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Optimal Quotients of Jacobians With Toric
Reduction and Component Groups

Mihran Papikian and Joseph Rabinoò

Abstract. Let J be a Jacobian varietywith toric reduction over a localûeldK. Let J → E be an optimal
quotient deûned over K, where E is an elliptic curve. We give examples in which the functorially
inducedmap ΦJ → ΦE on component groups of theNéron models is not surjective. _is answers a
question of Ribet and Takahashi. We also give various criteria under which ΦJ → ΦE is surjective
and discuss when these criteria hold for the Jacobians ofmodular curves.

1 Introduction

Let J be the Jacobian variety of a smooth, projective, geometrically irreducible curve
deûned over a ûeld K. An optimal quotient of J is an abelian variety E over K and
a smooth surjective morphism π∶ J → E whose kernel is connected, i.e., an abelian
variety [7, Deûnition 3.1]. Henceforth we assume that E is an elliptic curve and K is a
local ûeld. _e following question, originally posed by Ribet and Takahashi, appears
in a letter from Matt Baker to Ken Ribet in 2009.

Question 1.1 Assume J has (purely) toric reduction; see §2.7 for the deûnition. Is
the functorially inducedmap π∗∶ΦJ(k)→ ΦE(k) on component groups of theNéron
models of J and E necessarily surjective,where k is the algebraic closure of the residue
ûeld of K?

In Section 5, we will construct examples which show that the answer is “no”, con-
trary to the expectation expressed by Baker in the aforementioned letter. _e interest
inQuestion 1.1 comes from arithmetic geometry,where for certainmodular Jacobians,
such as J0(p) overQp , the answerwas known to be positive; see Section 4. It is natural
then to askwhether the surjectivity of themap on component groups is a general geo-
metric property of Jacobianswith toric reduction, orwhether it is a special arithmetic
property of modular Jacobians with toric reduction. Our examples indicate that the
latter is the case. Of course, Question 1.1 makes perfect sense without assuming that
J has toric reduction, but the answer to that more general question was known to be
negative even for themodular Jacobians J0(N) of small levels. _e following example
is due to William Stein.
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Example 1.2 _ere is a unique weight-2 newform of level 33 with integer Fourier
coeõcients, and the corresponding optimal quotient of J0(33) is the elliptic curve
E ∶ y2 + xy = x3 + x2 − 11x. Consider the optimal quotient π∶ J0(33) → E over
Q3. _e reduction of J0(33) over Q3 is semi-stable but not toric. By [18, p. 174],
ΦJ0(33)(F3) ≅ Z/2Z. On the other hand, ΦE(F3) ≅ Z/6Z, so π∗ is not surjective.

_e idea of our construction giving a negative answer to Question 1.1 is to take
two elliptic curves E1 and E2 over K with multiplicative reduction and non-trivial
component groups. We show that one can choose a ûnite subgroup-scheme G of the
abelian surface E1 × E2 such that the quotient J = (E1 × E2)/G is a Jacobian variety
and ΦJ = 1. Moreover, E1 and E2 are optimal quotients of J. Due to §2.8 below, J
automatically has toric reduction. Clearly the corresponding maps on component
groups cannot be surjective. _e study of Jacobians isogenous to a product of two
elliptic curves has a long history dating back to Legendre and Jacobi. In more recent
times such Jacobians have found applications in a variety of arithmetic problems, for
example, the construction of curves with a maximal number of rational points over
ûnite ûelds [26], or the construction of Jacobians over Q with large rational torsion
subgroups [15].
From thework ofGerittzen,Mumford, and others it is known that abelian varieties

with toric reduction have rigid-analytic uniformizations. (In fact any abelian variety
has such a uniformization, but we will only be concerned with the totally degenerate
case.) In Section 3, we investigate the map π∗∶ΦJ → ΦE using analytic techniques.
Some of our argumentshere are inspired by [10,23,31]. We show that theTate period of
E can be obtained from J via a natural evaluation map. In this construction, which is
a generalization of the constructions due to Gekeler and Reversat [11], Bertolini and
Darmon [2], and Takahashi [28], the uniformizing lattice of J maps to a subgroup
in K× isomorphic to Z/cZ ⊕ Z. We show that the cokernel of π∗ is isomorphic to
Z/cZ. We also show that c is closely related to the denominator of the idempotent
in End(J) ⊗ Q corresponding to E. _ese results are of independent interest, and
could be useful in the theory ofMumford curves. _emain theorem of this section is
_eorem 3.6, which gives equivalent conditions for π∗ to be surjective. One of these
conditions shows that Question 1.1 can be interpreted as an analogue for Mumford
curves of the problem of the equality of the degree of modular parametrization of
an elliptic curve over Q and the congruence number of the corresponding newform;
see Remark 3.7. At the end of Section 3, we give two additional criteria for π∗ being
surjective, which are based on an assumption that End(J) contains a subring with
certain properties; see Lemmas 3.8 and 3.9.

In Section 4,we discuss Question 1.1 in the context of Jacobians ofmodular curves.
We show that this question has a positive answer for the following cases:

● J0(p) considered over Qp (see_eorem 4.1),
● the Jacobian of Drinfeldmodular curve X0(n) of arbitrary level n ∈ Fq[T] consid-
ered over Fq((1/T)) (see_eorem 4.4).

(_eorem 4.1 was known, but we give a diòerent proof which relies on Lemma 3.9.)
In this section we also point out amistake in the published literature. Let JD0 (M) be
the Jacobian of the Shimura curve overQ associated with an Eichler order of level M

https://doi.org/10.4153/CJM-2016-009-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-009-9


1364 M. Papikian and J. Rabinoò

in an indeûnite quaternion algebra overQ of discriminant D. For any prime p divid-
ing D, the Jacobian JD0 (M) has toric reduction overQp . Takahashi [27,_eorem 2.4]
claimed that π∗ is surjective in this case. _e proof of this theorem crucially relies on
a result of Bertolini and Darmon [2, Proposition 4.4]. Unfortunately, the proof of this
latter proposition has a gap, cf. §4.2, so Question 1.1 in this case remains a very inter-
esting open problem. _eorem 3.6 could be useful for a computational investigation
of this problem; see Remark 4.3.

2 Néron Models

For the convenience of the reader and future referencewe collect in this section some
terminology and facts about abelian varieties and their Néron models. _e standard
reference for the theory of Néron models is [4].

2.1 Henceforth, we assume that K is a ûeld equipped with a nontrivial discrete valuation
ordK ∶K ↠ Z ∪ {+∞}. Let R = {z ∈ K ∣ ordK(z) ≥ 0} be its ring of integers. Let m =
{z ∈ K ∣ ordK(z) > 0} be the maximal ideal of R, and k = R/m be the residue ûeld.
Assume that k is a ûnite ûeld of characteristic p, and deûne the non-archimedean
absolute value on K by ∣x∣ = (#k)−ordK(x). Finally, assume K is complete for the
topology deûned by this absolute value. Overall, our assumptions mean that K is a
local ûeld. It is known that every local ûeld is isomorphic either to a ûnite extension of
Qp or to the ûeld of formal Laurent series k((x)). We denote byCK the completion of
an algebraic closure K of K with respect to the extension of the absolute value (which
is itself algebraically closed).

2.2 If X is a scheme over the base S and T → S is any base change, XT will denote the
pullback of X to T . If T = Spec(A), wemay also denote this scheme by XA. By X(T)
wemean the T-rational points of the S-scheme X, and again, if T = Spec(A),wemay
also denote this set by X(A).

