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T H E M A X I M A L E X T E N S I O N O F A Z E R O -
D I M E N S I O N A L P R O D U C T S P A C E 

BY 

HARUTO OHTA 

ABSTRACT. It is known that if a topological property 0> of 
Tychonoff spaces is closed-hereditary, productive and possessed by 
all compact Hausdorff spaces, then each (O-dimensional) Tychonoff 
space X is a dense subspace of a (O-dimensional) Tychonoff space 
&X(&0X) with 0* such that each continuous map from X to a 
(O-dimensional) Tychonoff space with 0* admits a continuous exten
sion over ^ X ( ^ 0 X ) . In response to Broverman's question [Canad. 
Math. Bull. 19 (1), (1976), 13-19], we prove that if for every two 
O-dimensional Tychonoff spaces X and Y, 0>(Xx Y) = 0>Xx0>Y if 
and only if &0(Xx Y) = ^ 0 X x ^ 0 Y , then 0> is contained in counta
ble compactness. 

1. Introduction. All spaces considered are assumed to be Tychonoff spaces. 
Following [16], we call a topological property 0> of spaces an extension property 
if it is closed hereditary, productive and each ^-regular space has a ^-regular 
compactification, where a ^-regular space is a subspace of a space having 0*. It 
is known ([8], [16]) that if 0> is an extension property, then each ^-regular 
space R is densely embedded in a space 0>R with 9> such that each continuous 
map from R to a space with 0> admits a continuous extension over 9>R. The 
space PR is called the maximal ^-extension of R. For example, if $> is 
compactness, then 0>JR is the Stone-Cech compactification |8R of JR. For details 
of extension properties, the reader is referred to [16]. Throughout this paper, 
X and Y denote O-dimensional spaces (i.e., spaces having a base consisting of 
clopen sets), and $> denotes an extension property such that the ^-regular 
spaces are just Tychonoff spaces. Every compact space has <3>. Since 0-
dimensionality 2t is known to be an extension property, the property 0>o 

defined by "R has &0 if and only if JR has both 0> and 3?" is an extension 
property such that the ^-regularity is 3£. In [3, p. 19], Broverman proved that 
if 0> is contained in pseudocompactness, then ^ ( X x Y) = 0>Xx0> Y if and only 
if &o(Xx Y) = &0Xx&0Y, and he asked whether his result holds for any 
extension property 9>. The main purpose of this paper is to answer the question 
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in the negative by proving that if &0(Xx Y)=&0Xx&0Y implies 0>(Xx Y) = 
&XX&Y, then 0> is contained in countable compactness. Combining with his 
result, we have the following theorem. 

THEOREM 1. The following conditions on & are equivalent: 
(a) Either QJ> is contained in countable compactness or @0 = 3£. 
(b) Either $> is contained in pseudocompactness or 0>Q = 3£. 
(c) For two spaces X and Y, »(Xx Y) = ®Xx&Yif and only if &0(Xx Y) = 

9>oXx0>oY. 
(d) If for two spaces X and Y, &0(Xx Y) = &0Xx&0Y, then &(XxY) = 

PXx&Y. 

A space R is called ultrarealcompact (resp. Pz(^1)-compact) if for each 
pe($R — R there is a countable, disjoint cover It of R by open sets (resp. 
zero-sets) in 1? such that p£clmU for each UeVL (cf. [13], [15]). Every 
ultrarealcompact space is Pz(K1)-compact, and every P^N^-compact space is 
realcompact. All of these properties are extension properties which do not 
satisfy (a). Recall from [7] that a space R is N-compact if R is homeomorphic 
to a closed subspace of Nm for some cardinal m, where N is the space of natural 
numbers. It is known ([13]) that R is ultrarealcompact if and only if R is 
homeomorphic to a closed subspace of the product of a compact space with an 
N-compact space, and that if 0> is ultrarealcompactness, then ^ 0 is N-
compactness. It follows from these facts and [16, Theorem 2.9] that (a) is 
equivalent to the following condition (a'). 

