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instability on a sphere
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This paper studies the instability of two-dimensional magnetohydrodynamic systems on
a sphere using analytical methods. The underlying flow consists of a zonal differential
rotation and a toroidal magnetic field is present. Semicircle rules that prescribe the possible
domain of the wave velocity in the complex plane for general flow and field profiles are
derived. The paper then sets out an analytical study of the ‘clamshell instability’, which
features field lines on the two hemispheres tilting in opposite directions (Cally, Sol. Phys.,
vol. 199, 2001, pp. 231–249). An asymptotic solution for the instability problem is derived
for the limit of weak shear of the zonal flow, via the method of matched asymptotic
expansions. It is shown that when the zonal flow is solid body rotation, there exists a
neutral mode that tilts the magnetic field lines, referred to as the ‘tilting mode’. A weak
shear of the zonal flow excites the critical layer of the tilting mode, which reverses the
tilting direction to form the clamshell pattern and induces the instability. The asymptotic
solution provides insights into properties of the instability for a range of flow and field
profiles. A remarkable feature is that the magnetic field affects the instability only through
its local behaviour in the critical layer.

Key words: magnetic fluids, critical layers

1. Introduction

Magnetohydrodynamic (MHD) instability is of significant importance to astrophysical
flows. Magnetic fields are ubiquitous in stars and planets, and although the magnetic field
can act as a restoring force, it can also destabilise the fluid, resulting in turbulence and
flow rearrangement.

There are numerous MHD instabilities, differing in geometry and parameter regime.
In this study, our particular focus is on two-dimensional MHD instability on a sphere.
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This has important applications to the solar tachocline, which is a thin transition layer
between the Sun’s radiative interior and the outer convection zone. The tachocline couples
these two regions that have distinct properties, and it plays a pivotal role in solar physics.
In particular, this thin shear layer is believed to be the seat of the solar dynamo (see,
for example, Charbonneau 2014; Brun & Browning 2017). A strong azimuthal magnetic
field generated in the tachocline rises up to the photosphere via magnetic buoyancy, and
generates a variety of surface phenomena including sunspots, coronal loops and flares.
The MHD instabilities in the solar tachocline can significantly modify the magnetic field
and, thus, have a strong impact on the subsequent surface phenomena.

In this context, there have been numerous studies of MHD instabilities of zonal flow in a
thin spherical shell coupled with a toroidal magnetic field. The differential rotation profile
of the Sun may be modelled as the angular velocity (Newton & Nunn 1951)

Ω = r − sμ2, (1.1)

where r is the angular velocity at the equator, s is the shear rate and μ = cos θ , θ being
the colatitude in spherical polar coordinates. The parameters r and s are both positive
for solar differential rotation, as the Sun rotates faster at the equator. For hydrodynamic
flows without magnetic fields, Watson (1981) found that the zonal flow (1.1) becomes
unstable when s/r > 0.29. For the Sun, s/r = 0.12 ∼ 0.17 (see, for example, Gough
2007) and the flow is hydrodynamically stable. When a magnetic field is added, however,
Gilman & Fox (1997) have shown that instabilities may be present for s/r smaller than
0.29: these instabilities require weaker shear, implying that the magnetic field has a
destabilising effect. Gilman & Fox (1997) named such instabilities ‘joint instabilities’ since
they only arise when both the hydrodynamic shear and the magnetic field, which are stable
separately, exist together. Joint instabilities exist for a wide range of toroidal magnetic
fields, including broad field profiles with single or multiple nodes (Gilman & Fox 1997,
1999), and magnetic field bands localised at various latitudes (Dikpati & Gilman 1999;
Gilman & Dikpati 2000).

The ‘singular points’ of the unstable modes play an important role in this joint
instability. These points are located where the phase velocity of the mode relative to
the basic zonal flow matches the characteristic velocity of the Alfvén waves. Here the
wave equation becomes singular for ideal fluids; weak effects of viscosity or magnetic
resistivity, unsteadiness or nonlinearity remove the singularity, but the disturbances still
exhibit strong amplitudes locally. In hydrodynamic stability theory the singular points
and their vicinity are named ‘critical levels’ and ‘critical layers’ (Drazin & Reid 1982),
terminology we will adopt here. Gilman & Fox (1999) and Dikpati & Gilman (1999)
have found that the disturbances change dramatically across the critical layers, and that
the critical layers largely determine the spatial structure of the unstable modes. Moreover,
various stresses that contribute to the energy of the instability are concentrated in the
critical layers, suggesting that they are responsible for driving the instability.