2.3 Let X be a scheme overK. Amodel of X over R is an R-schemeX such that its generic
ûber XK is isomorphic to X. Let A be an abelian variety over K. _ere is amodel A
of A which is smooth, separated, and of ûnite type over R, and which satisûes the
following universal property. For each smooth R-scheme X and each K-morphism
ϕK ∶XK → A there is a unique R-morphism ϕ∶X → A extending ϕK . _e model
A is called the Néron model of A. It is obvious from the universal property that A is
uniquely determined by A, up to unique isomorphism. Moreover, the group scheme
structure of A uniquely extends to a commutative R-group scheme structure on A ,
and A(K) = A (R).

2.4 _e closed ûbreAk is usually not connected. Let A 0
k be the connected component of

the identity section. _ere is an exact sequence

0→ A 0
k → Ak → ΦA → 0,

where ΦA is a ûnite étale group scheme over k. _e group ΦA is called the group of
connected components of A.
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2.5 Let fK ∶A → B be a morphism of abelian varieties. By the Néron mapping property,
themorphism fK extends to a homomorphism f ∶A → B. Restricting to the closed
ûbres, we get a homomorphism fk ∶Ak → Bk . _is homomorphism maps A 0

k into
B0

k . Hence there are induced homomorphisms f 0k ∶A
0
k →B0

k and f∗∶ΦA → ΦB . We
say that f∗ is surjective, if the homomorphism of abelian groups f∗∶ΦA(k)→ ΦB(k)
is surjective.

2.6 Let K′ be an unramiûed extension of K. Let R′ be the ring of integers of K′. Let
fK′ ∶AK′ → BK′ be the base change of fK to K′. _en f ⊗ R′∶A ⊗R R′ → B ⊗R R′ is
the corresponding morphism of the Néron models [4, Corollary 7.2/2]. _is implies
that f∗∶ΦA(k)→ ΦB(k) does not change under unramiûed ûeld extensions of K.

2.7 By a theorem of Chevalley, A 0
k is uniquely an extension of an abelian variety B by a

connected aõne groupT×U over k,whereT is an algebraic torus andU is a unipotent
algebraic group [4, §9.2]. We say that A has

● good reduction if U and T are trivial,
● semi-stable reduction if U is trivial,
● toric reduction if U and B are trivial,
● split toric reduction if U and B are trivial, and T is a split torus over k.

Some authors say that A has purely toric reduction over K when U and B are trivial.
If A is an elliptic curve, then it is more common to say that A has multiplicative (resp.
split multiplicative) reduction over K, instead of toric (resp. split toric) reduction.

2.8 If A has toric reduction and fK ∶A→ B is an isogeny, then f 0k is an isogeny [4, Corol-
lary 7.3/7]. _is implies that B also has toric reduction. If fK ∶B → A is a closed
immersion of abelian varieties and A has toric reduction, then f 0k is a closed immer-
sion; see the proof of _eorem 8.2 in [7]. _is implies that if A has (split) toric re-
duction, then any abelian subvariety of A also has (split) toric reduction. Denote by
A∨ and B∨ the abelian varieties dual to A and B, respectively. _en fK is an opti-
mal quotient if and only if the dual morphism f ∨K ∶B

∨ → A∨ is a closed immersion
[7, Proposition 3.3].

3 Rigid-analytic Constructions

First,we brie�y review some facts from the theory of rigid-analytic uniformization of
abelian varieties. _e abelian varieties in this section are assumed to have split toric
reduction over K. Since an abelian variety with toric reduction acquires split toric
reduction over an unramiûed extension of K, as far as the questions of surjectivity of
the maps of component groups are concerned, the assumption that the reduction is
split is not restrictive; cf. §2.6.

3.1 Let T ∶= (Gg
m ,K)

an be the rigid-analytiûcation of

Gg
m ,K = SpecK[Z1 , Z−1

1 , . . . , Zg , Z−1
g ].
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A character of T is a homomorphism of rigid-analytic groups χ∶T → Gan
m ,K . Denote

the group of characters of T by X(T). It is known that analytic characters are all
algebraic:

X(T) = {Zn1
1 ⋅ ⋅ ⋅ Zng

g ∣ (n1 , . . . , ng) ∈ Zg}.
In fact, a stronger statement is true: any holomorphic, nowhere vanishing function
on T is a constant multiple of an algebraic character [9, §6.3]. Consider the group
homomorphism

trop∶T(CK)→ Hom(X(T),R) ≈ Rg

x ↦ (χ ↦ − log ∣χ(x)∣).

A (split) lattice Λ in T is a free rank-g subgroup of T(K) such that trop∶Λ → Rg is
injective and its image is a lattice in the classical sense. Such Λ is discrete in T, i.e.,
the intersection of Λ with any aõnoid subset of T is ûnite. Hence we can form the
quotient T/Λ in the usual way by gluing the Λ-translates of a small enough aõnoid.
_e Riemann form condition in this setting is the following.

_eorem 3.1 T/Λ is isomorphic to the rigid-analytiûcation of an abelian variety over
K if and only if there is a homomorphismH∶Λ → X(T) such thatH(λ)(µ) = H(µ)(λ)
for all λ, µ ∈ Λ, and the symmetric bilinear form

⟨ ⋅ , ⋅ ⟩H ∶Λ × Λ → Z
λ, µ ↦ ordKH(λ)(µ)

is positive deûnite.

Proof See [9, Chapter 6] or [3, §2].

3.2 Let A be an abelian variety of dimension g deûned over K. We say that A is uniformiz-
able by a torus if Aan ≅ T/Λ for some lattice Λ.

_eorem 3.2 An abelian variety over K is uniformizable by a torus if and only if it
has split toric reduction.

Proof See [3, §1].

3.3 If A has split toric reduction, then A∨ also has split toric reduction; cf. §2.8. Let T/Λ
be the uniformization of A. Denote T∨ = Hom(Λ,Gan

m ,K) and Λ∨ = Hom(T,Gan
m ,K).

Note that Λ∨ is the group of characters X(T). We have a natural bilinear pairing
Λ∨ ×T(K) → K× given by evaluation of characters on the points of T. For a ûxed
λ′ ∈ Λ∨, this pairing induces, by restriction, a homomorphism Λ → K×, λ ↦ λ′(λ),
and hence a K-valued point in T∨. If we vary λ′ ∈ Λ∨, we obtain a canonical ho-
momorphism Λ∨ → T∨, which is easily seen to be the dual of Λ → T. Hence Λ∨

is naturally a lattice in T∨, and we can form the quotient T∨/Λ∨ as a proper rigid-
analytic group. As onemight expect, T∨/Λ∨ is canonically isomorphic to (A∨)an; see
[3,_eorem 2.1]. Let H∶Λ → Λ∨ be a Riemann form for A. Applying Hom( ⋅ ,Gan

m ,K)
to H, we get a surjective homomorphism HT∶T → T∨. From the deûnitions it is
easy to see that the restriction of HT to Λ ⊂ T is H. Hence we get a homomorphism
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HAan ∶Aan → (A∨)an. By GAGA, HAan canonically corresponds to a homomorphism
HA∶A → A∨. Since H is injective with ûnite cokernel, HA is an isogeny. In fact, one
can show that HA is a polarization and every polarization arises in this manner; cf.
[3, §2].

3.4 More symmetrically, let Λ and Λ∨ be two ûnitely generated free abelian groups of the
same rank and let [ ⋅ , ⋅ ]∶Λ × Λ∨ → K× be a bilinear pairing such that the pairing
⟨ ⋅ , ⋅ ⟩ = ordK ○ [ ⋅ , ⋅ ]∶Λ ×Λ∨ → Z becomes perfect a�er extending scalars from Z to
R. Let T = Hom(Λ∨ ,Gan

m ,K) and T
∨ = Hom(Λ,Gan

m ,K). _en [ ⋅ , ⋅ ] deûnes injective
homomorphisms Λ ↪ T(K) and Λ∨ ↪ T∨(K), the images of which are lattices.
With these notations, a Riemann form is a homomorphism H∶Λ → Λ∨ such that
[ ⋅ , ⋅ ]H = [ ⋅ ,H( ⋅ )] is symmetric and ⟨ ⋅ , ⋅ ⟩H = ⟨ ⋅ ,H( ⋅ )⟩ is positive-deûnite. If such
a form exists, then T/Λ and T∨/Λ∨ are dual abelian varieties.

