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0. Introduction

The notion of a recursive density type (R.D.T.) was introduced by Medvedev
and developed by Pavlova (1961). More recently the algebra of R.D.T.'s was
initiated by Gonshor and Rice (1969). The R.D.T.'s are equivalence classes of
sets of integers, similar in many respects to the R.E.T.'s. They may both be thought
of as effective analogues of the cardinal numbers. While the equivalence relation
for R.E.T.'s is defined in terms of partial recursive functions, that for R.D.T.'s
may be characterized in terms of recursively bounded partial functions (see 4.22a).

In Gronshor and Rice (1969) addition and multiplication of R.D.T.'s are
denned and some of their properties are found. In particular a subset As of the
R.D.T.'s is defined such that the following cancellation law holds; x + y — x + z
implies y = z for xeA s where y,z are arbitrary R.D.T.'s. This led them to
conjecture that there is an extension theory for R.D.T.'s analogous to Nerode's
theory for the R.E.T.'s (see Nerode (1961)) and that certain subclasses such as
As would have properties similar to A, the set of isols.

The aim of this paper is to verify this conjecture. We shall show that there is
a natural procedure to extend arbitrary relations on co = {0,1,--} to relations
on R.D.T.'s and that a large class of functions on co extend to functions on
R.D.T.'s. A generalization of the above cancellation law for addition will be
seen to apply to a set T 2 As.

In order to put the above results in a general framework we define the notion
of a Nerode extension of arithmetic. Roughly speaking, a Nerode extension is a
relational system, extending a relational system with domain co, whose universal
properties may be characterized as in Theorem 11.1 of Nerode (1961). Thus the
main result of Nerode (1961) is that a certain relational system on A is a Nerode
extension. The main result of this paper is that there is a relational systme on F
that is a Nerode extension.
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[2] Recursive density types 147

In the first part of the paper we define and investigate Nerode extensions
and give some examples. In the second part we introduce the R.D.T.'s and prove
the main results. The method used to extend relations and functions on co to the
R.D.T.'s is by a characterization of the R.D.T.'s as a homomorphic image of a
previously defined Nerode extension. This characterization has led to simpler
proofs of many of the results.

Parti

1.1. Let kA denote the fe-fold cartesian product of the set A. If x e kA then
x = (*0> '">xk-l)-

If h: I -+ co where / is a proper subset of {0, ••-,& - 1} and R c kco, the
k-specification ShR of R is the relation obtained from R by substituting the
integer h(i) at the i-th argument place for each iel. More precisely, if
J= { 0 , - , f c - l } - J = (j(0) < ••• <j(t-l)} then ShR = {x e 'co \ h*(x) e R}
where if x e 'co then h*(x) = y, where yt = h(i) for i e / and yJ{i) = xt for i < t.

R £ kco is totally unbounded if for all xe*a> there is a yeR such that
x ^ y (i.e. xt ^ yt for i < k). If R,S £ *co let K £ e S if i? — S is not totally
unbounded. R is eventual if *a> £ e .R.

The following is needed in the proof of Lemma 1.4.

LEMMA. R £ kco is co-finite if and only if every k-specification ShR is
eventual.

1.2. Let S£ be the full first order language for arithmetic, i.e. there is a
function symbol/for each function on co and a relation symbol R for each re-
lation R on co. If <j> is a quantifier free formula of =S? in conjunctive normal form
then 0 ' is a iforn reduct of <£ if $ ' can be obtained from 0 by striking out all but
one unnegated atomic formula in each conjunct with at least two occurrences of
unnegated atomic formulae.

If 3Fn is a set of n-ary functions on co for n = 1,2, ••• and & = u {^"lO
< n < co}, let ^(J5") be the sublanguage of ££ with symbols / for fe & and R
for Re®{&) = u {0P(&)\O < n < co}, where Re@n(3F) if and only if
K = {x e "to |/(x) = g(x)} for some / , # e J^".

^ will be called a closed system if (1) w", c£ e ̂ " for i < n, keco, where
«?(x) = xt, cn

k(x) = fc for xe ' » . (2) If / e ^ " , g0,--^"'^^ then
/o to° , - , f f " - 1 )e^* where / o (g 0 , -^"" 1 )^ ) = /(s°(x), -^"- ' (x)) for
x e ' a (3) If R,S€&?(&) then i? n S e * ( # ) .