Cally (2001) and Cally, Dikpati & Gilman (2003) computed the nonlinear evolution of
the joint instability for two-dimensional flow on a sphere. For strong and broad magnetic
field profiles, the magnetic field lines feature a ‘clamshell’ pattern in the early stage: the
field lines are tilted in opposite directions on the two hemispheres, and they named this
the ‘clamshell instability’. In the later nonlinear evolution, the field lines tilt over 90◦ and
reconnect at the equator. These behaviours remain similar when the more realistic physics
of density stratification and vertical shear are added, though they produce more subtle
vertical structures (Miesch, Gilman & Dikpati 2007). If an external force that maintains
the zonal flow and the poloidal field is added (Miesch 2007), then the field lines do not
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MHD instability on a sphere

tilt over. Instead, the clamshell pattern is maintained together with a strong mean toroidal
field. The mean field and the unstable mode dominate in turn in a quasi-periodic manner.

In the present study we undertake analytical investigations to understand two-
dimensional MHD instability on a sphere. We derive the semicircle rules that prescribe the
domain of the complex phase velocities for general profiles of a zonal flow and a toroidal
magnetic field. A semicircle rule was first derived by Howard (1961) for hydrodynamic
instability in Cartesian geometry. It states that, for any unstable mode in an inviscid
parallel shear flow U( y), the phase velocity c = cr + ici must lie in a semicircle with
centre (cr, ci) = ((Umax + Umin)/2, 0) and radius (Umax − Umin)/2 above the real axis. It
has become a celebrated result of hydrodynamic instability for its generality and simple
form. Watson (1981), Thuburn & Haynes (1996) and Sasaki, Takehiro & Yamada (2012)
extended the theory to hydrodynamic instability in spherical geometry, showing that this
introduces additional terms in the radius of the semicircle. On the other hand, Howard
& Gupta (1962), Gilman (1967), Chandra (1973), Cally (2000), Hughes & Tobias (2001)
and Deguchi (2021) derived semicircle rules for MHD instability in Cartesian geometry.
Their results indicate that the magnetic field can reduce the radii of the semicircles.
Consequently, if the magnetic field is strong enough everywhere, the semicircles will
disappear and stability is guaranteed. In this paper we derive semicircle rules for MHD
instability in spherical geometry. An interesting phenomenon is that in this geometry, the
magnetic field can increase the radii of the semicircles, something that never happens in
the Cartesian case.

We also develop an asymptotic analysis for the clamshell instability. The limit that we
consider is when the shear of the zonal flow is relatively weak, a typical situation in solar
physics: in (1.1), s/r is a small number for solar differential rotation. For the magnetic field,
we consider the broad and strong field profiles that are typical for the clamshell instability
(Cally 2001). The location where the magnetic field profile passes through zero, the node
of the profile, is where the magnetic critical level sits and this plays a fundamental role in
the instability (see, e.g. Gilman & Fox 1999). Here, in our first study of the problem, we
limit our attention to the situation where there is only one such node of the field profile
and we assume that its gradient there is non-zero. We derive the solution to the instability
problem for general profiles from this family.

Our asymptotic analysis can help us better understand the clamshell instability in several
ways. First, it can provide an analytical explanation for the mechanism of the instability:
we show that the instability is caused by the interaction between the global tilting motion
of the magnetic field and the critical level of the mode located at the node of the field
profile. Second, it can give insights for general profiles of magnetic field and shear flows:
which types of profiles are unstable and which are not. Finally, it can easily tackle the
neutral stability limit where numerical solutions often suffer from resolution difficulties
caused by singularities emerging in the corresponding eigenmodes.

The organisation of the paper is as follows. In § 2 we present the governing equations
of two-dimensional MHD flow on a sphere, and the corresponding equations for the linear
instability problem. The equations for the mean-flow response and angular momentum
conservation are also given. In § 3 we derive the semicircle rules for the complex phase
velocity and we discuss their applications. In § 4 we undertake an asymptotic analysis
for the clamshell instability. In § 4.1 we show that the tilting mode exists for solid
body rotation, and that a weak shear can excite its critical levels. Then we solve the
eigenvalue problem in § 4.2 by matching the tilting mode and critical layer. The results
of the eigenvalue problem, which yield a number of general conclusions, are discussed in
§§ 5.1–5.4, and the conservation of angular momentum is shown to provide a mechanism
for the instability in § 5.5. Concluding remarks are given in § 6.
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2. Governing equations

In this section we present the equations of two-dimensional MHD on a sphere and
derive the equations governing the linear instability problem. We consider the motion
of an incompressible, inviscid, perfectly electrically conducting fluid with density ρ and
magnetic permeability μ. The flow is on a sphere of radius R with a characteristic velocity
U0. The MHD equations for the dimensionless velocity u, magnetic field B and pressure
p are

∇ · u = 0, (2.1)

∇ · B = 0, (2.2)

