details on the Lie
algebraWy, please refer to the papers[1] and [7].

We concludethis section by aknown lemma (and one of its corollaries), which follows
directly from [9, Theorem 5.8]. It would not be strange if thislemmawas known before

[9].
LEMMA 2.3. Suppose F is a field of characteristic 0. Then Wi (F) ~ W;,(F) if and
onlyifm=n. ]

Note that in thislemmam and n can be infinity.

COROLLARY 2.4, Suppose R is a domain of characteristic 0. Then W (R) ~ W (R)
if and only if m=n.

PROOF. (=) Denote the quotient field of R by R. Then W/(R) = R®r W (R) and
W (R) = R®rWH(R). It follows from W (R) ~ W (R) that W(R) ~ W (R). By the
above lemma, we know that m = n.

(<) Thisdirectionisclear. ]

https://doi.org/10.4153/CJM-1998-011-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-011-6

214 KAIMING ZHAO

3. Isomor phismsbetween generalized Cartan type W Lie algebras. In this sec-
tion, we shall mainly determine the necessary and sufficient conditions under which two
generalized Cartan type W Lie algebras are isomorphic.

Consider two simple generalized Cartan type W Lie algebras L = Wy(A, T, ¢) and
L’ = Wy (A, T, ). From resultsin [2] we know that | = () if and only if I’ = 0.

If 1 =1 =0, thenL = WA, T,p) ard L’ = WA, T, ©) are simple generalized
Witt algebras. The isomorphisms between L and L’ have been completely determined
in [1]. Therefore, from now on in this section, we may assumethat | # 0, I’ # () and
dmT >dimT > 1.

Supposed: L — L’ isan isomorphism of Lie algebras. If dimT =1, thendimT’ = 1.
Hencel ~ W ~ L'. Therefore we may assumethat dimT > 1.

Forx e A let

Fo={f € FAS :000)-f =9 (0)f.Vo €T},

and let
P={xeA:F,#0}.

SinceWy - F = 0,wehaveF Cc Fpandso0 € P.

We mention here that the statements and the proofs of Lemma 3.1to Lemma 3.4 are
similar to that of Lemma 5.1 to Lemma 5.4 in [2], which were used to determine the
automorphisms of the simple Lie algebraWy(A, T, ¢).

LEMMA 3.1. FA"} = @yen Fx.

+

PROOF. It sufficesto show that the union of all F, x € A, spansFA]. Let f € FAy,
f #0,and choosedp € T, dp # 0. Sincefh(dp) € L' = Wy, we have

n

(3.1) 07 (f0(30)) = >_ M4,

i=1

wherex; € Aq aredistinct and 9; € T are nonzero. By applyingadd, o € T, to both sides
of (3.1), we obtain that

n

(69) - F)8(30) = 3 9 ()0t 3r).
i=1

and similarly
(3.2) (62) - f)6(00) = an () 0(ta). k> 0.
i=1

By choosingd suchthat o (x;) aredistinctfori = 1, ..., nandbytakingk=0,1,...,n—1
in (3.2), we obtain a system of linear equations to which Cramer’s rule can be applied.
We conclude that there exist fy, . . . . f, € FA'y Such that

(3.3) 0(t“0) = fi0(d0). i=1.....n.
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From (3.1) and (3.3) we deduce that
(3.9 f=f+ - +f,.
By applying ad6(") to both sides of (3.3), we obtain that
00" -fi=9'(x)fi, Vo' eT,
i.e, fi € Fx. Hence (3.4) showsthat f belongsto the sum of the Fy, x € A. "

Since Wy is simple and Wy - FA'y # 0, it follows that 6(T) - FA’y # 0. By using
Lemma 3.1, we conclude that P # {0}.

LEMMA 3.2. We have P C A} and dimFy = 1 for all x € P. Furthermore, if a
nonzerof € Fy isfixed, thenfor every o € T thereexistsa uniqued € T such that

(3.5) f0(0) = A(t).
ProOF. Letx € Pandletf,g € F, beboth nonzero. For arbitrary 9.9’ € T we have
[0(0").£0(0)] = (6(2") - £)6(9) = 3/ () 0(D).
and so
(3.6) 071 (f0(9)) € Wy MW = Wy N T,

In particular Wy "Wy # 0, and so x € Aq. Hence P C Ay. Since P + P C P, we must
have P C Aj. Note that (3.6) implies (3.5).