The relational system Jf(Q,&) = <[Q,fQ,RQyfeS, RS0I^) is an extension
if #" is a closed system, <y £ 2 and / = fQ f- "co, R = /?e n "co for / e J5"",

). Let ^ - ( JO = <©,/, « > , . , , R
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1.3. DEFINITION. The extension ^V(Q, !F) is a Nerode extension if its universal
properties may be characterized as follows: If <j> is a quantifier-free formula
of ££(&?) in conjunctive normal form, with free variables among v0> •••,vk_i, then
JT(Q,&)Y Vt;0---Vy4_1^> if and only if (1) JT{^) V Vu0 ••• Vi^c/) and
(2) for every /c-specification Sh there is a Horn reduct <f>' of 0 such that
Sh{x e kco | ̂ r ( ^ ) t= </>'[>]} is eventual.

1.4. A proof of the following lemma may be abstracted from Ellentuck (1967).

LEMMA. If the extension J^"{Q,^) satisfies 1.4.1-1.4.6 then it is a Nerode
extension.

1.4.1. (u?)B(x) = x, and (cn
k)Q(x) = k for xe"Q.

1.4.2. irfe^",g°,-,g'-1e^kthen(fo(g0,:.,g"-l))Q=fQo(gZ,->gn
Q-1).

1.4.3. If K = {xe"e»|/(x) = 0(x)} foTf,ge&n then i?Q= {xe"<2|/Q(x) = 0Q(x)}.

1.4.4. If fl,Se&"(&) then (/? n S)c = J ! 2 n S 2 .

1.4.5. If R,Se^"(^) and /? c £ s then ^Qoo = (R n S)Qoo where
RQx = RQ n "6°° for g00 = S - o».

1.4.6. If R,R°,--,Rm"1e^'I(#') and J?2» E Rj» U - U J!^1 then
i? ^ e jR' for some i < m.

2.1. If/,gf: co -> co l e t / ~ g if {x |/(x) = g(x)} is co-finite. If ^ is a closed
system let Jf~{&) = JT(&I ~,P) where #7 ~ = {/~|/€#'1} for / ~ =
{^e^col/ ~ g}.lffe&']et/„„:'&! ~ - J^/ ~ such that / ^ ( / 0 ~ , -J.Z^
( /o( /o,- , / . - i ) )~. If Ke#"(J*) let (fo.-Jn-^eR,,.. if and only if
{* | (/oW» --./n-i W)eK} is co-finite.

2.2. Identifying A:ecu with (ci
k)~,J/~~(^!r) is clearly an extension. Moreover,

by routine computations:

2.2.1. yT~(Jr) is an extension satisfying 1.4.1-1.4.4.

2.2.2. If J5"1 contains only nondecreasing functions thenyT~(i5') satisfies
1.4.5.

PROOF. In general if R, S e &"{&) then (R n S)^,,, s i ?^^ n S ^ ^ , for
if / 0 , - , / , - i e ^ 1 and {x \(fo(x),» •Jn-1 (x))eR n S} is co-finite then so
are {x|(/0(x), • • - , / „ _ ^ x ^ * } , {x |(/0(x), •• -,/„_!(x))eS}. If tf S e S and
(/o~» • • • » / » - i ) e ^ / v « then {x | (/0(x), •••, /n_i(x)) e J?} is co-finite. As
/o~> •••>/«- I e ^ 7 ~ " , for every xe"co there is a /ceco such that Vm ̂  fc
* ^ (fo(m), •••>/n-i(m))6^- As /? — S is not totally unbounded there is an x such
that y$R - S for all y ^ x. Hence (/0(m), •••,/„_i(m))eR n S for all m ^ fc,
i.e. (/<f, •••,/B~i)e(K n S ) ^ ^ * . Hence (7? n
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2.3. DEFINITION. !F is good if #" is a closed system such that J5"1 contains
only nondecreasing functions and J5" satisfies 2.3.1.

2.3.1. If R,R°, •••,Rm~1 e0tn{&) and R $ e R
l for all j < m then there are

/o, •••,/„-! e J5"1 such that for each /ceco {x \ft(x) ^ /c} is co-finite for i < m,
{x\(fo(.x),-'JK-dx))eR} is co-finite and {x |(/0(x), ••-,/„_ 1(x))ei?'} is not
co-finite for i < m.

