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1. Notation and introduction

Throughout the paper, the symbols G% and G2 will denote two locally compact
abelian groups with character groups X^ and X2, respectively. Haar measures on Gj are
denoted by fiy, the ones on Xj are denoted by 6j (/ = 1,2). The measures fij and dj are
normalized so that the Plancherel Theorem holds (see [7, p. 226, Theorem 31.18]).

If G is a locally compact abelian group with character group X, and if / is a
complex-valued function on G, then / is said to be measurable means that / is
measurable with respect to Haar measure on G. The class of measurable functions on G,
with integrable pth power, is denoted by ifp(G) l^p<oo; the class of essentially
bounded measurable functions by &JJ3); the class of continuous functions with
compact support by ^Jfi).

If A is a subset of G, the complement of A in G is denoted by A' or G\A. The symbol
lA will denote the indicator function of the set A. All other notation used in this paper
without explanation is as in [6] and [7]. A bounded measurable function m on X is
called an i?p(G)-multiplier, lgp<oo, if for every / in y^G) n £f2(G) there is a g in
yp{G) such that g = mf, and ||g||p^ATp(»i)||/||p, where Np(m) is the norm of the unique
extension of the bounded linear operator f-*g to all of i?p(G). We shall denote this
extension by Tm. The set of all multipliers on SCP(G) will be denoted by MP(G).

Suppose that i is a continuous nonzero homomorphism from X2 into Xt. A
well-known theorem for multipliers asserts that if m is continuous on Xu then m n is in
Mp(G2) and JVp(m o T) ̂  Np(m). (See [5, Theorem B.2.1, p. 187]). We will refer to this fact
as the homomorphism theorem for continuous multipliers.

Many interesting multipliers are not continuous; e.g. the sgn function on U which is
an £fp (R)—multiplier for l<p<oo. Our goal, in this essay, is to give a new proof of
the homomorphism theorem for continuous multipliers based on the so-called transfer-
ence methods, then derive a more general version that applies to multipliers like the sgn
function.

2. The homomorphism theorem

We continue with the notation of Section 1: m is a bounded continuous function on
Xlt and T is a continuous nonzero homomorphism from X2 into Xl.
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2.1. An approximate unit in Jf^X^.
By interchanging the group G and its character group X in Theorem 33.12 p. 298 of

[7], we see that Z£^Xt) contains a net of functions (u,),e; such that, for all i in /, we
have:

«,^0; (1)

j M 0 i = i; (2)

X,

u,^0; and u.eVJGJ. (3)

From (1) and (2), it follows that

lim ul*m = m (4)
i

uniformly on compact subsets of Xx. (Use (1), (2), and (28.52) of [7]).
Clearly, from (4), we have

limu, *moT = moT (5)

uniformly on compact subsets of X2.

Theorem 2.2. Suppose that m is a bounded and continuous function on X^ which is also
in Mp(Gx), 1 ^p<oo. Let x be a continuous homomorphism from X2 into X1. Then moi is
an <£p{G ̂ -multiplier with Np(moT)<^Np(m).

The proof of Theorem 2.2 combines a transference results and well-known properties
of translation-invariant operators. We shall start with the transference set-up. Suppose
that k is in ^ ( G j ) with compact support. Let Tk denote the operator /V-»/*fc, and let
Np(k) denote its norm as an operator from SPJ&d into ^(Gj). Let 0 denote a
continuous nonzero homomorphism from Gt into G2. If / is in J2?P(G2), using [6,
Lemma 20.6, p. 287], one can easily show that the function (t, x)t->/(x - 0(t)) is
measurable with respect to the product measure onG,xG2.

Let T* denote the operator, defined in J*?P(G2) by

Ttf(x) = J f{x-<t>(t))k(t) duM (6)

Ci

Applying Theorem 2.4 of [4], we see that the inequality

\\T?fUNp{k)\\f\\p (7)

holds for all / in JS?p(G2) with lgp<oo. (While in [4] it is required that G2 be
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cr-compact, one can check that the proof of [4, Theorem 2.4], still holds when G2 is not
CT-compact and the operator is of the particular form (6). See also Theorem 2.3 of [3]).

Lemma 2.3. Let m and u, be as in (2.1). Let h be in Z£2{G^) n ^ ( G , ) such that fi is in
Se^X,). Set

k=((u,*m)fiy.