It remains to show that dim Fy = 1. By replacing f with g, we seethat for eachd € T
there existsauniqued & T such that

(3.7) go(d) = O(t"d).
For arbitrary 9,9’ € T we have

a(tZX(é x)3’ — 3’(x)5)) = 9([t5,3"))
= [0(t*9), 6(*d")]
(38 = [f6(9).99(0")]
= £(0(0) - 9)0(@") — (60" - £)6(9)
= fg(9()0(0") — 9'(x)6(0)).
SincedimT > 1, wecanchoose 9,9’ € T suchthat 9(x) # 0, 9’(x) = 0, and 3’ # 0.
Then the right hand side of (3.8) is not 0, and so d(x) # 0 or 3/(x) # 0. Hence we have
shown that there exists 9, € T such that d1(x) # 0 or 41(x) # 0. By replacing o and 9’ in

(3.8) with 9, we infer that d; and d; are linearly dependent. Hencef and g are linearly
dependent and so dimF, = 1. "
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Note that Lemma 3.2 impliesthat Fo = F.
Assumethat x € Pandf € F,\ {0}. Fora € Tletd € T be such that (3.5) holds.
Thenfor tYa’ € Wy we have

o[’ 3]) = e(tx+y(a'(x)5 —3 (y)a’))

and

[6(t'a"). 6(t*9)] = [(¥a"). T6(9)] = (6(t¥a") - )6(8) + FO([PV0". ]).
It follows that
(3.9) e(tx+y(a’(x)5 — 3y /)) = (00 ") - £)6(0) — 9 (V)FOED ).

LEMMA 3.3. WehaveP = Aj.
PrROOF. Inview of Lemma 3.2, it sufficesto show that Aj C P. We claim first that

(3.10) X+Aj CP,

for all x € P\ {0}. Wefix anonzerof € Fy. Lety € A}. SincedimT > 1, we can
choosed # 0 suchthat a(y) = 0, and 9’ such that 9’ and d are linearly independent and
d'(x) # 0. Then (3.9) givesthat

(e7(9'097 =5 0)) = (6@ - 1)0(@) 7 0.

and so (t¥9") - f € Fysy \ {0}. Hence (3.10) holds.
Fixani € 1 and a € A¥. We claim that

(3.12) X € P&Ai(X) >0=x+g € P.

Choosed € T\ {0} suchthat d (a;) = 0. Then di(x)d — d (a;)d; # 0. By settingy = & and
4’ =d; in (3.9), we obtain that

and so §(t%d;) - f € Fyuq \ {O}. This provesour second claim.

Now lety € Aj \ {0} be arbitrary. Let x € P be chosen so that di(x) > di(y) for all
i €land

n=> dix)
il

is minimal. (It follows from (3.10) that such x exists.) Assume that there existsani € |
such that d;(x) > di(y). By (3.11) we have x + & € P, which contradicts the choice of x.
Sodi(x) =di(y) forali € I. Theny—x € A. By (3.10) it followsthat y = x+(y—x) € P.

Foro € TletK(9) = {x € Aj : a(x) = 0}.

LEMMA 3.4. For eachx € A] there exists a uniquefy € Fy suchthat f,0(3) = 6(t*0)
holdsfor all 9 € T.
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PROOF. For any z € Aj, we fix a nonzero element E_e F.. Since F«Fy = Fyy for
any x.y € Aj, there exists axy € F* such that f,f, = ay,fwy for any x.y € Aj. For any
z € A}, we definealinear map

oz T—T, 39— o),
where a(9) is defined by f_za(a) = B(IZaz(a)) (see (3.5)). By Lemma 3.2 we know that
each «; isinjective.

Since 01 (,60(3)) = o (8) and 6~ (1,0(3")) = tVry(8"), we deduce that

[Pox(@). Pay(d)] = U ((ax(@). Y)ay(@") — (ay(8"), X) ox(0)).

and,
[ox(@). Py (8 )] = 07 [(8(). £,0(0")]
= 071 (Rdy () 0)02") — 0'009()) )
= Ayt (9 (Y)arery(9') — ' (X)arxry (3)).
So we obtain that

(312)  (ox(@), Y)ay(d") — (y(d"): X)ax(@) = Axy (3 (N very() — 3 () vy (3) )

We claimthat, for any x,y € Aj, d(y) = 0if and only if ay(9)(y) = 0.
Thisclaimisclearif dim(T) = 1. Next we supposethat dim(T) > 1. For contradiction,
we suppose that there existsad € T such that 9 (y) # 0 and ax(d)(y) =0, or, d(y) =0

and ax(9)(y) 7 0.