2.3.2. LEMMA. / / J5" is good, then ^V~{^) satisfies 1.4.1-1.4.6 and is hence
a Nerode system.

This is an immediate consequence of 2.2.1, 2.2.2 and the observation that
2.3.1 is a restatement of 1.4.6 for Q = &/~.

2.4. In this subsection we give some examples of good systems J5". Let J^Q
be the set of functions on ca that are nondecreasing in each argument. Let
^X^JL^rc] be the set of recursive (combinatorial) [recursive combinatorial]
functions in J%. (See Ellenbuck (1967) or Nerode (1961) for the definition of the
combinatorial functions.) Note that J*"rc = !Fr n &c and that every combinatorial
function is in #"0. Observe the following

2.4.1. tfli&o) = ^(^c) = Set of all relations on co.
= 3t{!Frc) = Set of recursive relations on co.

(See for example the first paragraph of §9 of Nerode (1961).)

2.4.2. LEMMA. ^O, &r, ^ c , ^rc are all good.

PROOF. The only problem is to show 2.3.1. Let R,R °, ••-,£ m~1 £ "co such
that R $ c R' for i < m, i.e. each R — Rl is totally unbounded. Hence a sequence
<x' 11 e <u> of elements of "co may be defined such that xj < Xy+1 for all i e co and
j < n and if k = i (mod m) then xkeR — R'. Hence if fj(i) = xj for all i and j < n
then /„ , - , / „ _ ! e J^o, {̂  | / / x ) ^ fc} and {x | (/0(x), ••-,/„_ t(x)) e R) are co-finite,
while {x|(/0(x), •••,/„_ x(x))ei?'} is not co-finite for i < m. Hence, J^o is good.

If i?, R° ,-->Rm~1 are recursive then / 0 , •••,/„-! may clearly be defined re-
cursively so that J5", is good. In each case / 0 , ••-,/„-1 may be chosen such that
they are in addition combinatorial (see the proof of Theorem 2 of Ellentuck
(1967). Hence &'c and !Fre are also good.

A (possibly partial) function g is recursively bounded if there is a recursive
function / such that g{n) ^ f{n) for every n in the domain of g.

2.4.3. Let J ^ be the set of recursively bounded functions in J5^. Then
&r £ J% S ^o • Let

. / = {/6#-}|Vfi n ^ / («)} .

LEMMA. ^ ( J^ ) = T/ie set o/a// relations and J^j is
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PROOF. If R s "co def ine/ ,g e &\ as follows fix) = 2 ( x 0 + x t + ••• + xB_j)

r/(x) if x e R

l/(x) + l i

then R = {xe"co|/(x) = g(x)}. It only remains to show that J ^ satisfies 2.3.1.
Let R,R°,--,Rm~l s "a such that R $ e R ' f o r all i < m. Let <x ' | i < co> be as
in the proof of 2.4.2. Let Sj = max(xo, •••,x{_l). Define / 0 , •••,/„_! as follows
for fc < n;

"0 if x < s0

if Sj- ^ x < sJ+1.

Then clearly each fk is nondecreasing and /i(x) ^ x for all x, so that each
fk e J*J. x ^ Sj- implies that ^(x) ^ x/ ^ j . Hence {x \fk(x) ^ ;} is co-finite for
all j . Also if x ^ s0 then (/0(x), ••-,/„_ t(x)) e .R so that {x j (/0(x), • ••,/„_ ̂ x)) e R
is co-finite. On the other hand {x |(/0(x), •••,/„_ 1(x))ei?'} is not co-finite.

3.1. DEFINITION. If ^{Q,^) is an extension, x is JV(Q, ^-universal if
x e Q and for all R e 3tl(&) x e RQ if and only if R is co-finite.

This generalizes the notion of a universal isol. (See Ellentuck (1967).)
If x is JV{Q, ^-universal let Q[x] = {fQ(x) \feSF1}. If / e ^ let / Q w

=fQ r ne W- if *

3.2. LEMMA, / / ffte extension J^{Q,^) satisfies 1.4.3 and x is
universal then the mapping Fx: J r /~ -> <2[x] given by Fx(f~)=fQ{x)for

x is a well-defined isomorphism of Jr~{&) withJr(Q[x~],&r).

