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METASTABLE IMMERSION, SPAN 
AND THE TWO-TYPE OF A MANIFOLD 

BY 

HENRY GLOVER AND WILLIAM HOMER 

ABSTRACT. The existence of metastable immersion or span for space 
forms and homogeneous spaces is shown to depend only on the two-type 
of the space. 

1. Introduction. For many smooth «-manifolds, if k is in the metastable range k > 
n/2, then each of the properties of immersing with codimension k and having n — k 
linearly independent vector fields depends only on the 2-type of the manifold. The 
following results make this statement more precise for two interesting classes of 
manifolds: homogeneous spaces and space forms. The general theorems which imply 
these results are given in the next section. 

We use C for immersion, — for homotopy equivalence, Zp for Z[l/q; q relatively 
prime to /?], a subscript 2 for localization with respect to H*{ ; Z2), a subscript 1/2 to 
denote localization with respect to //*( ;Z[l/2]) and a subscript 0 to denote local­
ization with respect to //*( ;Q) (cf. [4]). 

THEOREM 1 .1. / / 
(i) Vn+k is an arbitrary smooth manifold and one of Mn and Nn is a homogeneous 

space or space form, and Wn+k is a nilpotent homogeneous space or nilpotent space 
form, 

(ii) M ÇV, 
(iii) M2 - N2, V2 - W2, and 
(iv) k > n/2, 

then N ÇW. 

EXAMPLE 1.2. If UP" C Rn+k, N2 - UPn
2 and n > 16, then N Q Un+k. 

In particular, all standard lens spaces L2m+l(4q + 2) immerse in the same euclidean 
space as UP2m+\ provided m > 7. 

REMARK 1.3. A real flag manifold 0(n{ + . . . + nk)/(0(nx) x . . . x 0(nk)) is 
nilpotent if and only if all the n{ are odd (cf. [12]). 

COROLLARY 1.4. If F is a finite group of odd order acting smoothly and freely on the 
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Tï-manifold space form or homogeneous IT-manifold Mn, then M/F Ç U[3n/2^+\ where 
[ ] denotes the integer part. 

EXAMPLE 1.5. (cf. [24]) The standard lens space L2m+l(2q + 1) C (R3m+2, and this 
result is sharp for m even provided 2q + 1 does not divide Cm/i), 3m/2 choose m/2. 

COROLLARY 1.6. (cf. [17]) If F is a finite group of odd order acting smoothly and 
freely on the homogeneous space G/H, and dim H > (dim G)/3, then (G/H)/F C 
[OdimG 

EXAMPLE 1.7. (cf. [23] and [18]) 

(0(4m + 2)/(0(2m + 1) x 0(2m + l))/(Z/(2? + 1)) C R('w+2) 

0/w/ f/w.y rasw/r is always sharp. The action ofZ/(2q+l)is induced by the diagonal 
action ofZ/(2q + 1) in C2w+1, which can be seen to be free by considering eigen­
values. 

THEOREM 1.8 (cf. [2])// 
(i) Mn or Nn is a homogeneous or a space form, 
(ii) Mn has an (n - k)-field ((n - k) linearly independent vector fields), 
(iii) M2 — Â2 and 
(iv) k > n/2, 

then N has an (n — k)-field. 

REMARK 1.9. Recall that if M" has an (n - &)-field and does not have an 
(n — k + l)-field we say that span M = n - k. 

COROLLARY 1.10. If F is a finite group of odd order acting smoothly and freely on 
the parallelizable homogenous manifold Mn, then M/F has an[(n — l)/2]-field. 

EXAMPLE 1.11. (i) L2m+1 (2q + 1) x SJ always has an m-field and (ii) it does not have 
an (m + 3)-field if m is even and 2q + 1 does not divide (™}2 )• 

REMARKS. 

1. Do the conclusions of Theorems 1.1 and 1.8 follow from hypotheses (ii)—(iv) 
alone? This is a tempting generalization because we do not have a counter example, but 
the approach used here requires some additional hypothesis. As indicated above, 
hypotheses (i) illustrate the applicability to some familiar manifolds of the more tech­
nical hypotheses in Theorems 2.1 and 2.3. 

2. The results in this paper improve those in [11], [12], [13], [14] and [15] by 
removing the special hypotheses about the spaces M oxN that occur in these papers due 
to the special theories of localization used. We are also able to remove the hypothesis 
of odd codimension but only by introducing hypotheses (iv) of Theorem 2.1 and (iii) 
of Theorem 2.3 about the integrality of the rational Euler classes. This suffices for the 
special spaces of this section. 

The remainder of this paper is organized as follows. In section 2 we state the general 
theorems which imply the results in section 1. In section 3 we prove Theorems 2.1 and 
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2.3. These theorems immediately imply the results in section 1, using the results of 
Friedlander [10] (cf. [13]) in the case of homogeneous spaces. That MP" C Un+k 

implies k > n/2 for n > 16 in example 1.2 follows from [8]. That the implication is 
often false for n < 16 is given in [22]. The non-immersion of Example 1.5 and the 
non-existence of vector fields in Example 1.11 are computations in Pontrjagin classes 
which we also give in section 3. The sharpness of the result in Example 1.7 is a 
computation in Stiefel-Whitney classes which was done by Hiller and Stong [18]. 