3.5 Let Aan1 = T1/Λ1 and Aan2 = T2/Λ2 be uniformizable abelian varieties. Let
Hom(T1 ,Λ1 ; T2 ,Λ2) denote the group of homomorphisms φ∶T1 → T2 of analytic
tori such that φ(Λ1) ⊂ Λ2. By a result of Gerritzen [12], the natural map

Hom(T1 ,Λ1 ; T2 ,Λ2)→ Hom(A1 ,A2)

is a bijection (see also [14, §7]).
Following the notations in §3.4, for i = 1, 2 let Λ∨

i = X(Ti), let T∨i be the torus
with character lattice Λ i , let [ ⋅ , ⋅ ]i ∶Λ i ×Λ∨

i → K× denote the pairing induced by the
inclusion Λ i ↪ Ti(K), and let ⟨ ⋅ , ⋅ ⟩i = ord ○ [ ⋅ , ⋅ ]i . Let φ ∈ Hom(T1 ,Λ1;T2 ,Λ2).
_en φ is determined by the induced homomorphism φ∨∶Λ∨

2 → Λ∨
1 of character

groups, and since φ(Λ1) ⊂ Λ2, we have

(3.1) [φ(λ1), λ∨2 ]2 = [λ1 , φ∨(λ∨2 )]1

for all λ1 ∈ Λ1 and λ∨2 ∈ Λ∨
2 . We can therefore deûne Hom(T1 ,Λ1 ; T2 ,Λ2) more

symmetrically as the group of pairs (φ, φ∨) of homomorphisms φ∶Λ1 → Λ2 and
φ∨∶Λ∨

2 → Λ∨
1 satisfying (3.1). Since ⟨ ⋅ , ⋅ ⟩i is nondegenerate for i = 1, 2, it is clear

that φ and φ∨ determine each other. If (φ, φ∨) ∈ Hom(T1 ,Λ1 ; T2 ,Λ2) corresponds
to the homomorphism f ∶A1 → A2, then (φ∨ , φ) ∈ Hom(T∨2 ,Λ∨

2 ; T∨1 ,Λ∨
1 ) corre-

sponds to the dual homomorphism f ∨∶A∨2 → A∨1 .
Now let H i ∶Λ i

∼
Ð→ Λ∨

i be Riemann forms determining principal polarizations
A i

∼
Ð→ A∨i for i = 1, 2. Using H i to identify Λ i with Λ∨

i , we can describe an ele-
ment of Hom(T1 ,Λ1 ; T2 ,Λ2) as a pair (φ, φ∨), where φ∶Λ1 → Λ2 and φ∨∶Λ2 → Λ1
are homomorphisms satisfying [φ(λ1), λ2]H2 = [λ1 , φ∨(λ2)]H1 for all λ1 ∈ Λ1 and
λ2 ∈ Λ2. As above, if (φ, φ∨) corresponds to the homomorphism f ∶A1 → A2, then
(φ∨ , φ) corresponds to the dual homomorphism f ∨∶A2 ≅ A∨2 → A∨1 ≅ A1.

Proposition 3.3 Assume Aan ≅ T/Λ is a principally polarizable abelian variety. Fix
a principal polarization H∶Λ

∼
Ð→ X(T). An endomorphism T ∈ End(A) induces an

endomorphism of Λ, which we denote by the same letter. Let T† ∈ End(A) be the image
of T under the Rosati involution with respect to the principal polarization H. _en for
any λ, µ ∈ Λ, H(Tλ)(µ) = H(λ)(T†µ).
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Proof Let Λ∨ = X(T) and let [ ⋅ , ⋅ ]∶Λ×Λ∨ → K× be the pairing induced by the in-
clusion Λ ↪ T(K), as in §3.4. By §3.5,we can describe T as a pair of endomorphisms
φ, φ∨∶Λ → Λ satisfying

H(φ(λ))(λ′) = [φ(λ), λ′]H = [λ, φ∨(λ′)]H = H(λ)(φ∨(λ′))

for all λ, λ′ ∈ Λ. _e endomorphism T† then corresponds to the pair (φ∨ , φ). Under
these identiûcations, the endomorphism of Λ induced by T (resp. T†) is exactly φ
(resp. φ∨).

3.6 Let J ∶= Pic0X/K be the Jacobian variety of a smooth, projective, geometrically irre-
ducible curve X over K. Assume J has split toric reduction; this is equivalent to X
being aMumford curve. Let H be the canonical principal polarization on J. _e uni-
formization of J is given by 0→ Λ

H
Ð→Hom(Λ,C×

K)→ J(CK)→ 0.

Remark More generally, throughout this section we could take J to be any abelian
variety with split toric reduction and a ûxed K-rational principal polarization. We
only assume that J is a Jacobian for consistency with the sequel.

Let E be an elliptic curvewhich is an optimal quotient π∶ J → E. Using the canoni-
cal principal polarizations on E and J, we can consider E as an abelian subvariety of J
via the dual morphism π∨∶ E ↪ J; cf. §2.8. Sometimes to emphasize that we consider
E as the image of π (resp. the domain of π∨) we will write E∗ (resp. E∗).

To simplify the notation, we will denote the pairing ⟨ ⋅ , ⋅ ⟩H of _eorem 3.1 for
the canonical principal polarization on J by ⟨ ⋅ , ⋅ ⟩. Likewise we denote the pairing
[ ⋅ , ⋅ ]H ∶Λ × Λ → K× of §3.4 by [ ⋅ , ⋅ ].

3.7 Since E is a subvariety of J, it has split toric reduction; cf. §2.8. _erefore E is uni-
formizable by a torus 0 → Γ → C×

K → E(CK) → 0, where Γ, as a subgroup of C×
K , is

qZE for some qE ∈ C×
K with ordK(qE) > 0. More precisely, since E carries a canonical

principal polarization, it is uniformized by the torus Hom(Γ,C×
K); ûxing a generator

ρ of Γ, we identifyHom(Γ,C×
K)withC×

K via the isomorphism f ↦ f (ρ). By §3.5, the
closed immersion π∨∶ E → J induces a homomorphism π∨∶ Γ → Λ and a homomor-
phism of tori C×

K → Hom(Λ,C×
K) making the following diagram commute:

(3.2) 0 // Γ

π∨
��

// C×
K

//

��

E(CK) //

π∨
��

0

0 // Λ // Hom(Λ,C×
K)

// J(CK) // 0

It is easy to see that the vertical arrows in (3.2) are injective. In general, π∨(Γ)neednot
be saturated in Λ, i.e., the abelian group Λ/π∨(Γ) might have non-trivial torsion. Let
Γ′ be the saturation of π∨(Γ) in Λ. We can write π∨(ρ) = c ⋅ λE , where c is a uniquely
determined positive integer, λE is a generator of Γ′, and ρ is our ûxed generator of Γ.

3.8 Let π∶Λ → Γ be the homomorphism of character groups associated with the middle
vertical arrow of (3.2). _e homomorphism π∨∶ Γ → Λ induces the homomorphism
of tori evρ ∶Hom(Λ,C×

K) → Hom(Γ,C×
K) = C×

K given by evρ( f ) = f (π∨(ρ)). By the
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discussion in §3.5, the following diagram commutes:

(3.3) 0 // Λ //

π
��

Hom(Λ,C×
K)

//

evρ
��

J(CK) //

π
��

0

0 // Γ // C×
K

// E(CK) // 0

It is easy to see that the vertical arrows in (3.3) are surjective.