Then k, is in ^ ( G j ) with support contained in supp u, +supp/i. In particular, suppfe, is
compact.

Proof. We have

((m * u,)Ky(x) = J m * Hy)H(y)y(x) dd^y)

= J 1 m(r1)u,(y-ri)dei(r,)fi(y)y(x)dei(y)
x, x,

= J m(n) J u,(y-r,)fi(y)y(x)dei(y)dei(n)
x, x,

= jm(r,)h*(r,u,)(x)d9l(r]).
x,

Note that supp»/u, ssuppu,. Thus,

supp (h * (nu,)) £ supp h + supp u,,

from which the lemma follows. •

Lemma 2.4. Suppose that m is in MJ^Xy) (m need not be continuous). With the
notation of Lemma 2.3, we have

(a) Np(u,*m)^Np(m),

(b) ||W|L£tf»|HI.||/||,
for all i e /, and all f in &Jfii), 1 ^ P < oo.

Proof. Part (a) is a well-known property of multipliers. For its proof see [5, B.I.2.
(iii), p. 185].

For (b), it is enough to consider / in i£p(G) with compactly supported / We have

https://doi.org/10.1017/S0013091500028613 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028613


216 NAKHLE HABIB ASMAR

(from (a)).

2.5.

We now go back to our set-up of (2.1). We have a continuous homomorphism x from
X2 into Xr. To use the transference results, we introduce the adjoint homomorphism </>
of T; thus 4> is the continuous homomorphism from Gt into G2 satisfying the identity

for all x m ^2» a n d all s in Gt.
For every i e I and / e •£7p(G2), 1 ̂ p < oo, we let

T*f(x)=jf(x-(f>(t))kl(t)d^(t)
G,

where /c, = ((m*ti,)/i)v, h is an arbitrary but fixed element in JZ>
2(Gi)n'£<x>(Gi) such that

IMIi^l, and K is an Se^XJ.
Using (2.2.7) and (2.4.b) we see that

| | | | p ^ M I | | p (8)

for all / in Sep(G2).

Lemma 2.6. Notation is as in (2.5). Let f be in ifp(G2) n ^!(G2), 1 ^ p < oo. Ŵ e have

(a) {T*f)\x) = /(*)«, * m(T(Z))«(t(Z))

/or a// / i n X2 and all i e I;

(b) Hm (T* fHx)=Hx)m(x(x))fi(r(x))

i

uniformly on compact subsets of X2.

Proof. We have

= J z w 1 Hx
C2 G,

= I J z(x)/(x
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= 1 1 x(x + <t>{t))f(x)dfi2(x)kl(t)dli1{t)

217

Ci G2

=hx)lxMt))K(t)dfi1(t)
c,

Gi

Part (b) is an immediate consequence of (a) and (2.1.5). •

2.7 Proof of Theorem 2.2. Let 1 ^ p < oo, and let q = (p/p — 1) if 1 < p < oo, and q = oo
if p = 1. It is enough to show that

\{f{mox)y{x)g(x)dn2{x)

for all /e i f ( , (G 2 )ni f 1 (G 2 ) , geSeq(G2) n &X{G2), and / and g are in
1.2.2. (iii), p. 7]). We have from (2.6b)

limf (z)/(z)fi, * m(T(z))^Wz)) =£(*)/(z)m(T(z))£(T(z))
I

uniformly on X2. Also note that the inequality

(9)

)• (See [5,

(10)

jooir*lloolly oo (11)

holds for all x •" X2 and all tel. From (10), (11), (2.5.8), and Parseval's identity ([7,
31.19, p. 226]), we infer that

dd2 lim J gj(ii, * m) o T/I o T dd2

i G2
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(12)

We now show that (12) implies (9). Using Parseval's identity, rewrite the left side of (9)
as

Denote by K the support of jg. Given e>0, let h in &2{Gi)r\<gJiGl) be such that
|H|, = 1, fie J2U*,), and

for all x in *(K). (T° fir|d K use [7, Theorem 33.11 p. 298]). We have

I hx)m°«X)hx)dO2(x)- J <e

Clearly, this together with (12) implies (9). •

2.8. Remark. The assumption 2.1.5 can be replaced by the requirement that (u, *m)o
T converges to m°x in the weak-star topology of SPJiX2). For in this case, to establish
2.7.1, we would start with the equality

dd- lim J fg(u,*m)orftoTdO:

and then continue the proof 2.7 from 2.7.12 until the end without a hitch.
Our next version of the homomorphism theorem applies to normalized multipliers.