CAase 1. Supposed (y) # 0and ax(0)(y) = 0. By replacing y with 2y if necessary, we
may assumethat  (x) # o (y). From (3.12) we obtain that

—(ay(@"), X)ox(3) = By (9 (Y)oxay(8”) — 8" (N txay (@)
i.e.,
(3.12) By (Y)otaay(3) = axyd (Ytxay(@) — (@y(0"), X)oe(@), V3 € T.
By setting 8’ = 9 in the above equation, we deduce that
(ay(@)s X)ax() = Bxyd (X — Y)atxay (@) 7 O.

Thusweknow that oy (9) € Foy(d). In (3.12') we seethat theright hand sideisaways
in Fay(9) whatever o' is, but the left hand side is not in Fo(9) for some d” since oy
isinjectiveand dim(T) > 1. This givesa contradiction.
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CASE 2. Supposed (y) = 0 and ax(9)(y) # 0. From (3.12) we obtain

axy0 () aay(9) = (ay(d"). X)ox(@) — (ax(0). )ty (3 ).

Since dim(T) > 1 we can choose nonzero element 9’ € T such that (ay(9'). x) = 0. By
Case 1 we know that 9/(x) = 0. So it follows from the above equation that ay(d)(y) = 0,
contrary to our hypothesis.

Hence our first claim is proved.

Letusfixx,y € Aj andf € F, \ {0}. By the above claim, we know that

(3.13) K(@)=K(ax(@)), Vo eT.

Letd,d’ € T bearbitrary. Choosea, b € F, not both zero, such that (ad +ba’)(y) = 0.
By applying (3.13) to aj +ba instead of 9, we concludethat (acx(9) +bax(d"))(y) = O.

Hence
ay) ax(d)y)
3'(y)  ax(d)y)

and consequently there exists c(x, y, f) € F* such that

=0,

(3.14) ax(@)(y) =c(x,y.F)a(y), Vo eT.

We claim that c(x. y, f) isindependent of y € A} \ {0}.

Forany z € Alet ZT — F be the linear function defined by 2(9) = d(2). Since
dimT > 1, we can choose z € Aj such that § and Z are linearly independent. In order
to prove our claim, it sufficesto show that c(x. y, f) = c(x. z f) when § and Z are linearly
independent. In that case we can choose d;, 9, € T such that

01(y) =92(2 =0.  91(2d) = 92(y) = 1.
By (3.13) and (3.14), we have

C(X. Y. T) = ax(92)(y) = ax(d2)(y + 2) = c(x. y + Z.f),
c(x, 2. f) = ax(91)(2) = ax(@1)(y +2) = c(x.y + Z.f).

and so our second claim is proved.
We conclude that there isa constant c(x, f) € F* such that

ax(@)(y) =c(x.f)a(y), Vo €T, VyeA;.

Further, we can deduce that ax(9)(y) = c(x,f)a(y), Vo € T, Vy € Aq. Then from
Theorem 2.2(i) it follows that ay(0) = c(x. f)d forall 9 € T.If f, = c(x, f)~1f, then (3.5)
implies that fx6(3) = 6(t*a ) holdsfor all 9 € T.

The uniqueness of f, is obvious. n

The following theorem is one of our main resultsin this paper. In this theorem we do
not need the restrictionson | and T.
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THEOREM 3.5. Suppose that L = Wy(A, T, ¢) and L' = Wy (A", T, ') are simple
generalized Cartan type W Lie algebras. Then for any Lie algebraisomorphism§: L —
L/, there exists a unigue associative algebra isomor phism W,: FA} — FA’y such that

(3.15) A(fw) = Wy(f)o(w),
and
(3.16) Wy(w - ) = 0(w) - Wy(f)

hold for all f € FA], andw € Wy.
PrRoOOF. Remember that we have assumed that dimT > dim T'.