3.9 Let c−1Γ = {x ∈ C×
K ∣ x c ∈ Γ}. Since Γ = qZE , we have c−1Γ = µc × wZ, where

µc ⊂ C×
K is the group of c-th roots of unity and w is any c-th root of qE . In particular,

ordK(qE) = c ⋅ ordK(w). Deûne evE ∶Hom(Λ,C×
K) → C×

K by evE( f ) = f (λE). _en
evcE = evρ , so we have a commutative diagram

(3.4) 0 // Λ //

��

Hom(Λ,C×
K)

//

evE
��

J(CK) //

π
��

0

0 // c−1Γ // C×
K

// E(CK) // 0

where themap C×
K → E(CK) in (3.4) is the c-th power of the one in (3.3). We claim

that the vertical arrows in (3.4) are again surjective. Since evE is surjective, by the
snake lemma it suõces to prove that ker(evE)→ ker(π) is surjective. Let x ∈ ker(π).
Since ker(π) is an abelian subvariety of J, it is divisible; choose y ∈ ker(π) such that
cy = x. Since ker(evρ) surjects onto ker(π), there exists z ∈ ker(ρ) such that z ↦ y.
_en zc ↦ x and evE(zc) = evρ(z) = 1, which proves the claim. _is implies

(3.5) c−1Γ = {[λ, λE] ∣ λ ∈ Λ} ⊂ K× .

In particular, c divides the order of the group of roots of unity in K.

3.10 _e endomorphism e0 = π∨ ○ π∶ J → J corresponds to an idempotent e ∈ End0(J) ∶=
End(J)⊗Z Q. Up to isogeny, we can decompose J ∼K A1 × A2 × ⋅ ⋅ ⋅ × As , where A i ’s
are K-simple abelian varieties. _is decomposition produces idempotents e1 , . . . , es ∈
End0(J) which aremutually orthogonal: e i e j = 0 if i /= j. _e idempotent e is one of
those. _eQ-bilinear form B(x , y) = Tr(xy†) on End0(A) is symmetric and positive
deûnite (here theRosati involution iswith respect to the canonical principal polariza-
tionH). _is implies that theRosati involutionmustûx each idempotent e i . _erefore
e† = e, and also e†0 = e0. _is observationwill simplify some calculations and is useful
in the following paragraph.

We denote by n the denominator of e in End(J), i.e., the least natural number
such that ne ∈ End(J). Note that §3.5 implies that End(J) is naturally a subring of
End(Λ) when we regard Λ as the lattice uniformizing J, and End(J) is a subring of
End(Λ)opp when we regard Λ as the character group of the torus uniformizing J. By
Proposition 3.3 and the above discussion, the image of e0 inEnd(Λ) is the same under
either identiûcation. We deûne the denominator r of e in End(Λ) as the least natural
number such that re ∈ End(Λ). Obviously, r divides n.

Lemma 3.4 _emorphism π ○ π∨∶ E∗ → E∗ is themultiplication-by-n map on E.
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Proof See the proof of_eorem 3 in [31].

3.11 Recall that the closed immersion E ↪ J gives rise to the inclusion π∨∶ Γ ↪ Λ send-
ing ρ ↦ cλE , and that the projection π∶ J → E induces a surjective homomorphism
π∶Λ ↠ Γ. _e endomorphism π ○ π∨∶ E∗ → E∗ corresponds to the endomorphism
π ○ π∨∶ Γ ↪ Λ↠ Γ, so by Lemma 3.4, π(cλE) = π ○ π∨(ρ) = nρ, and therefore

(3.6) π(λE) =
n
c
ρ.

_e idempotent e0 corresponds to the composition π∨ ○ π∶Λ ↠ Γ ↪ Λ. We have
π∨ ○ π(λE) = π∨( n

c ρ) = nλE , so e0 = ne because e(λE) = λE . Since 1
c π

∨(Γ) ⊂ Λ, but
1
c′ π

∨(Γ) /⊂ Λ for c′ > c, we have 1
c e0 ∈ End(Λ), but 1

c′ e0 ∉ End(Λ) for c′ > c. _us
re = 1

c e0 =
n
c e, i.e.,

(3.7) c =
n
r

3.12 _e pairing ⟨ ⋅ , ⋅ ⟩ coincides with (the H-polarized version of) Grothendieck’s mon-
odromy pairing; see [14, (14.2.5)] and [6, _eorem 2.1]. By [14, (11.5)], the cokernel
of the map Λ → Hom(Λ,Z) induced by the monodromy pairing ⟨ ⋅ , ⋅ ⟩ is naturally
isomorphic to the component group ΦJ . _e analogous statement holds for E, and
we have a commutative diagram

(3.8) 0 // Λ
⟨ ⋅ , ⋅ ⟩//

π
��

Hom(Λ,Z) //

evρ
��

ΦJ //

π∗
��

0

0 // Γ // Z // ΦE // 0

where evρ( f ) = f (π∨(ρ)) as in (3.3). Since π∨(ρ) = cλE and ZλE is a direct sum-
mand of Λ, the cokernel of evρ is isomorphic to Z/cZ. As π∶Λ → Γ is surjective, this
implies that

(3.9) coker(π∗∶ΦJ → ΦE) ≅ Z/cZ.

_is is a generalization of Formula 1 in [23]. _e following corollary is also observed
in [29,_eorem 2] in the context of Jacobians of Shimura curves.

Corollary 3.5 #coker(π∗) divides the order of the group of roots of unity in K×.

Proof Follows from §3.9 and (3.9).

3.13 _e map Γ → Z is the composition of Γ → K× with ordK ∶K× → Z; hence ρ maps
to ordK(qE). (_is recovers the well-known fact that #ΦE = ordK(qE).) We have
ρ = c

n π(λE) by (3.6), so since the le� square commutes,

c⟨λE , λE⟩ = ⟨λE , π∨(ρ)⟩ =
n
c
ordK(qE),

and therefore,

(3.10) c2 ⟨λE , λE⟩ = n ordK(qE).
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_is is essentially Formula 3 in [23].

3.14 Let

m ∶= min{⟨λ, λE⟩ > 0 ∣ λ ∈ Λ}, λ⊥E ∶= {λ ∈ Λ ∣ ⟨λ, λE⟩ = 0}.

_e image of evρ ○ ⟨ ⋅ , ⋅ ⟩ in (3.8) is generated bymin{⟨λ, cλE⟩ > 0 ∣ λ ∈ Λ} = c ⋅m; as
π∶Λ → Γ is surjective and the image of Γ in Z is generated by ordK(qE), this implies

(3.11) c ⋅m = ordK(qE).

_eorem 3.6 _e following are equivalent.
(i) _e functorially inducedmap on component groups ΦJ → ΦE is surjective.
(ii) e0 is primitive in End(Λ).
(iii) c = 1.
(iv) n = r.
(v) ⟨λE , λE⟩ = n ordK(qE).
(vi) m = ordK(qE).
(vii) n = [Λ ∶ λ⊥E ⊕ZλE].

Proof We have (i)⇔ (iii) by (3.9), (iii)⇔ (iv) by (3.7), and (iv)⇔ (ii) since e0 = ne.
Conditions (v) and (vi) are equivalent to (iii) by (3.10) and (3.11), respectively. It is easy
to see that r = [Λ ∶λ⊥E ⊕ZλE]; hence (iv)⇔ (vii).