2. General Theorems 

THEOREM 2.1. Suppose Mn andN" are compact smooth manifolds, Vn+k an arbitrary 
smooth manifold and Wn+k a nilpotent smooth manifold such that the following hold. 

(i) There exists an immersion f: M —> V. 
(ii) There exist homotopy equivalences \: N2 —» M2 and |x: V2 —» W2. 
(iii) There exists a map gm: N —» W]/2 such that the induced diagram 

/o 

Wo - > Wo 

( g 1/2)0 

is homotopy commutative. 
(iv) If k is even there exists a homotopy equivalence 4>: M2^> M2 or a homotopy 

equivalence 6: JV2 -» N2 such that (X*4>*(A}))<, or (0*X*(Z/))o is integral in Hk(N; Q). 
Here Xf denotes the Euler class of the immersion f 

(v) k > n/2. 
Then N ÇW. 

REMARK. R. Cohen used a result closely related to but independent of Theorem 2.1, 
due to Brown and Peterson [6], in his proof of the immersion conjecture [7]. 

COROLLARY 2.2. lfMn and Nn are compact smooth manifolds such that 
(i) M C Un+k, 
(ii) N2 - M2, 
(iii) k is odd or Hk(M; Q) = 0, and 
(iv) k > n/2, 

then N Ç Un+k. 

THEOREM 2.3. Let M" andNn be compact smooth manifolds such that the following 
hold. 

(i) Mn has an (n — k)-field. 
(ii) M2^N2. 
(iii) If k is even there exists a homotopy equivalence 4>: M2 —» M2 or a homotopy 

equivalence 6: N2 -> N2 such that (\*<|>*(Xç))o or (6*X*(X4))0 is integral in Hk(N; Q). 
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Here X^ denotes the Euler class of £*, where the tangent bundle to M is i~k © 1" *. 
(iv) k > n/2. 

Then N has an (n — k)-field. 

COROLLARY 2.4. IfM" and N" are compact smooth manifolds such that 
(i) M has an (n — k)-field, 
(ii) M2 - N2, 
(iii) k is odd or Hk(M; Q) = 0, and 
(iv) k > n/2, 

then N has an (n — k)-field. 

REMARK. Our results hold in the PL category by replacing Hirsch's thesis [20] by the 
corresponding theorem for PL-manifolds due to Haefliger and Poenaru [16]. 

3. Proof of Theorems 2.1 and 2.3. 

PROOF OF 2.1. If k is odd the proof proceeds as in [11], observing that the localization 
of Bousfield [4] with respect to //*(;Z2) allows us to remove the hypothesis of 
nilpotency from the manifolds M or N. We include the proof for completeness. If we 
define g2 = fJL°/24 :N2 —» W2, then by hypothesis (iii) and the fracture lemma of [5] 
and [19], there is a map g: N —> W for which g1/2 and g2 are the localizations that the 
notation suggests. Since/: Mn —> Vn+k is an immersion, f*(jstV) — istM lifts to 
BSO(k). By Atiyah [1] (cf. [14]), JistV2 = | X * ( / T 5 W ) 2 and A * ( / T " M ) 2 = (JTS'N)2, 

so X*7(f*TstV - istM)2 = J{g*TstW - 7stN)2 lifts to BSF{k)2 (cf. [11]). (We use the 
simple connectivity of the Thorn complex of istV, etc.) Using James [21] (cf. [14]) 
g*rstW ~ TstN lifts to BSO(k). The result now follows by Hirsch's thesis [20]. 

If it is even we observe that BSF(k)0 ^K(®,k), so that the lift N-* BSF(k)2 given 
above may not be compatible with that to BSF{k)m given by [21] (cf. [14]), i.e. they 
may not agree in BSF(k)0. But hypothesis (iv) allows the lift to BSF(k)2 to be chosen 
so that it is compatible with that to BSF(k)]/2 by using the identification of lifts of 
N —» BSFV2 to BSF(k)V2 with elements of Z[l /2]. The remainder of the proof is the 
same as for k odd. 

PROOF OF 2.3. We proceed as for 2.1 except that we must lift T: N —> BO(n) to 
BO(k). (The case k odd is done in [15].) Again the point is that for k even 
BSF(k)0 - K(Q, k) and the lifts of N in BSF(k)2 and BSF(k)l/2 may not agree. But 
hypothesis (iii) allows us to choose them compatibly. As in [15] it is necessary to use 
Benlian-Wagoner [3] and Dupont [9] to show that JTMP — JiNp. 

The computations for Example 1.5 and 1.11 are standard results for Pontrjagin 
classes forL2m+1 (2q + 1) and say thatp = (1 + p{)

m+{ so thatp = p~] = 2 U 0 ( - 1 ) ' 
CV)p\' Of course we use the fact that S2m+l x Sl is parallelizable. 

The Computation for the sharpness of Example 1.7 was done by Hiller and Stong 
[18]. The immersion 0(2n)/(0(n) x 0(w)) C R{2*H) was first done by K. Lam [23]. The 
immersion G/H C RdimG for example 1.6 was done by Hiller [17]. 
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