CAasel. | =0.Weknowthat|’ = also. ThenL = W(A, T, ) and L’ = W(A', T', )
are simple generalized Witt algebras. It follows from [1, Theorem 4.2] that there exists
x € Hom(A, F*), anisomorphisms u: A— A’ and 7: T — T’ satisfying

) =(rd, u(x), Vo eT, xeA

such that 8(t9) = x(X)t*®7a. Set Wy(t¥) = x(X)t*®. It is easy to verify that (3.15) and
(3.16) are satisfied.

CAasE 2. | # () and dimT > 1. Define the linear map o: FA, — FA'y by setting
o(t) =fy, x € A}, wheref, € F, isdefined asin Lemma 3.4. Hence we have

(3.17) 0(t*9) =f0(d), X€Aj 9 €T.

Asfy # 0for x € Aj, Lemmas 3.1 and 3.3 imply that o is bijective.
We claim that ¢ is an isomorphism of associative algebras, or equivalently that

(3.18) fify = fxay. VXY €A
If 9,0’ € Tthen
[£6(9). f,8(2")] = iy (9 (1)0(@") — 8'(00(0))
and
[t*0. 0] = tY(a(y)o' — 9'(x)a ).
By applying 6 to the last equation and by using (3.17), we conclude that
(ffy — fry) (9 ()00 ") — 0/ (x)6(0)) = 0.

Since fp = 1, (3.18) holds if x = 0 or y = 0. If x # 0 then we can choose linearly
independentd,d’ € T such that 9’(x) # 0. Hence the above equation implies that (3.18)

isvalid.
We now claim that if Y9 € Wy and x € A then
(3.19) O9) - T = 0 sy

Assumethat x+y Z Aj. Theny.x+y € A for somei & | and consequently d;(x) = O.
Since Y9 € Wy, we haved € Fd;, and so 9 (x) = 0. Although f,.y is not defined when
x+y ¢ A}, weshould interpret 9 (X)fx+y as 0.

In order to prove (3.19), we consider two cases.
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SuBCASE 1. y € Ay. Then6(Y9) = ,6(d) and so
0(t9) - fx = £,0(0) - fx = 9 (ffy = 9 (XQfxay-

SuBCASE 2. y € A for somei € | and 9 = di. We apply formula (3.9) with f = fx
andd’ =d,. Thend = o by Lemma3.4 and we obtain

0(t(d(9 — 9 ()dh) ) = (AP - £)0(0) — a (FAPS).
We choosed € T\ {0} suchthat 9 (y) = 0 and obtain
(3.20) ((t'dh) - £)0(0) = A (O ).
Henceif d;(x) = 0, then (3.19) holds. Assume now that d;(x) # 0. Then d;(x) > 0 and so
x+y € Aj. By (3.17) we have §(t¥9) = f,.,0(0) and so (3.19) follows from (3.20).
Hence our second claim is proved.

We now define Wy = o. In order to verify (3.15) and (3.16), we may assume that
f=t,xeAj,andw=1t9. Then

ow-f)=a(t’d - t) = 9 (Q)a(t™) = 9 (X)fxsy-

and, by using (3.19),
o(w) - o(f) = 0(P9) - fx = 9 (Wfxay.

Hence (3.16) holds.
In order to prove (3.15), it sufficesto check that

o(fw) - f, = o(f)o(w) - f,
holdsfor al z € Aj. By using (3.19) we obtain that
o(fw) - f, = 6(t*Ya) - f, = 9 (Dfxryszs

and
a(f)ow) - f, = o(t)0(t0) - f, = £x3 (Dfysz = 9 (Dfxeysz-

Hence (3.15) holds.
The condition (3.15) uniquely determines Wy. Indeed if wetake f = t*, x € Aj, and
w =29 € T, then (3.15) becomes

f(t9) = Wy(P)9(0).

Hence Lemma 3.4 implies that Wy(t*) = fx for all x € Aj, i.e,, Wy = 0.
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CASE3. | # P anddimT = 1. It follows that I’ # () and dimT’ = 1 also. Denote
| =1’ ={1}. Thendi: A— Z and dj: A’ — Z areisomorphisms. We can identify Wy and
Wy with W}, the Lie algebra of polynomial vector fields P(t)$, P(t) € F[t]. Under this
identification d; = t3. The elementsg = t*14 i > —1, form a basis of Wy. Note that
FA; = F[t].