Definition 2.9. A bounded function m on X is said to be normalized if there is an
approximate identity (fen)"=i m ^fi(^i) such that \imn^aokn*m(x) exists for all / in X.
We denote this limit by m*.

Theorem 2.10. Let m be a normalized function in Mp(Xi), l^p<oo, and let T be a
continuous homomorphism ofX2 into Xt. Then the function m*°T is in Mp(X2), l^p<co,
with
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Theorem 2.10 is an immediate consequence of Theorem 2.2 and the following lemma
whose proof can be reconstructed from [5, pp. 190-191, B.2.2, (i)-(iv)].

Lemma 2.11. Let X be a locally compact abelian group with character group G. Let
(mn)™=i be a sequence of continuous functions in Mp(X), lgp<oo, such that:

(a) sup||mn||00<oo;
n

(b) lim mn(x) = m{x)
n~* oo

for all x in X; and

(c) p
n

Then m is in Mp{X) with Np{m)^cp.

To prove Theorem 2.10 note that the functions lt,*raot have the following properties:

kn*m°z are continuous, and

lim ln

n-* oo

pointwise everywhere on X2; and

Np(kn * m o T) g Np{kn * m) (by Th. 2.2)

gJV»(by(2.4)(a)).

Now apply Lemma 2.11 to the sequence (kn*mox)™=l in MP(X2)-
A version of Theorem 2.10 appears in [3, Theorem 2.7]. Its proof, while quite

different from ours, also uses the transference methods.

3. Applications

An interesting application of Theorem 2.10 to multiple Fourier series is obtained by
taking: Xt = J (the unit circle parametrized by the interval [ — n, 7r[);X2 = Zn where n is
a positive integer; and m= l]fl bi where — n^a<b<n. The homomorphism T is given by
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n

T(m,,m2,...,mJ= £ a,/n,(mod 27i) where
j = i

{a1,a2,...,an} is a subset of U which is linearly independent over Q. The case «=1 is
presented in [8], Section 1.

We now derive a generalization of M. Riesz's theorem on conjugate functions by
using the original version on U. This approach to the abstract of M. Riesz's theorem is
due to [2] for compact abelian groups, and to [1] for arbitrary locally compact abelian
groups.

We take Xt = U, G1 = R; and we write X and G for X2 and C2, and \i and 9 for /x2

and 62. We suppose that X contains a measurable subset P such that P + P = P;
p n ( - P ) = {0}; Pu(-P) = X. Such a set is called an order on X. With P we associate
the function sgnP defined on X by

sgnP(x)= <

1 if xeP\{0};

0 if x = 0;

- 1 if jt6(-F)\{0}.

An abstract version of M. Riesz's theorem for conjugate function can be stated as
follows.

Theorem 3.1. Notation is as above. Let f be in £CP(G) n i?2(G), 1 <p< oo. We have

(0 IK
where the constant Ap is the same as the constant appearing in M. Riesz's theorem on 1R
(or T).

Proof. It is enough to consider / in S£P(G) such that / is in ^JJi).
Let K be the support of/ Apply Theorem (5.14) of [1] to obtain a homomorphism T

from X into U such that the equality

holds for 0-almost all x in X- We clearly have

(-jsgn,, /r=(-;sgnoT/r (13)

0-almost everywhere on X.

The function st-» — isgn(s) is normalized on U. M. Riesz's theorem on IR asserts that
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the function s*-> — i sgn(s) is an ££P{U)—multiplier with norm Ap. The inequality (i)
follows now from (13) and Theorem 2.10. •

The following results is due to [8, Section 3], for the case X = W; to [4, (3.16)] for the
case G <7-compact; and to [9, (4.6)(b)], for the general case under more hypothesis than
we require below.

Theorem 3.2. Let m be a normalized function on X which is an ££p{G)-multiplier with
norm Np(m), l ^ p < o o . Suppose further that m* = m. Let Y be a closed subgroup of X.
Suppose that f, the restriction of m to Y, is measurable with respect to the Haar measure
on Y. Then f is an ^p{GIA{G,Y))-multiplier, where A{G,Y) = {geG:g(x) = l for all i in
Y}. Moreover, we have Np(f) g Np(m).

Proof. Let T be the identity homomorphism from Y into X. Apply Theorem
2.10. •
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