Remark 3.7 Assume X has a K-rational point. Fix such a point P0, and let θ∶X ↪ J
be the Abel–Jacobi mapwhich sends P0 to the origin of J. Since θ(X) generates J, the
composition π ○ θ gives a non-constant morphism w∶X → E. It is easy to show that
the degree deg(w) ofw is n. _e index [Λ ∶λ⊥E ⊕ZλE] is the “congruence number” of
λE with respect to the monodromy pairing, i.e., it is the largest integer RE such that
there is an element in λ⊥E congruent to λE modulo RE . Hence_eorem 3.6 (or more
precisely, (3.7)) implies that RE divides deg(w) and the ratio is c. As we will show in
Section 5, n/RE = c can be strictly larger than 1. It is interesting to compare this fact
with the relation between the degree ofmodular parametrization of an elliptic curve
over Q and the congruence number of the corresponding newform.

Let E be an elliptic curve over Q. One may view E as an abelian variety quotient
over Q of the modular Jacobian J0(N), where N is the conductor of E. Assume E
is an optimal quotient of J0(N). _e modular degree nE is the degree of the com-
posite map X0(N) → J0(N) → E, where the second map is an optimal quotient,
and the ûrst map is the Abel–Jacobi map X0(N) → J0(N) sending the cusp [∞]
to the origin. Let S2(N ,Z) be the space of weight-2 cusp forms on Γ0(N) with in-
teger Fourier coeõcients. Let fE ∈ S2(N ,Z) be the newform attached to E. Let
R′E ∶= [S2(N ,Z) ∶ f ⊥E⊕Z fE],where f ⊥E is the orthogonal complement of fE in S2(N ,Z)
with respect to the Petersson inner product. In [1], the authors showed that nE divides
R′E , but the ratio R′E/nE can be strictly larger than 1. See also Remark 4.2.

We use_eorem 3.6 to give two conditions under which ΦJ → ΦE is surjective.
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Lemma 3.8 LetT be a commutative subring ofEnd(J)with the same identity element
and such that e ∈ T⊗Q. Suppose there is a bilinear T-equivariant pairing

( ⋅ , ⋅ )∶T × Λ → Z,

which is perfect if we consider T and Λ as free Z-modules. _en the equivalent condi-
tions of_eorem 3.6 are satisûed.

Proof Let s be the denominator of e in T, i.e., the smallest positive integer such that
se ∈ T. Note that r divides n and n divides s, since T ⊆ End(J) ⊆ End(Λ). Let λ ∈ Λ
be arbitrary, and denote λ′ = (re)λ ∈ Λ. Because se ∈ T is primitive, we can take it as
part of a Z-basis of T. Now

(se , λ) = (1, (se)λ) = ( 1,
s
r
λ′) =

s
r
(1, λ′) ∈

s
r
Z.

Hence s/r divides the determinant of ( ⋅ , ⋅ )with respect to someZ-bases ofT and Λ.
_e perfectness of the pairing is equivalent to this determinant being ±1. _erefore
s = r, which implies r = n.

3.15 We keep the notation of Lemma 3.8. As it is easy to check, the assumption e ∈ T⊗Q
implies that Γ′ is T-invariant, that is, for any T ∈ Twe have TλE = a(T) ⋅ λE for some
a(T) ∈ Z. It is clear that themap T ↦ a(T) gives a homomorphism T → Z. Denote
the kernel of this homomorphism by IE . Deûne

IEΛ = {Tλ ∣ T ∈ IE , λ ∈ Λ} = {Tλ − a(T)λ ∣ T ∈ T, λ ∈ Λ}.

Assume a(T†) = a(T) for all T ∈ T. Since

⟨Tλ − a(T)λ, λE⟩ = ⟨λ, T†λE⟩ − a(T)⟨λ, λE⟩ = 0,

we have an inclusion IEΛ ⊆ λ⊥E . Note that the index [λ⊥E ∶ IEΛ] is ûnite since 1 − e is
the projection onto λ⊥E ⊗Q.

Lemma 3.9 _e index [λ⊥E ∶ IEΛ] is divisible by c. In particular, if IEΛ = λ⊥E , then the
equivalent conditions of_eorem 3.6 are satisûed.

Proof For T ∈ T and λ ∈ Λ we have

[Tλ − a(T)λ, λE] = [Tλ, λE] [λ, λE]−a(T)

= [λ, T†λE] [λ, λE]−a(T) = [λ, a(T†)λE] [λ, λE]−a(T) = 1.

Hence by (3.5) we have a surjection [ ⋅ , λE]∶Λ/IEΛ↠ c−1Γ ≅ µc ×wZ. Consider the
short exact sequence

(3.12) 0Ð→ λ⊥E/IEΛ Ð→ Λ/IEΛ Ð→ Λ/λ⊥E Ð→ 0.

Since Λ/λ⊥E ≅ Z, this identiûes λ⊥E/IEΛ with the torsion part of Λ/IEΛ. Since Λ/IEΛ
surjects onto µc × wZ, no non-torsion element of Λ/IEΛ maps into µc , so we must
have λ⊥E/IEΛ↠ µc .
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4 Modular Jacobians

In this section we discuss Question 1.1 in the context of Jacobians of certain modular
curves.

4.1 Consider the modular curve X0(p) deûned over Q classifying elliptic curves with
cyclic subgroups of order p where p is prime. Assume the genus of X0(p) is not 0,
or equivalently, p /= 2, 3, 5, 7, 13. By a well-known result of Deligne and Rapoport, the
Jacobian J0(p) of X0(p) has good reduction over Qℓ for any prime ℓ /= p, and has
toric reduction over Qp ; cf. [4, p. 288].

_eorem 4.1 Let π∶ J0(p) → E be an optimal quotient deûned over Qp where E is
an elliptic curve. _e inducedmap on component groups π∗∶ΦJ0(p) → ΦE of theNéron
models over Zp is surjective.

Proof _is was proved by Mestre and Oesterlé [19, Corollary 3]. A more general
resultwas proved by Emerton [8]. Both proofs rely on Ribet’s level-lowering theorem
[24], and the deepest results in [18]. We give a diòerent proof, which uses Lemma 3.9.

Since J0(p) is deûned overQ andhas semi-stable reduction, all its endomorphisms
are deûned overQ; see [21,_eorem1.1]. _is implies that π and E can be deûned over
Q. Let T be the subring of End(J0(p)) generated by the Hecke operators Tn , n ≥ 1
(see [24, §3] for the deûnition). If fE(z) = ∑n≥1 ane2πizn is the newform attached
to E, then one checks that TnλE = anλE , which implies e ∈ T ⊗Q. By [24, p. 444],
T† = wpTwp for T ∈ T, where wp is the Atkin–Lehner involution of J. Since wpλE =
±λE , the condition a(T) = a(T†) of §3.15 is satisûed. Let IE be the kernel of themap
T→ Z, Tn ↦ an .

_e Jacobian J0(p) acquires split toric reduction over the unramiûed quadratic
extension of Qp ; let Λ be the lattice uniformizing the analytiûcation of J0(p) over
this quadratic extension. Since p is odd, Corollary 3.5 and §2.6 imply that p does not
divide c = #coker(ΦJ0(p) → ΦE). By Lemma 3.9, it is enough to show that for all
ℓ /= p such that ΦE[ℓ] /= 0, we have (λ⊥E/IEΛ) ⊗ Fℓ = 0. From the sequence (3.12)
we see that Λ/IEΛ ≅ Z × (λ⊥E/IEΛ) as abelian groups; so it is enough to prove that
(Λ/IEΛ)⊗Fℓ ≅ Fℓ . Ifmℓ = (IE , ℓ) ⊲ T, then (Λ/IEΛ)⊗Fℓ = Λ/mℓΛ. When ℓ /= 2 or
mℓ is Eisenstein, it is a consequence of [25,_eorem 2.3] that Λ/mℓΛ ≅ Fℓ . We claim
that mℓ is Eisenstein when ΦE[ℓ] /= 0. Considering the ℓ-torsion subgroup E[ℓ] of E
as a Gal(Q/Q)-module, we obtain a representation ρ∶Gal(Q/Q) → GL2(Fℓ). _is
representation is isomorphic to the residual representation ρmℓ attached to mℓ ; see
[24, §5] for the construction and properties of ρmℓ . If E is the Néron model of E,
then, sinceΦE[ℓ] /= 0,we have that E [ℓ] is a ûnite étale group-scheme overZp which
extends E[ℓ]. _erefore theGalois representation ρ ≅ ρmℓ is ûnite; somℓ is Eisenstein
by [25, Proposition 2.2].