PROOF. TO show that Fx is well defined and one —• one it is sufficient to
show that f~=g~ if and only if fQ(x) = gQ(x) for fge^', i.e. R is co-
finite if and only if xeRQ where R = {y \f(y) = g(y)} and using 1.4.3,
RQ = {yeQ\fQ(y) = gQ(y)}. But this is just the definition of JV(Q,^-univer-
sal.

To show that Fx preserves the structure we need only consider functions
as both JV~(3^) and^V(Q,^) satisfy 1.4.3.,

x{f,,Sf0~,~;f.~-d) = Fx{(fo {f0,..;f„_,))-) = ( / o ( / 0 , - , / n

= /Q((/o)e(x), • " , ( / . - I )Q(*) ) =fQ(Fx(fo),-,F*(fn~l)).

3.3. COROLLARY. If ^ is good and ^V{Q,3F) is an extension satisfying
1.4.3 and there are ^V(Q, ^-universal elements then ̂ V(Q,^) satisfies 1.4.6.

PROOF. If #" is good then^f~(JJ') satisfies 1.4.6. By 3.2^T~(Jr) is iso-
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[6] Recursive density types 151

morphically embeddable in -^(Q,^). But clearly any extension of a system
satisfying 1.4.6 also satisfies 1.4.6. Hence -yV{Q,^) satisfies 1.4.6.

3.4. REMARK. The argument that Ellen tuck (1967) outlines showing that
, !Frc) is a Nerode extension may be formulated as an application of 1.4

and 3.3.

Partn

4.1. If a ^ co let a(n) be the cardinality of {i e a | i < n}. Let a =̂  p if there
is a recursive function / such that a(n) ^ P(/(«)) for all n e co. Note that if such
an / exists then it may be taken to be in J, that is, to be increasing, recursively
bounded, and satisfy n ^ f(n). Let a x p if a ^ /? and /? ==̂  a. =̂  is a transitive
relation so that x is an equivalence relation. D(x) = {/? | a x p) is the recursive
density type of a. Let A = {D(a)|a ^ co}. Let D(a) ^ D(j3) if a < £. Let
oo = D(a>). Identify neco with I>({0, •••,« — 1}). Then <A, ^ > is clearly a partial
ordering with <«, ^ > as initial segment and oo as last element.

4.2. We now give without proof some alternative characterizations of the
relations =^, x on sets of integers. Characterization (a) in each case shows that
A is an analogue of the class of cardinal numbers in much the same way as Cl,
thesetofR.E.T.'s.

If a c co is infinite let a0, au ••• enumerate a in order of magnitude.

4.2.1. LEMMA. The following are equivalent to a =̂  p.
(a) There is a one — one recursively bounded partial function defined on a

and mapping a into /?.
(b) There are fuf2eJ such that a(/i(n)) ^ P(/2(n))/or all n.
(c) a is finite and carda ^ card/? or a, ft are infinite and there is a recursive

function f such that /?„ ^ /(«„) for all n.

4.2.2. The following are equivalent to a x p.
(a) There is a one — one partial function p such that p and p"1 are re-

cursively bounded and p has domain a and range p.
(b) There are fi,f2eJ such that

«°/i = P°/2-
4.3. We shall define an extension ^"(A, &J on A. If / , g e &[ let / < g

if / (n) ^ g{h{n)) for all n, for some heSF[.

Note in particular that a =̂  p if and only if a =̂ [ p.

4.3.1. LEMMA. There is a well-defined mapping D of !FX\ ~ onto A SMC/J

that D(fC) ^ D(f2~) if and only if fx < / 2 .
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PROOF. If / e J^J let D(f~) = D(oc) for an a = co such that / = ao g for
some j e / . That such an a always exists is seen as follows. Let g(n) = f(ri) + n.
Then g e J, and if a = co — {g(n + 1) - 11 n e co} then f= no g. To see that
D(/~) is well defined let / ~ =ff, / = ao g, / x = a 1 o g 1 for a, at ceo,
g,g^BJ. Then 3 fc e a> such that Vn 2: fc a(gi(n)) = ai(0i(n)). Let #'(w) = din + k),
9i(n) = 9i(n + k). Then g',g\e£ and ao gr' = at o g^. Hence by 4.2.2 (b)
D(a) = Dia,). I f a c f f l then a e &{ and D(a ~) = D(a). Hence £> maps J ^ ~
onto A.