(a') Either there exists an ultrarealcompact space which does not have 9* or 

It is natural to ask whether (d) is equivalent to the following condition (e): / / 
for two spaces X and Y, ^ ( X x Y ) = ^ X x ^ Y , then &0(XxY)=&0Xx&0Y. 
The answer is negative. In fact, we prove in Section 4 that ultrarealcompact
ness satisfies (e); however, somewhat weaker condition than (a') follows from 
(e): 

THEOREM 2. If 9 satisfies (e), then either there exists a Pz(!R^)-compact space 
which does not have $P or 0>o = 

These theorems will be proved in Section 3. Terminology and notation will be 
used as in [6]. 

2. Preliminaries. We denote the closed unit interval by I, and D ={0, l } c l . 
Let R and S be spaces. If MciR and each continuous map f:M—>I 
(f:M^>D) admits a continuous extension over R, then M is said to be 
C*-embedded (D-embedded) in JR. For every X, there is a unique 0-
dimensional compactification fi0X of X in which X is dense and D-embedded 
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(cf. [2]). It is known ([8], [16]) that 0>M - fl {S \ S has 0> and M c S <= |3M} and 
*oX = fl {S | S has 0> and X<= S <= /30X}. The first lemma follows from these 
facts. 

LEMMA 1. Let Rbe a (0-dimensional) space with <3> and let M be a dense C*-
(D-) embedded subspace of R such that there is no space S with & for which 
MczS^R. ThenR=&M (R=&0M). 

For reR, x(r, R) denotes the minimal cardinality of a neighborhood base of 
r in R, andm, n denote infinite cardinals. Two subsets A and B of R are said 
to be completely separated (D-separated) in R if there is a continuous map 
f:R->I (f:R-^D) such that / (A) = {0} and f(B) ={1}. A family {F a} a G A of 
subsets of R is called D(m)- (D0(m)-) expandable if there is a locally finite 
family {G a } a e A of open sets in R with Fa <= G« for each a G A and each F a is a 
union of at most m subsets each of which is completely separated (D-
separated) from R-Ga (cf. [12]). Recall from [9] that R is pseudo-xn-compact 
if each locally finite family of nonempty open sets in R has cardinality less than 
m. Pseudocompact spaces are known to be precisely pseudo-K0-compact 
spaces. The following lemmas will be proved quite similarly to [12, Theorem 
1.2]. 

LEMMA 2. If RxS is C*-embedded in Rx&S and there exists a D(m)-
expandable family $ in S with |3f| =n such that C\F£%CI&SF^ 0 , then each reR 
with x(r,R) — n has a pseudo-m-compact neighborhood. 

LEMMA 3. If X x Y is D-embedded in Xx0>oY and there exists a D0(m)-
expandable family $ in Y with | $ | = n such that r\Fe^cl^oYF^ 0 , then each 
xeX with x(x,X)<n has a pseudo-m-compact neighborhood. 

3. Proofs of theorems. Let W* denote the linearly ordered space of ordinals 
less than or equal to the first uncountable ordinal col5 and let W= W* — {<Oi}. 
Then /3W=W*. 

Proof of Theorem 1. The implication (b) —» (c) is the result of Broverman 
quoted in the introduction, and (a) —> (b) and (c) --» (d) are obvious. It remains 
to prove (d)—»(a). Suppose that 0> is not contained in countable compactness 
and &oi=3£ Then by [16, Theorem 2.9] every N-compact space has 0>. Let S be 
a 0-dimensional space which does not have 0>. Since S is homeomorphic to the 
diagonal of fl WoS -{s} \ s e /30S - S}, we can find a point s* e (30S - S such that 
j30S-{s*} does not have ». 

CLAIM 1. j80S— {s*} is pseudocompact. 