The set of w € Wy such that ad(w) is locally nilpotent (resp. locally finite) is Fe_;
(resp. Fe_; + Fep). Furthermore, for w € Wy \ {0}, ad(w) is semisimple if and only if
w = aep+be_; witha # 0. Each i, € F determines an automorphism (or an isomorphism
fromL = W} to L’ = W}) 6, = exp(p ad(e_1)) of Wy. Since 6,,(e0) = & + pe1, we
seethat each nonzero ad-semisimple element of W is conjugate under Aut(Wy) to some
aey, a € F*.

Each | € F* defines another automorphism ¢' of W, such that 6'(e) = I'e;, i > —1.
By using the above facts, it is not hard to show that every 6 € Aut(Wy) has the form
0 =6,6". We now define W, = o by

o(t) =I'(t+p), i>0.
Then W, satisfies (3.15) and (3.16). .

For the Lie algebra isomorphism :L — L’ we denote W(6) by o. Since o: FA] —
FA'}, is an isomorphism of associative algebras, and FA, FA"Y, are the subalgebras of
FA;, FA'}, respectively, generated by invertible elements, then o(FA)) = FAYS. Let
Ty = @ia Fdi. Then Wiq = FA® Ty is a subalgebra of W(A, T, ). It follows that
Wiy = Wig N Wy is a subalgebra of Wy(A, T, ). Similarly we can define T, Wa)
and Wy,. If we assume [I| < oo, |I'] < oo, fix x € Af for eachi € | and fix
x, € A7 for each i’ € I, then from the following well known lemma it follows that
W = DerFAg(FAg[tK;i € 1]) and Wy, = DerFA,g/(FA’O,[tﬁ';i e ).

LEMMA 3.6. Suppose Risa domain, X3, Xy, . . . , X, are independent and commuting
indeterminates over R. Then Derg(R[X1. X2, . . . , Xn]) is spanned by all the derivations

f(.f?,wherefeR[xl.xz,....xn]andi6{1.2....,n}. "

LEMMA 3.7. Supposethat | isfinite and that w € Wqy. Thenw € Wy if and only if
w-FAJ =0. L

Sinces(FA) = FA/g, , using Lemma 3.6, by theidentities (3.15) and (3.16) we deduce
that (\Wig) = Wy, Now we can prove our Isomorphism Theorem.

THEOREM 3.8. Supposethat L = Wy(A, T, ¢) and L’ = Wy (A, T', ¢’) aresimple gen-
eralized Cartantype W Liealgebraswith || < co. ThenWy(A. T, ¢) ~ Wy (A, T, ') if
and only if, |I| = |I’| and there exist a group isomorphisma: A — A’ and a vector space
isomorphism7: T — T’ such that

(@ {d |iel}={7c)|iel);
(b) (7(9),6(x)) =(3.%),Vd € T,x € A
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PrROOF. (<) If (a) and (b) hold for 6:A— A’ and7: T — T, suppose7(d;) = d, for
ali €1, wherei — i’ isabijection from | to I’. Then 5(A)) = A’y and 5(A¥) = A’ff. Itis
easy to verify that the following linear map

Wy(A T, @) — Wy (A, T, ¢')
9 — t707(9)
is an isomorphism of Lie algebras.

(=) Case 1. | = (). In this case the statement of this theorem follows from [2,
Theorem 4.2].

CASE 2. | # . Suppose 0:Wy(A, T, ) — Wy (A, T',¢’) is an isomorphism of
Lie algebras and o = W,;:FA, — FA'; is the associative algebra isomorphism in
Theorem 3.5. We know that o(FA}) = FA'G, 0(Wy) = Wiy, Wiy = Dereao(FAJI*; i €
1) and Wiy, = DerFA/g/(FA’O/[t";i € 1]). By Lemma 2.4 we have |I| = |I|. We may
assume that | = I’ and i’ = i fori € I. Fix subspacesT C T and T" C T’ such
that T Ty = Tand T' @ T, = T. Since the normalizers of Wiy and Wiy, are V =
Wi @ FAJ - TandV' = Wy @ FA’g, - T’ respectively, it follows that 6(V) = V'. Since
o(FA3) = FA' we have a group isomorphism ¢’: A — A’y and ax € Hom(AS, F*)
such that o(t) = x ()t ®.