Let fx = ctx o gfX) / 2 = a2 o gr2. We wish to show that/! ^ / 2 if and only if
at ^ a2. Let /j(n) ^/2(/i(n)) for all n where he^\. We may assume fee./.
Then ^(g^n)) ^ a2((g2o h)(n)). But #2 o l i e / so that by 4.2.1 (b) at < a2.
Conversely, if ax(«) ^ a2(ft(n)) for all n where / i e / , then a^n) ^ a2(32(/i(n)))
for all n, so

Hence/x =< / 2 as ft o

4.3.2. If /e#- ; iet MD(/p,-, Dtf-.J) = D((/o (/0,-,/„_!))-). This
is well defined, for i f / ;< ^ for i < n then/o (/„, •••,/„_!)< 30 (gf0, •••,3n_1).

If Rsnco let «A = { ( B ( / O " ' ) , - , B ( / B 1 1 ) ) | / O ~ . - , / B - I ) 6 ^ 1 / ~ } . Clearly
^ ) = <,A,fA,RA)fesri:ReX(*i) i s a n extension. Moreover:

4.3.3. D:^V~{&r
1) -»^T(A,#'1) is a homomorphism. Note that if

R = {(x,y)s2co\x = y} and S = {(x,><)e 1co|x ^ y} then RA = {(x,_y)e
2A|x = y} and SA = {(x,y)e2A|x g y}.

4.3.4. LEMMA. Let § be a sentence of ^(^1) of the form \/v0, •••,t^_1

[BC ô, —,vk-i) -» iA] w/iere i/r is atomic. ifJf^^ 1= $ r/ien ̂ "(A, &x) V <j>.

PROOF. A S ^ G^I.) is a Nerode extension, R(v0, •••,vk^l) -* \j/ is a Horn
reductof itself and ^f(^ 1 ) 1= <̂> it follows that^T~(Jr

1) t= 0. But it is easy to see
that sentences of the form <p are preserved under homomorphic images. Hence
by 4.3.

4.3.5. COROLLARY. JV{A, J^) satisfies 1.4.1, 1.4.2, 1.4.3', IA A' and 1.4.5,

1.4.3'.// R s {xe"co|/(x) = #(x)} /or f,ge&n and R<£0t\F) then
<={xe"Q\fQ(x) = gQ(x)}.
1.4.4'. IfR,Se^"(^) then (R O S)Q c R 2 n SQ.

4.4. The definition 4.4.1 of the set T of recursive density types enables us to
give a direct proof of 4.4.2. Later we shall give a simple characterization of F in
terms of the partial ordering on A.
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4.4.1. DEFINITION. Let <€ = {a | (V/ e J?) (3g e J) a o g = a o / o g}.

4.4.2. THEOREM. Let k ^ I S n, mem. Letfie&r[,gie&'k+n~lfor i < m.

Let ij/ be an atomic formula of •S?(^r
1) containing variables from vo,---,vn^l.

Let <j> be the formula

( A [/'(fo.-.^i-i) ^ 9i(vo,->Vk-i>Vh—,vn-1)] -+ \}i).
Km

If ^•(^•1)NVt)o,--,,Vt)II_10 then ^ ( A . ^ ^ f x ] /or a// X6"A sucft f/iaf
x,- e F for i < k.

PROOF. By 4.3.4 and 2.4.3 we assume without loss of generality that \jj has
the form R(v0, •••,pn_1). Assume that JT{JF-^ V Vvo,---,Vvn_l(f>, that xe"A such
that xf e F for i < k and that

(*) fL(x0, •••,x,_1) ^ 6fi(x0, •••,x4_1,x,,---,xn_1)forall f < m.

Let /)(a;) = Xj for i < n, such that a; e # for i < k. To prove the theorem
we must show that x e i?A.

By (*) / ' o (a0,••- ,«,_!)< fii''o(a0,---,afc_1;a,,•••,«„_!> for all i < w,
i.e. there are functions h' e */ for i < m such that for all yea

^ g'(*o(h(y)), -,9k~l

where /j(y) = Mzx{h'(y)\i < m). Then l i e / . Define j Q , •••Jk-i eJ' to satisfy
the following conditions,

;"o = «o ° h ° ;'o

° •-ojk-2)ojk_1.