Proof. Suppose not. Then there is a discrete family {On}n € N of nonempty 
clopen sets in j30S-{s*}. Define a map f:S-*D by /(s) = 0 if s G 
UneN (02n HS) and f(s) = 1 otherwise; then / is continuous. But / cannot be 
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extended continuously to s* since each neighborhood of s* meets all but 
finitely many On 's, which is a contradiction. • 

We utilize the O-dimensional space M constructed by Dowker in [5]. Let Q 
be the set of rational numbers in I, and choose a disjoint family {Qa}a<<Ul of 
countable dense subsets in I-Q. Consider the product space W * x l and its 
subspace 

M* = { ( a , r ) | ( a , r ) e W * x I , r é U oX 

The Dowker's space M is a dense subspace of M* defined by M = 
M * n ( W x I ) . He proved that M is O-dimensional but d i m M > 0 . Let P* = 
W*x/30S. Let R* be the quotient space obtained from the disjoint sum 
P*®M* by identifying (a, s*)eP* and (a, 0 ) G M * for each a ^ û h , and 
let 7 r :P*©M*-^ .R* be the quotient map. Let us set JR = 
R*-ir({(<ol9 s*)}0(M*-M)) . 

CLAIM 2. i? is C*-embedded in R*. 

Proof. Let f:R—>I be a continuous map. It is known that M is C*-
embedded in M* (cf. [6, 6.2.20]). On the other hand, since Wx/30S is 
pseudocompact, it follows from the Glicksberg's theorem ([6, 3.12.20]) that 
j3(Wxj30S) = j3WXj80S = P*. Thus f o (^ \ TT~\R)) extends to a continuous 
map h : P*®M* -> I Define a map /x : U* -> I by A(p) - h(ir'\p)) for p G JR*. 
Then fx is well-defined since h((a, s*)) = h((a, 0)) for each a<co!. It follows 
from [6, 2.4.2] that /x is a continuous extension of / over R*. • 

We denote a neighborhood system of s* in j30S by II. For each a<(ox and 
each UeVL, set 

G(a, (7) = R H TT({(/3, 0 | a < 0 < o>l51 e C/©/}), 

and set 

El = M ( f t 1/0) I (18,1/0 e M * J < coj, i G N, 

F = {TT((|8, r)) | (ft r) e M*, p < cox, 0 < r < 1}. 

Let Y* be the quotient space obtained from J R * X N by collapsing the set 
{ir(((ol9 s))}xN to a point y(s)e Y* for each sej30S, and let f i ? * x ] V ^ y * 
be the quotient map. Let us set 

Y = Y * - C / ) ( ( J R * - , R ) X N ) , 

y* = y(s*) and T = {y(s) | S G / 3 0 S - { S * } } . Then Y is O-dimensional and T is 
homeomorphic to j30S-{s*}. Next, let Y0 = {y0}UY be the quotient space 
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obtained from Y* by collapsing the set Y* - Y to a point y0. If we set 

H(a, U)={y0}Uct>(G(a, U ) x N ) , 

then {H(a, U) \ a <o)x, Uett} is a neighborhood base of y0 in Y0. 

CLAIM 3. &0Y=Y0 and y*e0>Y. 

Proof. It is easily checked that Y0 is O-dimensional. To show that Y0c= j80Y 
and Y* c 0 Y, we prove that Y is C*- (D-) embedded in Y* (Y0). Let / : Y - » I 
( g : Y - » D ) be a continuous map. By Claim 2, f°(4> | $ - 1(Y)) extends to a 
continuous map h on .R* x N. Since h is constant on <t>~1(y(s)) for each s e j30S, 
it follows from [6, 2.4.2] that a map f^.Y*-*! defined by /x(p) = h(4>-1(p)) for 
p e Y * is a continuous extension of / over Y*. Similarly, g extends to a 
continuous map g1:Y^l-^D on Y*. Since Y * - Y is connected, g1 must be 
constant on Y*—Y. Again using [6, 2.4.2], we can define a continuous 
extension of g over Y0. Thus Y0c= |30Y and Y* c (3Y. Since T does not have 0>, 
T is not closed in 0>OY and in 0>Y, so Y0c:^>0Y and y*e0>Y Since Y0 is a 
O-dimensional Lindelôf space, it is N-compact by [11, 2.1], and hence Y0 has 
0>. It follows from Lemma 1 that &0Y=Y0. • 

Let us set X = Q. Since Q is iV-compact, it has 0>, and hence X = 9>X = ^ 0 ^ -
The following Claims 4 and 5 complete the proof. 

CLAIM 4. 0>O(X x Y) = 0>OX x 0>o Y( = X x 0>o Y). 