Remark 4.2 Let N ≥ 1 be an integer. As in Remark 3.7, let S2(N ,Z) be the space
of weight-2 cusp forms on Γ0(N) with integer Fourier expansions. Let T(N) be the
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subring of End(J0(N)) generated by theHecke operators Tn , n ≥ 1. _e pairing
T(N) × S2(N ,Z)→ Z

T , f ↦ a1(T f ),
(4.1)

where a1( f ) denotes the ûrst Fourier coeõcient of f , is bilinear, and T(N)-equi-
variant. Moreover, it is perfect by [22,_eorem 2.2].

Now let N = p be prime. Let Λ be the lattice from the proof of_eorem 4.1. _en
Λ and S2(p,Z) areT(p)-modules,which are freeZ-modules of the same rank. IfΛ ≅
S2(p,Z) as T(p)-modules, then the perfectness of the pairing (4.1) and Lemma 3.8
imply that π∗∶ΦJ0(p) → ΦE is surjective. One can use Eichler’s trace formula to show
thatΛ⊗ZQ and S2(p,Z)⊗ZQ are isomorphicT(p)-modules [13]. On the other hand,
it is most likely that Λ and S2(p,Z) are generally not isomorphic as T(p)-modules.
Although, at themoment, we do not have an explicit example of this for prime levels,
the following closely related example came up in the work of the ûrst author with Fu-
Tsun Wei on Jacquet–Langlands isogenies. Let N = 65 = 5 ⋅ 13. _e Jacobian J0(65)
has toric reduction at 5 and 13. Let Λ5 and Λ13 be the uniformizing lattices at 5 and 13,
respectively. _en neither Λ5 nor Λ13 is isomorphic to S2(65,Z) as T(65)-modules,
although all three T(65)-modules become isomorphic a�er tensoring with Q.

4.2 LetD > 1 be a square-free integer divisible by an even number of primes, and let M ≥ 1
be a square-free integer coprime to D. Let ΓD0 (M) be the group of norm-1 units in an
Eichler order of level M in the indeûnite quaternion algebra B overQ of discriminant
D. Since B is indeûnite, by ûxing an isomorphism B ⊗ R ≅ M2(R), we can regard
ΓD0 (M) as a discrete subgroup of SL2(R). Let XD0 (M) = ΓD0 (M)∖H be the associated
Shimura curve, whereH = {z ∈ C ∣ Im(z) > 0}. _is is a smooth projective curve,
which has a canonical model overQ. It is amoduli space of abelian surfaces equipped
with an action of B and Γ0(M)-level structure.

_e Jacobian JD0 (M) of XD0 (M) has toric reduction over Qp if p divides D; this
follows from the work of Cherednik and Drinfeld [5]. Assume π∶ JD0 (M) → E is an
optimal quotient deûned over Q, where E is an elliptic curve. Fix a prime p dividing
D, and let π∗ be the inducedmap on component groups of the corresponding Néron
models over Zp . In the proofs of Proposition 4.4 and Corollary 4.5 in [2], Bertolini
and Darmon implicitly assume that c in the diagram (3.4) with J = JD0 (M) is 1. By
_eorem 3.6 this assumption is equivalent to π∗ being surjective. On the other hand,
Question 1.1 in general has a negative answer, so it is not clear whether the answer is
always positive for the Jacobians of Shimura curves. In the positive direction, Taka-
hashi proved that if theGal(Q/Q)-module E[ℓ] is irreducible, then ℓ does not divide
the order of the cokernel of π∗; see [29,_eorem 1]. _e proof relies on the compar-
ison of the degrees of diòerent modular parametrizations of E by both modular and
Shimura curves.

Remark 4.3 _eorem 3.6 suggests a computational approach to ûnding an example
of an optimal quotient E of JD0 (M) such that the homomorphism π∗ of component
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groups is not surjective. _e computer algebra packageMagma has an implementa-
tion of Brandt modules which allows one to do calculations with the lattice Λ uni-
formizing the analytiûcation of JD0 (M). In particular, one can eõciently calculate the
idempotent e. _e surjectivity question then reduces towhether or not re, as an endo-
morphismofHom(Λ,K×), takes Λ to itself. _is calculation can in theory be carried
out using p-adic Θ-functions.

4.3 Let A = F[T] be the ring of polynomials with coeõcients in a ûnite ûeld F, and
F = F(T) be the ûeld of fractions of A. Let K = F((1/T)) be the completion of F at
the place 1/T , and R the ring of integers of K. Let n ⊲ A be an ideal and

Γ0(n) = {( a b
c d ) ∈ GL2(A) ∣ c ∈ n} .

_e group Γ0(n) acts discontinuously on the Drinfeld half plane Ω ∶= CK − K, and
the quotient Γ0(n) ∖ Ω is the analytiûcation of the Drinfeld modular curve Y0(n),
which is a smooth aõne algebraic curve deûned over K. _e CK-valued points of
Y0(n) are in bijection with rank-2 Drinfeld A-modules over CK with certain level
structures. Let J0(n) be the Jacobian of the smooth projective curve containing Y0(n)
as a Zariski dense subset. _e Jacobian J0(n) has split toric reduction over K; cf.
[10,_eorem 2.10].

_eorem 4.4 Assume π∶ J0(n)→ E is an optimal quotient deûned over K, where E is
an elliptic curve. _e inducedmap on component groups π∗∶ΦJ0(n) → ΦE of theNéron
models over R is surjective.

Proof _e proof essentially consists of showing that the condition in Lemma 3.8 is
satisûed. _is heavily relies on the arithmetic theory of Drinfeldmodular curves.

_ere are Hecke operators deûned in terms of correspondences on Y0(n) which
generate a commutative Z-subalgebra T of End(J0(n)); see [10, §1] for the deûni-
tions and basic properties. _e Hecke algebra T also naturally acts on the space
of Z-valued Γ0(n)-invariant harmonic cochains H!(T,Z)Γ0(n) on the Bruhat–Tits
tree T of PGL2(K); again we refer to [10, §1] for the deûnitions. (_e Z-module
H!(T,Z)Γ0(n) is the analogue in this context of S2(N ,Z).) Let Λ be the uniformiz-
ing lattice of J0(n). _e algebra T naturally acts on Λ; cf. §3.5. A crucial fact is that
there is a canonical T-equivariant isomorphism between Λ and H!(T,Z)Γ0(n); see
[10,_eorem 1.9] and [11, Lemma 9.3.2]. Gekeler [10,_eorem 3.17] deûned a bilinear
T-equivariant pairing T × H!(T,Z)Γ0(n) → Z, and proved that it is perfect a�er ten-
soringwithZ[p−1]where p is the characteristic ofF. (_is pairing is the function ûeld
analogue of (4.1).) Using the facts listed above, the argument in the proof of Lemma
3.8 shows that c is a p-power. On the other hand, according toCorollary 3.5, c divides
#F − 1, so c is coprime to p. _is implies that c = 1.