T h i s i s p o s s i b l e a s < x 0 , • • • , a f c _ 1 e 1 ^ a n d h , h o j 0 , - - - , ( h o j 0 o ••• o j k _ 2 ) e J ' . L e t

j=j0o j \ o ---o j k _ 1 eJ. Then clearly a 0 o j = a 0 o ho j,---,a.k_1o j = a.k_1o ho j .

Hence, for all y e ca

Thus, by hypothesis,

(«oO0')).-,««

for all y. But j,ho jeJ so that
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£>((«jOj)~) = £(<*;) for i < I
D((a,o hoj)~) = Z)(a;) for / ^ i < n

andx = (D(ao),---,D(an_1))ei?A.

4.5. Before investigating T we shall derive some consequences from the
following special case of 4.4.2 that does not involve T.

4.5.1. Let <j> be as in 4.4.2 with k = 0. Then JV{^^) V Vv0 ••• vn^x(j> implies

4.5.2. Let / (x , ,y) = max(x, y), g(x, y) = min(x, y), then fge^\ and
<A, ^ , / , #> is a distributive lattice. 4.5.1 applies to each of the axioms of the
theory of a distributive lattice; so that <A, rg,/A, gA} is a distributive lattice.
Let x U y =fA(x,y) x n y = gA(x,y) for x,y eA.

4.5.3. If fe !F\ is one — one then

f(x) ^ f{y) <-*x ^ y for x, ye co.

Hence by 4.5.1 fA(x) ^ fA(y) *-> x ^ y for x, y e A, and/A is one — one.
I f / G J then by 4.5.1 x g /A(x) for all x e A.

4.5.4. If / (x , >>) = x + y and g(x, y) = x • y for x, y e to then / , g e J ^ .
Let x + y = fA(x, y), x • y — gA(x, y) for x, y e A. It is not hard to show that
these operations are the same as those introduced in Gonsher and Rice (1969),
i.e. that £>(«) + D{p) = D(a U fi) if a,/? £ a) and a O j8 = <f>D{p) • D(/S)
= Z)({j(x,y) x e a and j6)6}), where7: 2cu-—a> is a one-one recursive function.
Observe that

4.5.5. x + 1 = x if and only ig x = 00. (See Gonsher and Rice 1969).)
In Gonsher and Rice (1969) a pair of disjoint sets a, p are constructed such that
D(a.) < 00, D(p) < 00 but £>(<x) + D(p) = D(a U p) = 00. Hence A - {00} is not
closed under every /A for / e J ^ . On the other hand we have

4.5.6. LEMMA. If fe^\ and xe"A then x0 U Xj U ••• U xn_t < 00
implies /A(x) < 00.

PROOF. If / e J5"" then there is a g e $ such that

fix) ^ fi((max(x0, •••,xn_1)) for xe"co.

By 4.5.1 /A(x) ^ #A(XO U ••• U xn_t) for xe"A. We may assume that g is one —
one so that x ^ # A 0 0 ^ 0ACV) implies x ^ y for x j e ' A . Hence 00 ^ S^AW

implies 00 rg y.
Hence 00 ^ / A (x ) implies 00 ^ 5A(xo ^ "• u -^n-i). which implies that

00 ^ x0 u ••• u x,,_! ; i.e. /A(x) = 00 implies x0 u ••• u xn = 00. Taking the
contrapositive gives the lemma.
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4.5.7. COROLLARY. A — {oo} is closed under every fAfor f e 2F\.

4.6. In 4.6.2 we give a simple characterization of F.

4.6.1. D{a) = oo if and only if there is an h e J such that h{n) e a for all n.

PROOF. If D(a) = oo then there is a g e / such that a(g(n)) ^ n for all n.
Let

ff'(O) = 0

g'(n + 1) = g(g'(n) + 1).

Then g' eJ and a(g'(n + 1)) ^ g'(n) + 1. But a(g'(n)) ^ g'O)- So (3y ea)gf'(«)
g y < #'(« + !)• Let h(n) be such a y for all n. Then heJ and /i(n)ea for all n.

Conversely, let h(ri) e a for all n where /i e >. Let

3(0) = 0

g(n) + 1 = h(g(n) + 1).

and^(n)eafor all n. Also g(n + 1) > g(n)for all n, so that a(gf(n)) S n.
Hence D(a) = oo.