Proof. We show that X x ^ 0 Y c j80(Xx Y) by proving that X x Y is D -
embedded in X x 0>o^- Let / : X x Y - ^ D b e a continuous map. For each x e X, 
if we define a map /x: Y-> D by /x(y) = /((x, y)), then /x admits a continuous 
extension gx over ^ 0 ^ - Define a map g i X x ^ o Y ^ - D by g((x, y)) = gx(y); 
then g | (Xx Y) = f. To prove that g is continuous, let (x0, y o )eXx0> o Y We 
may assume that g((x0, yo)) = 0- For each x e X , set A(x) = gx

1(0) and B(x) = 
gx

1(l) . Then y0e A(x0). Let {Vn}n e N be a countable neighborhood base of x0 

in X such that Vn => Vn+1. Assume that for each neN there is xn e Vn with 
y0eB(xn). Then, since each nonempty G6-set in Y0 meets Y, there is a point 
y € Y n A ( x 0 ) n ( n n e N B W ) . Since 

0 = /((x0, y)) = /(lim (xn, y)) + lim /((xn, y)) = 1, 

this contradicts continuity of /. Thus there exists keN such that y 0 ^B(x) for 
each x e Vk. For each j > k, set 

C J =U{A(x 0 )nB(x) |xGV r -} . 

Then {C,-}i2=k is a decreasing sequence of open sets in Y such that p|y>k c/YQ = 
0 . In fact, for each y e YC\A(x0) there exists / > fc and a neighborhood V of 
y in Y such that VL x V c f 1 ^ ) , so VHC, = 0 , and hence y£clYQ. Since T 
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is pseudocompact by Claim 1, TC\Cm = 0 for some m>fc. Thus 
(TU{y0})nCm = 0. For each xe Vm, since A(x0)C\B(x) is closed in Y0 and 
^U{y0} is compact, we can find ax<co1 such that 

H(ax, p0S) H (A(xo) HB(x)) = 0 . 

Let a =sup{ax | xe Vm}; then a<<o1 because Vm is countable. Set H = 
H (a, j30S)n A(JC0). Then H is a neighborhood of y0 in Y0 such that V m x H c 
g -1(0), since HHJB(x) = 0 for each xeVm. So g is continuous, hence 
X x ^ 0 Y c z | 8 0 ( X x y ) . If X x y c Z c X x V and Z has 9>, then X x ^ Y c 
Z. For, if there is x'eX such that (*', y0) e ( X x ^ 0 Y ) - Z , then ({*'}xô?>0Y) n Z 
has 0> and is properly contained in {x'}x0>oY, which is impossible. Hence it 
follows from Lemma 1 that &0(Xx Y) = Xx0>oY. D 

CLAIM 5. ^ ( X x Y ) ^ X x ^ Y ( = X x ^ Y ) . 

Proof. For each neN, set 

E n = U <ME[x{"}) and F n ^ ( F x { n } ) . 
iGN 

Then {Fn}n e N is a locally finite family of open sets in Y with En c Fn. Since 
each </)(E-x{n}) is completely separated from Y-Fn, {En}nGN is a D(X0)-
expandable family in Y Since y*eflnGN^^Y^n and each point of X has no 
pseudocompact neighborhood, it follows from Lemma 2 that 0>(Xx Y ) ^ X x 
0>Y Hence the proof of Theorem 1 is complete. • 

REMARK 1. Let Si be an extension property satisfying the following condi
tions (l)-(3): 

(1) â is hereditary. 
(2) The two-point discrete space has Si. 
(3) There is a space which does not have St. 

Then a property 0>â defined by "JR has 0>â if and only if R has both 0> and â" is 
an extension property such that the 0>â-regularity is Si. By [16, Proposition 1.4] 
every O-dimensional space has St, and every space R with Si contains no copy 
of I. For, if the space R contains J, then every space S can be embedded in jRm 

for some cardinal m, so S has Si by (1), which contradicts (3). Therefore if Y is 
the space Y constructed above, then $PoY=0>aiY. Hence Theorem 1 remains 
true, with essentially the same proof, if @>0 is replaced by &&. Let E be an 
hereditarily indecomposable continuum (cf. [10]). Then E-complete regularity 
in the sense of Engelking and Mrôwka [7] is an example of such a property Si 
which is not 0-dimensionality. 