5 Jacobians Isogenous to a Product of Two Elliptic Curves

We start by giving a very explicit, equation-based, example. We will explain later in
this section how this example can be obtained as a special case of a general construc-
tion.
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Example 5.1 Let K = Qp where p is odd. Let X be the hyperelliptic curve of genus
2 with two aõne charts y2 = f (x) and Y 2 = g(t) glued in the obvious way, where

f (x) = (px2 + (p − 1))((p + 1)x2 + p)(x2 + 1),

Y = y/x3, t = 1/x, and g(t) = f (x)/x6. _ese equations deûne the minimal regular
model of X over K. Indeed,modulo p, the equation y2 = f (x) becomes

y2 = −x2(x2 + 1),

which is a curvewith singular point (0, 0). It is clear from the equation y2 = f (x) that
the maximal ideal (x , y, p) is a regular point on this model. Similarly, on the other
chart,we have the reduction Y 2 = −t2(1+ t2), and themaximal ideal (t,Y , p) is again
regular. Hence, themodel is regular, and has a special ûbre consisting of an irreducible
rational curve with two nodes. It follows from [4, Example 9.2/8] that the Jacobian J
of X has toric reduction over K, and [4, Remark 9.6/12] implies that ΦJ(Fp) = 1.

Next, let E be the elliptic curve given by the equation y2 = x(x − 1)(x + p). _e
j-invariant of E has valuation ordK( j) = −2, so by the Tate algorithm E has multi-
plicative reduction over K and ΦE(Fp) ≅ Z/2Z.

_ere is amorphism f ∶X → E of degree 2 given by

(x , y)↦ (p(p + 1)x2 + p2 , p(p + 1)y).

Let π∶ J → E be the homomorphism of the Jacobians induced by f by the Al-
banese functoriality. Note that the inducedmap on component groups π∗∶ΦJ(Fp)→

ΦE(Fp) is not surjective. We claim that π is an optimal quotient. If π is not optimal,
then it factors as J → E′ ∶= J/ker(π)○

φ
→E,where φ is an isogeny of degree greater than

1. Let X → J(1) be the canonical morphism to the degree-1 part of the Picard scheme
(as X(K) may be empty, there may be no Abel–Jacobi map X → J deûned over K).
_en the composition X → J(1) → E′(1) = E′

φ
→ E factors f ,which is impossible since

the degree of f is 2.

5.1 Let c ≥ 2 be an integer dividing the order of the group of roots of unity in K×. Assume
c is coprime to the characteristic of the residue ûeld k. Let E1 and E2 be two elliptic
curves over K with multiplicative reduction, which are not isogenous over the alge-
braic closureK ofK. AssumeΦE1(k) ≅ ΦE2(k) ≅ Z/cZ; equivalently, the j-invariants
of E1 and E2 have valuation −c. Assume

E i[c](K) = E i[c](K) ≈ Z/cZ ×Z/cZ, (i = 1, 2);

this condition is automatic if E i has split multiplicative reduction and satisûes the
previous assumption.

5.2 Let ec ∶ E i[c]×E i[c]→ µc be theWeil pairing. Recall that theWeil pairing is alternat-
ing, i.e., ec(P, P) = 1 for any P ∈ E i[c]; cf. [17, (2.8.7)]. _ere is a canonical subgroup
of E i[c] corresponding to (E 0

i )k[c] ≅ Z/cZ. Fix a generator g i of this subgroup and
a generator ζ of µc . Since ec is non-degenerate, we can ûnd h i ∈ E i[c] such that
E i[c] ≈ ⟨g i⟩ × ⟨h i⟩, and ec(g1 , h1) = ec(g2 , h2) = ζ . Let ψ∶ E1[c]

∼
Ð→ E2[c] be the

https://doi.org/10.4153/CJM-2016-009-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-009-9


Optimal Quotients and Component Groups 1377

unique isomorphism such that ψ(g1) = h2 and ψ(h1) = g2. _is is an anti-isometry
with respect to the ec pairings on E1[c] and E2[c] because

ec(ψ(g1),ψ(h1)) = ec(h2 , g2) = ec(g2 , h2)
−1 = ec(g1 , h1)

−1 .

Let A = E1 × E2 and let G ⊂ A[c] be the graph of ψ:

G = {(P,ψ(P)) ∣ P ∈ E1[c]} .

_e product of the canonical principal polarizations on E1 and E2 is a principal po-
larization θ on the product variety A = E1 × E2.

Proposition 5.2 _ere is a principal polarization on the quotient abelian variety
J ∶= A/G deûned by G and θ. With this principal polarization, J is isomorphic to the
canonically principally polarized Jacobian variety of a smooth projective curve X deûned
over K. _e Jacobian J has toric reduction.

Proof _e existence of X follows from [16,_eorem 3 ]. It is important here thatψ is
an anti-isometry, and E1 and E2 are not isogenous. _e curve X can be deûned over K
because ψ, by construction, is an isomorphism ofGalois modules [15, Proposition 3].
_e claim that J has toric reduction follows from §2.8.

Lemma 5.3 ΦJ = 1.

Proof Clearly G ⊂ A(K) is a subgroup isomorphic to Z/cZ × Z/cZ. By §2.3, G
extends to a constant étale subgroup-scheme ofA . _e restriction to the closed ûbre
gives an injection G ↪ Ak(k), which composed with Ak → ΦA gives a canonical
homomorphism ϕ∶G → ΦA. It is clear that ΦA ≅ ΦE1 ×ΦE2 . Since

A 0
k [c] ≅ {(P1 , P2) ∣ Pi ∈ ⟨g i⟩},

G ∩A 0
k = 0. _erefore, ϕ is an isomorphism. Now _eorem 4.3 in [20] implies that

ΦJ ≅ ΦA/G = 1.

Lemma 5.4 E1 and E2 are optimal quotients of J.

Proof Note that E i embeds into J as a closed subvariety since E i ∩G = 0. _e claim
then follows from §2.8. Alternatively, note that the quotient J/E1 is isomorphic to
E2/E2[c] ≅ E2, so, by deûnition, E2 is an optimal quotient of J.

5.3 In the special case when c = 2, Proposition 4 in [15] allows us to compute an ex-
plicit equation for X starting with equations for E1 and E2. Moreover, in this case the
assumption that E1 and E2 are not isogenous can be relaxed to the assumption that
E1 and E2 are not isomorphic over K, i.e., have distinct j-invariants [16,_eorem 3].
With this in mind, consider the Legendre curves

E1 ∶ y2 = x(x − 1)(x − p) and E2 ∶ y2 = x(x − 1)(x + p)

over Qp , where p is odd. _ese curves have distinct j-invariants, multiplicative re-
duction, ΦE i ≅ Z/2Z, and E i[2] is Qp-rational. (Note that E i has split multiplicative
reduction if and only if −1 is a squaremodulo p.)
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Let P1 = (1, 0), P2 = (0, 0), and P3 = (p, 0) be the non-trivial elements of E1[2].
Similarly, let Q1 = (1, 0), Q2 = (0, 0), and Q3 = (−p, 0) be the non-trivial elements of
E2[2]. Modulo p the point P1 lies in the smooth locus of the reduction of E1, hence its
specialization lies in the connected componentE 0

1 of the identity. Deûneψ byψ(O) =
O, ψ(P1) = Q2, ψ(P2) = Q1, ψ(P3) = Q3. Using the formulas in [15, Proposition 4],
one obtains the equation in Example 5.1.