4.6.2. LEMMA. F = {xeAlCVj' < oo)x U y < oo}.

PROOF. If x e F then by 4.4.2,

x + z 5S x + y implies z ^ y for all z, y e A.

Let z = oo, so that oo ^ x + y implies co ^ y. Hence y < oo implies X U J I

^ x + y < oo. So T £ {xeA|(Vj < oo)x U j < oo}.
Conversely, suppose (Vy < oo)x U y < oo. Let x = D(a) and / e . / . We

must find geJ such that no g = aofo g. Let /? = {n a(n) = a(/(n) + 1)}.
Clearly a n j5 = 0 . Let

flf'(0) = 0

Then g' BJ and for all n e a> there is a y e a U )3 such that g\n) ?± y < g'(n + 1).
Hence n ^ (a U P) (g'(n)) for all n, so that D(a U ft) = oo. So x + D(j3)
= D(a U y?) = oo, and by 4.5.6 x U D(fi) = oo, hence D(fi) = oo, i.e., by 4.6.1
there is an h e J such that h(n) e fi for all n; i.e. <x(h(n)) = a(f(h(n)) + 1) for all
« by definition of /?. Hence I O / I = aofo h, and a e l Note that the proof has
shown that D(a) e F if and only if a e ^.

4.6.3. COROLLARY, (i) xx g x2 e F implies xt eF. (ii) If fe^" and xe"T
thenf&(x)eT.
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PROOF, (i) If (Vy < oo)x2 U y < oo and x t ^ x2 then (Vy < oo)xtyj y
^ x2 U y < oo.

(ii) If x e T and y < co thenxn_j U y < oo so xn_2 U ( X - i U y ) < oo •••.
Hence x0 U Xj. U ••• U x n _! U y < oo. Let gf(x0, ••-,xn_1,xn) = /(x) U xn for
xo >- ,x,€ro. Hence

gA(x0,---,xn+1,y) = /A(x) Uy .

By 4.5.6 and the above, gA(x0, "•>x» + i>3;) < °°; i-e> w e have shown that
if x e T then V> < oo fA(x) U y < oo, i.e. /A(x) e r .

4.6.4. DEFINITION. If / e 3F\ let / r = / A T T . If i? £ co, let Rr = i?A n T .

Then ^"(F , ^ i ) is an extension.

4.7. The proof of the next theorem uses the existence of Jf(T, #"i)-universal
elements. This will be proved in 4.8.

THEOREM. J^fT,^^ is a Nerode extension.

PROOF. By 3.3, 1.4 and 2.4.3 it is sufficient to show that ^{T, J ^ ) satisfies
1.4.1-1.4.5. By 4.3.5 JV{^,^^ satisfies 1.4.1, 1.4.2, 1.4.3', 1.4.4' and 1.4.5 and
hence so does ^V(T, J ^ ) . To finish the proof it remains only to show 4.7.1 and
4.7.2.

4.7.1. If {x e kco | f{x) = g(x}} £ R for / , g e &\ then {x e kr |/r(x)
= gr(x)} c:Rr.

4.7.2. If R, S s k(o then i ? r n Sr £ (R n S) r . Using 4.4.2 with fc = / = n,
we get 4.7.1 where </> is the formula

To show 4.7.2, let R = {xekco\f(x) = g(x)} and S = {xe*co|/'(x) = g'(x)}
for f,g,f',g'e&\ . Then by 1.4.3' for

Rr n S r £ {x6*

By another application of 4.4.2 fr(x) = gr(x) and /r(x) = gr(x) implies
xe(R nS)r for all x e"T. Hence RrnSr^ (R n S)r.

4.8. By one of the standard definitions of the hyperimmune sets, a is hyper-
immune if and only if D(a) e A — (co U {oo}). Hence the hyperimmune sets form
an invariant of the recursive density types. Another example is the class e€. We
shall examine a few more such invariants and finally prove the existence of
^V(T, Jsr

1)-universal elements. The following definitions are in Gonshor and
Rice (1969).

4.8.1. The infinite set a is strongly hyperimmune (s.h.) if {n |an > h(n)} is
co-finite for every recursive function h.
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4.8.2. The infinite set a is uniformly hyperimmune (u.h.) if {n | an + 1 > h(xn)}
is co-finite for every recursive function h.

It is not hard to show the following.