Before proving Theorem 2, we prove the following. 

THEOREM 2'. If 9> satisfies condition (e) and &0^3£, then every connected, 
separable, metric space with & is compact. 

https://doi.org/10.4153/CMB-1983-031-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1983-031-9


198 HARUTO OHTA [June 

Proof. Let T be a connected, separable, metric space with 9>. As noted in 
the introduction, either 0> is contained in countable compactness or 0> contains 
ultrarealcompactness. In the former case, T is compact, since each countably 
compact metric space is compact, so it remains to settle the later case. Suppose 
that T is not compact. By [14, Ch. 5, 4.4], there is a family {Pa}«<a)1 of dense 
O-dimensional subspaces of T such that Pa<^Pp if a < / 3 and T = \Ja<f0l Pa-
Consider the product space W* x T and its subspace 

* = {(«, t)|(a,OeW*xT,tfÉ U Pfi\ 

It was proved in [14] that L* n ( W x T) is O-dimensional. Since 0>o Î % there is 
a O-dimensional space S which does not have 0>. Similarly to the proof of 
Theorem 1, we can find s* e &0S - S such that (30S -{s*} does not have 0>. Let 
p * = w * x j30S, and pick f * e P0. Let Y* be the quotient space obtained from 
the disjoint sum P*(BL* by identifying (a, s*)eP* and (a, f*)eL* for each 
a <û>x, and let i / / :P*0L*-* Y* be the quotient map. Let us set 

Y = y*-iKKs*)}e({o)1}xii). 

Then Y is O-dimensional. Next, let Y0 = {y0}UY be the quotient space 
obtained from Y* by collapsing the set Y* - Y to a point y0. 

CLAIM 1. &0Y=Y0 and PYa Y*. 

Proof. It can be proved quite similarly to the proof of Theorem 1 that 
9>0Y=Y0 and Y is C*-embedded in Y*. Thus Y*c|3Y. By Lemma 1, it 
suffices to show that Y* has 0>. Suppose not; then there is a point p e 
0>y*_ y * I f w e s e t ^ = y * _ y t h e n ^ h a s p a n d i s a r e t r a c t o f Y* w h i c h 

shows that R =&R = cl*R, where cl*R denotes the closure of R in 0> Y*. Thus 
there exist open neighborhoods (7 and V of p in 0>Y* such that c^L/Pll? = 0 
and d^Vczf/. Set J = c ^ [ / n Y . As is easily seen, / is a O-dimensional 
Lindelôf space, so we can find a clopen set H in J with c l * V r i y c H c [ / n y 
and a countable disjoint open cover {G n} n e N of J such that p<£ cl*Gn for each 
neN. Note that H is clopen in Y*. Set 

Z = c Z 3 Y * ( Y * - H ) u ( u c/3 Y*(HnGn)Y 
\ n e N / 

Then Y*czZc=/3Y* and p ^ Z . Since Z is a countable union of disjoint 
compact open subspaces, it is ultrarealcompact, so Z has 0> by our assumption, 
and hence &Y*c^Z by Lemma 1. This contradicts the fact that pe&Y*. 
Consequently, Y* has 0>. • 

Let X be the countable product of discrete spaces of cardinality K^ Since X 
is N-compact, it is ultrarealcompact, so X = 3PX = 2P0X. Recall from [1] that a 
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space is of pointwise countable type if each point is contained in a compact 
subset of countable character. It is known ([1]) that spaces of pointwise 
countable type are fc-spaces and are preserved by countable products. 

CLAIM 2. &(XxY)=&Xx&Y(=Xx&Y). 