Remark 5.5 When c ≥ 3, it seems rather diõcult towrite down an explicit equation
for X. Below we will compute the p-adic periods of J from the Tate periods of E1 and
E2. Teitelbaum [30] developed a method for computing an equation for a genus 2
curve X with split degenerate reduction from the periods of its Jacobian. Teitelbaum’s
formulae are p-adic, i.e., the coeõcients of the equation of X are given by inûnite
series.

In order to illustrate themachinery of Section 3, we give an analytic interpretation
of our previous algebraic construction, with some generalizations. For simplicity, we
only treat the case of split toric reduction.

5.4 Let T = (G2
m ,K)

an be a two-dimensional split analytic torus over K. Fix q1 , q2 ∈ K×

such that ordK(q1), ordK(q2) > 0 and qu
1 /= qw2 for any non-zero u,w ∈ Z. Let c > 1

be an integer and let ζ ∈ K× be a primitive c-th root of unity. Let Λ ⊂ T(K) = (K×)2

be the free abelian group generated by (q1 , ζ) and (ζ , q2). We have trop(q1 , ζ) =
(− log ∣q1∣, 0) and trop(ζ , q2) = (0,− log ∣q2∣) which are linearly independent in R2,
so Λ is a lattice in T. Let Jan be the analytic quotient T/Λ.

5.5 We identify (n1 , n2) ∈ Z2 with the character of T deûned by (Z1 , Z2) ↦ Zn1
1 Zn2

2 .
Deûne H∶Λ

∼
Ð→ Z2 by H(q1 , ζ) = (1, 0) and H(ζ , q2) = (0, 1). We have

H(q1 , ζ)(q1 , ζ) = q1 , H(q1 , ζ)(ζ , q2) = ζ = H(ζ , q2)(q1 , ζ),
H(ζ , q2)(ζ , q2) = q2 ,

so H(λ)(µ) = H(µ)(λ) for all λ, µ ∈ Λ. Moreover, the symmetric bilinear form
⟨ ⋅ , ⋅ ⟩H has the matrix form [

ordK(q1) 0
0 ordK(q2)

] with respect to the above choice of
basis, so ⟨ ⋅ , ⋅ ⟩H ispositive deûnite. _erefore by_eorem 3.1, Jan is the analytiûcation
of an abelian variety J, and the Riemann form H gives rise to a principal polarization
of J by §3.3.

5.6 By an elliptic subvariety of J we will mean an abelian subvariety E of J of dimension
one. By §2.8, any elliptic subvariety of J has split multiplicative reduction; moreover,
if 0 → Γ → C×

K → E(CK) → 0 is the Tate uniformization of E, then we have a
homomorphism of short exact sequences

(5.1) 0 // Γ //

��

C×
K

//

φ
��

E(CK) //

��

0

0 // Λ // (C×
K)

2 // J(CK) // 0
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with injective vertical arrows. In particular, φ(C×
K) ∩ Λ = φ(Γ). Conversely, let

Gan
m ,K ≅ T′ ⊂ T be a subtorus of dimension one such that Γ = T′(K)∩Λ ≅ Z (equiva-

lently, such thatT′(CK)∩Λ /= {1}), and let Ean = T′/Γ. _en Ean is the analytiûcation
of an elliptic curve E over K and the inducedmap E → J is a closed immersion, so E
is an elliptic subvariety of J and the diagram (5.1) commutes.

Proposition 5.6 Let J be as in §5.4. _ere are exactly two elliptic subvarieties of J,
given by E1(CK) = C×

K × {1}/(qc1 , 1)
Z and E2(CK) = {1} ×C×

K/(1, q
c
2)

Z.

Proof It is clear that E1 and E2 are elliptic subvarieties of J. Any dimension-one
subtorus T′ of T is of the form T′(CK) = {(z,w) ∣ zαwβ = 1} for some coprime
integers α, β ∈ Z. Let T′ be such a subtorus, and suppose that T′(K) ∩ Λ /= {1}. Let
λ ∈ Λ ∖ {1} be an element of T′(K) ∩ Λ. _en λ = (q1 , ζ)γ(ζ , q2)

δ = (qγ
1 ζ
δ , qδ2 ζ

γ)

for some integers γ, δ, not both equal to zero, and we have qαγ1 qβδ2 ζαδ+βγ = 1. Raising
both sides to the c-th power gives qαγc1 qβδc2 = 1, so wemust have αγ = βδ = 0 by the
way we chose q1 , q2. If α /= 0 and β /= 0, then γ = δ = 0, which contradicts our choice
of λ. Hence either α = 0 and β = ±1, in which case T′(CK) = C×

K × {1}, or β = 0 and
α = ±1, in which case T′(CK) = {1} ×C×

K .

5.7 LetΛ′ be the sublatticeofΛgenerated by (qc1 , 1) and (1, q
c
2). Identify E1 (resp. E2)with

C×
K/q

cZ
1 (resp. C×

K/q
cZ
2 ) in the obvious way. Let A = E1 × E2, so A(CK) = (C×

K)
2/Λ′,

and the kernel of themultiplication map A→ J is Λ/Λ′ ≅ (Z/cZ)2. Since E1 and E2
are the only elliptic subvarieties of J, it follows that J is not isomorphic to a product
of elliptic curves. _erefore the theta divisor of J is a smooth curve X of genus 2, and
J is isomorphic to the Jacobian of X as principally polarized abelian varieties.

5.8 Since E1 and E2 are subvarieties of J, for i = 1, 2 the dual homomorphism J → E i is an
optimal quotient by §2.8. Let Γ1 = (qc1 , 1)

Z and Γ2 = (1, qc2)
Z, and for i = 1, 2 let Γ′i be

the saturation of Γi in Λ. _en Γ′1 = (q1 , ζ)Z and Γ′2 = (ζ , q2)
Z. It follows from (3.9)

that the cokernel of themap on component groups ΦJ → ΦE i is isomorphic to Z/cZ.
In particular, ΦJ → ΦE i is not surjective. Note that the image of Λ in C×

K under the
evaluation map evE i is generated by ζ and q i — this is immediate from the deûnition
of H in §5.5. _is illustrates the surjectivity of themap Λ → c−1Γi of (3.4).

5.9 A calculation involving p-adic Θ-functions shows that the Weil pairing on the c-
torsion of the Tate curve E i is given by the rule ec(ζ , q i) = ζ . Note that ζ ∈ E i gen-
erates the subgroup of E i[c] which reduces to the identity component of the Néron
model of E i . Let ψ∶ E1[c] → E2[c] be the unique isomorphism such that ψ(ζ) = q2
and ψ(q1) = ζ . _en the graph G = {(P,ψ(P)) ∣ P ∈ E1[c]} is exactly the kernel of
the map A = E1 × E2 → J, so this analytic construction coincides with our algebraic
construction, at least when 1 = ordK(q1) = ordK(q2), char(k) ∤ c, and J has split
toric reduction.

5.10 Let E = E1. In the notation of Section 3, we have qE = qc1 , so ordK(qE) = c ⋅ ordK(q1).
We can take λE = (q1 , ζ) ∈ Λ, so ⟨λE , λE⟩ = ordKH(q1 , ζ)(q1 , ζ) = ordK(q1). It
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is clear that m = min{⟨λ, λE⟩ > 0 ∣ λ ∈ Λ} is equal to ⟨λE , λE⟩ = ordK(q1) =
ordK(qE)/c. Hence c⟨λE , λE⟩ = ordK(qE), so c = n by (3.10), and hence r = 1 by
(3.7). _e fact that r = 1 is easy to see directly, as the idempotent e corresponds to the
endomorphism (a, b) ↦ (a, 0) of the character group Z2 ≅ Λ of T, so e ∈ End(Λ).
_e equality n = c is then clear aswell since the smallest power of the endomorphism
(x , y)↦ (x , 1) ofG2

m ,K sending Λ to itself is c.
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