Foranyd € Tandx € AJ, wehaved(d) - o(t*) = o(9 - t*) = (9 (9t) = 9 (})x (Y7,
and0(9) - o(t) = x(¥)A() - t7¥. Then o (x)t7® = 9(9) - 17X,

Sinced € T C V and (V) = V', we may assume that () = 7(9) + W, where
7(0) € FAGT Wy € Wiy, We haved ()t ® = 7(a)t”®, for all x € AJ. By Lemma3.7
we know that, for any 9 € T/, 9(FA'S) = 0 impliesd = 0. So it follows that 7(8) € T,
and, (7(9). o’ (X)) = 8 (X). Thuswe have got a vector spaceisomorphism7: T — T’ and a
group isomorphism o’: Al — A, such that

(@), 0'¥)) =a(x), Yo eT, xeA.

Now for eachi € I, wefixa—x € A, anda—x € A’f. Note that A* = Ag + el Z+%i
and A" = A + Y. Z.X. Define the map 5: A5 — A’} by sending X + Sig kix to
o’ (X) + Yier kiX, where x € AJ. It is clear that & can be uniquely extended to a group
isomorphism from Ato A'. _ B

Now chooseabasis {djj € J} of T. Then {9 = 7(3;) | j € J} isabasisof T'. For each
dj let 9j(x;) = aji and 9;'(x) = &) Set 9j = 9" + Tiar (& — &;)d. Now we define the linear

map
FT—-T
d|—>d|/ Viel
(')j—ui. jed.

Itisnot difficult to verify that 7 and & satisfy the conditions (a) and (b) inthistheorem.This
completes the proof of this theorem. ]
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4. The Jacobian conjecture and the general Lie algebras. In this section, we
shall give aconjecture on the general Lie algebras W, and show that the validity of this
conjecture implies the validity of the Jacobian conjecture.

CONJECTURE 1. Every nonzero endomorphism of the general Lie algebra W, (F) is
an automor phism of the Lie algebra.

Let usfirst recall the Jacobian conjecture.

Let F beafield of characteristic O, n apositiveinteger, andt;. ..., tn independent and
commuting indeterminates over F. Denoteby P, = F[ty. ..., ta]. Letfy,....f, € Ph. We
know that the Jacobian matrix of fi, ..., f, isdefined as

%1 % I%n
J(f1, ..., ) = .
X1 X2 IXn
It is well known that F[fy, ..., fnl = F[X1,...,%] implies detJ(fy,...,f,) € F*. The
converse of this statement is the Jacobian conjecture, i.e.,

JACOBIAN CONJECTURE. Suppose fi,....f, € Pn. If detJ(fy,..., fn) € F*, then

Flfr, ... %] = F[x1, ..., %)

The Jacobian conjecture is still open for n > 1 to the knowledge of the author. For
more details, please refer to the paper [3].

THEOREM 4.1. The validity of Conjecture 1 implies the validity of the Jacobian
conjecture.

PROOF. Suppose fy, ..., fn € P, with detJ(fy, ..., f,) € F*. We may assume that

detJ(fy, ..., fn) = 1. Denotethe (i,j)-cofactor of J(fy, ..., fn) by M;;. Let

d
Di=> Mj—, Vi=12....n
i JXEI: uan 9

Then we have Dj(f]) = ¢;. It follows that D;'s commute in F[fy,..., fn]. From

detJ(fy, ..., f) = 1, we deduce that Qrx,...s = O (See Section 1.2(1) in [3]). It fol-

Ffy.on)
lowsthat D;'s commutein F[xq, ..., Xl i.(la., [Di.Dj] =0forali,j € {1,2,....n}. Itis
clear that the following linear map

0: Wy — W,
J .
x'fxgzmx',‘]"&—xi —flfle..fhD;, Vi=12,....n,
is an endomorphism of the Lie algebraW,. It follows from theinvalidity of Conjecture 1
that 6 is an automorphism of W}. Then by Theorem 3.5, or [2, Theorem 5.5], or [9,

Theorem 3.1], the corresponding associative algebraautomorphism Wy: Fx1, . . . , %] —
F[X1, ..., %] isdefined by

Wy(daxt - Xy = flafle .. gl
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