Proof. Observe that Y* is a Lindelôf space. Since Y*<=|3Y and since each 
nonempty Gô-set in Y* meets Y, Y* is the Hewitt realcompactification vY of 
Y by [6, 3.11.10]. It is easily checked that Y* is of pointwise countable type, 
and hence so is X x Y * . It follows from [4, Theorem 2.7] that X x Y is 
C*-embedded in X x o Y ( = X x Y * ) , so X x Y*c: 0 ( X x Y). Since 9>Y<=Y* 
and there is no space Z ' having 0> for which X x Y < = Z ' c X x 0 > Y , 9{X x Y) = 
Xx0>Y by Lemma 1. • 

CLAIM 3. 0>o(Xx Y)^&0Xx&0Y( = Xx&0Y). 

Proof. Since T is not compact, there is a countable locally finite family 
{En}nGiJ of open sets in T such that t*<É[JneNEn. For each neN, let Fn = 
i/r((Wx J5n) (IL*). Then {Fn}n e N is a locally finite family of open sets in Y with 
Voe fUiv clg>oYFn. Since each Fn is a union of Nj many clopen sets in Y, {Fn}n e N 

is a DoCN^-expandable family in Y Since each point of X has no pseudo-X^ 
compact neighborhood, it follows from Lemma 3 that 0>o(Xx Y ) ^ X x ^ 0 Y 
Hence the proof of Theorem 2' is complete. • 

Proof of Theorem 2. By Theorem 2', it suffices to show that there exists a 
^z(Ki)-comPact, connected, separable, metric space T which is not compact. 
Consider the subspace T = Un6iv Un

 u ^n) of the Euclidean plane, where 

l n ={(x ,y ) | x = l / n , 0 < y < l } , 

Jn={(x,y)\x2 + y2 = l/n2, and x < 0 o r y<0} . 

Then T is connected, separable, non-compact, and P^N^-compact, since it is a 
countable union of disjoint compact zero-sets. Hence the proof is 
complete. • 

REMARK 2. If ^ contains Pz0<i)-compactness and 9>0^3£, then it follows 
from Theorems 1 and 2 that 0> satisfies neither (d) nor (e). Examples of such 
extension properties are P2(Kx)-compactness, realcompactness, almost realcom-
pactness and Dieudonné completeness. 

4. Extension properties satisfying (e) but not (d). The embedding ix of X in 
&0X extends to a unique continuous map &ix:0>X->&oX. The following 
lemma was essentially proved by Broverman in the proof of [3, Theorem 2.2]. 

LEMMA 4. If 0>(Xx Y) =0>Xx0> Y and if 0>ixx0>iY is a quotient map from 
&XX&Y onto &QXxg>QY, then &0(XxY)=@0Xx&0Y. 
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Let us say that a space R is ultracomplete if for each p e J8JR - R there is a 
disjoint open cover U of R such that p£clmU for each UeVi. As noted in 
[13], ultracompleteness is an extension property, and every ultracomplete 
space is Dieudonné complete. By Theorem 1, neither ultrarealcompactness nor 
ultracompleteness satisfies (d), while we have the following theorem. 

THEOREM 3. Both ultrarealcompactness and ultracompleteness satisfy (e). 

Proof. Let 0> be ultracompleteness (ultrarealcompactness). By Lemma 4 and 
[6, 3.7.7], it suffices to show that for each X,0>ix:&X->&oX is perfect onto. 
The embedding ix extends to a continuous map pix:(3X-^p0X. Note that 
&ix = (j8ix) I &X. If &ix is not perfect onto, then there is a point p e $X-<3>X 
with (f$ix)(p)e&0X. Since 9>X has 0>, there is a (countable) disjoint open cover 
{ É 4 L € A of &X such that pécl^xUa for each a G A. Set V a = c l 3 o X i x ( ^ n X ) 
and q = (pix)(p). Then Va is clopen in j30X. If qeVa, then W = 
Oix)~ 1(V a)-c/ 3 XU a is an open neighborhood of p in |3X with WHX=0, 
which is impossible. Thus q<£ Va for each a G A. Let us set Z = LLGA Va. Then 
q ^ Z , and Z has 0> since it is a (countable) union of disjoint compact open 
subspaces, so £P0X<^Z by Lemma 1, and hence q<£0>oX. This contradiction 
completes the proof. • 

The following problem is still open. 

PROBLEM. Characterize an extension property 9> satisfying (e). 
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