4.8.3. a is s.h. (u.h.) if and only if a is infinite and (n|a(ft(n)) 5S n}
({n | «(&(/?)) ^ a(n) + 1} is co-finite for all h e </.

4.8.4. DEFINITION, a is universal if a is infinite and {n\a(h(n + 1))
^ a(/i(n)) + 1} is co-finite for all heJ.

In Gonshor and Rice (1969) it is shown that the classes of s.h. and u.h. sets
are invariants of the recursive density types. Let

As = {Z)(oc) | a is finite or a is s.h.}

Au = {D(a) | a is finite or a is u.h.}

ThenAu c A , s r where all the inclusions are proper, As is an ideal of the lattice
<A, ^ > and Au = {Ae A |(VBe A00) (V Ce A) A # IB + C}; (see Gonshor and
Rice (1969)).

4.8.5. LEMMA, a is universal if and only if D(a) is ^(A, ^^-universal.

PROOF. D(a) is JV(A, J^-universal if and only if whenever <x(h(n)) e R for
all n, where h e J, then R is co-finite. This is true if and only if the range of
a o ft is co-finite for all h e J. But the range of a o ft is co-finite if and only if
{n |a(ft(n + 1)) ^ a(/i(w)) + 1} is co-finite, concluding the proof.

4.8.6. LEMMA. / / X is a countable family of infinite sets of integers then
there is a u.h. set a such that /? is not =̂ [ ex. for all fieX.

PROOF. Let <ft' | i e co> be a sequence of strictly increasing functions such
that x < h'(x) < h' + 1(x) for all i,xea> and if ft is recursive then Vxft(x) ^ h'(x)
for some i e co. Such a sequence may easily be constructed as the set of recursive
functions is countable. Let <a' | i e a)> be an enumeration of X such that each
set in X occurs infinitely often in the enumeration. Now define a = {a0 < ax < •••}
as follows:

Then a is u.h., for if ft is recursive and ft(x) ^ ft'(x) for all x then

for all n ^ i.
Finally, if fieX to show that /? ̂  a; by 4.2.1 (c) it is sufficient to show that

for all n3xocx> h"(Px). Given n there is an m ^ n such that j? = am+i. Then
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am+l = « (acm+1) > « ( a m + l ) = « (Pm+l)-

Hence ax > h"(J}x) with x = m + 1.

4.8.7. COROLLARY. There are uncountably many elements of F that are
^-universal.

PROOF. By 4.8.3, 4.8.4 and 4.8.5 every xeA u —co is Jf{A, ^'1)-universal.
But as Au ^ F, every x e Au — co is ̂ (T, J^-universal. By 4.8.6 Au is uncountable.

4.8.8. LEMMA. Iffe 3F\ and x e "As then /A(x) € As.

PROOF. If fe !Fl then there is a g e J such that / (x ) g g (max {xf | i < n})
for x e"(o. Hence, as As is an ideal x e"As implies y = x0 U ••• U xn_i e As and

(**) forMyeAs,gA(y)eAs.

To prove (**) let y = D(a) e As so that a is s.h. We must show that D((g o a)~) E AS.
By the proof of 4.3.1 go a = fio g' for some fi ^ <o and g' eJ. Hence we must
show that P is s.h. Let heJ. We show that {n |P(h(n)) S n} is co-finite.

P(/z(0(n + 1))) ^ po g'(h(g(n + 1))) = g(<x(h(g(n + 1)))).

As a is s.h. {n | a(/i(gf(n + 1))) ^ «} is co-finite. So {n | X^teC" + 1))) ^ ff(n)} is
co-finite,

i.e. 3mVn ^ mp(ft(3(n + 1))) ^ g((n).

If x ^ g(m) then 3n ̂  m gr(n) ^ x ^ g{n + 1). So P(h(x)) g P(%(n + 1)))
^ g(n) ^ x; i.e. {x | P(/i(x)) ^ x} is co-finite.

4.8.9. By 4.8.8 we may define in the obvious way the extension ./J/'(As,J'r1)
as a subsystem of ^V(F, J ^ ) . As Au c As there are uncountably many ^T(AS, &\)-
universal elements. As J^(F, J5^) satisfies 1.4.1-1.4.5, so does ^V{AS, ̂

r
1). Hence

we have

THEOREM. ./f(A5, !F^) is a Nerode extension.
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