∂u
∂t

+ (u · ∇)u = −∇
(

p + 1
2
|B|2

)
+ (B · ∇)B, (2.3)

∂B
∂t

+ (u · ∇)B = (B · ∇)u, (2.4)

where the length, time, velocity, magnetic field and pressure have been non-
dimensionalised by R, R/U0, U0, U0

√
μρ and ρU2

0, respectively. We use spherical polar
coordinates (r, θ, φ), where r is the radius, θ is the co-latitude and φ is the longitude, and
the corresponding unit vectors are (er, eθ , eφ). We take the system to be two dimensional,
as for a thin spherical shell, so that the velocity and magnetic field have no radial
component (that is, in the er direction), and are independent of the radial coordinate r.

On writing u = veθ + ueφ and B = beθ + aeφ , where u, v, a and b are functions of θ ,
φ and t, (2.1)–(2.4) become

∂u
∂φ

+ ∂

∂θ
(v sin θ) = 0, (2.5)

∂a
∂φ

+ ∂

∂θ
(b sin θ) = 0, (2.6)

∂u
∂t

+ u
sin θ

∂u
∂φ

+ v
∂u
∂θ

+ uv cos θ
sin θ

= − 1
sin θ

∂p
∂φ

− b
sin θ

∂b
∂φ

+ b
∂a
∂θ

+ ab cos θ
sin θ

, (2.7)

∂v

∂t
+ u

sin θ
∂v

∂φ
+ v

∂v

∂θ
− u2 cos θ

sin θ
= −∂p

∂θ
− a

∂a
∂θ

+ a
sin θ

∂b
∂φ

− a2 cos θ
sin θ

, (2.8)

∂a
∂t

− ∂

∂θ
(ub − va) = 0, (2.9)

∂b
∂t

+ 1
sin θ

∂

∂φ
(ub − va) = 0. (2.10)

We consider an axisymmetric basic state consisting of a zonal flow and a toroidal magnetic
field: u = U, v = 0, a = A, b = 0, where U and A vary with co-latitude θ but are
independent of longitude φ. The basic state pressure P is therefore governed by the balance

∂

∂θ

(
P + 1

2
A2

)
= (U2 − A2) cot θ. (2.11)

We then study the instability of this state to small disturbances, i.e.

u = U + u�, v = v�, a = A + a�, b = b�, p = P + p�, (2.12a–e)
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MHD instability on a sphere

where the � subscript denotes disturbances of linear instability. Substituting (2.12a–e) into
(2.5)–(2.10) and linearising gives

∂u�
∂φ

+ ∂

∂θ
(v� sin θ) = 0, (2.13)

∂a�
∂φ

+ ∂

∂θ
(b� sin θ) = 0, (2.14)

∂u�
∂t

+ U
sin θ

∂u�
∂φ

+ dU
dθ

v� + U cos θ
sin θ

v� = − 1
sin θ

∂p�
∂φ

+ dA
dθ

b� + A cos θ
sin θ

b�, (2.15)

∂v�

∂t
+ U

sin θ
∂v�

∂φ
− 2U cos θ

sin θ
u� = − ∂

∂θ
( p� + Aa�)+ A

sin θ
∂b�
∂φ

− 2A cos θ
sin θ

a�, (2.16)

∂a�
∂t

− ∂

∂θ
(Ub� − Av�) = 0, (2.17)

∂b�
∂t

+ 1
sin θ

∂

∂φ
(Ub� − Av�) = 0. (2.18)

For mathematical convenience, we then introduce the notation

U(θ) = Ω(θ) sin θ, A(θ) = β(θ) sin θ. (2.19a,b)

With the radius of the sphere as unity in our non-dimensional system, Ω is the angular
velocity and β is the magnetic analogue as noted by Gilman & Fox (1997). For a flow and
magnetic field that are smooth at the poles θ = 0, π, the quantities Ω and β will tend to
constants there. In the absence of a better term, we will refer to β, inaccurately, as the
magnetic field from now on. In view of the divergence-free conditions (2.13) and (2.14),
we introduce the streamfunction ψ and the flux function χ , such that

u� = −∂ψ
∂θ
, v� = 1

sin θ
∂ψ

∂φ
, a� = −∂χ

∂θ
, b� = 1

sin θ
∂χ

∂φ
. (2.20a–d)

We combine (2.15) and (2.16) to eliminate the pressure p, and then we apply (2.20a–d).
After some algebra, following Watson (1981), we derive the vorticity equation(

∂

∂t
+Ω

∂

∂φ

)
∇2ψ − 1

sin θ
d

dθ

[
1

sin θ
d

dθ
(Ω sin2 θ)

]
∂ψ

∂φ

−β ∂

∂φ
∇2χ + 1

sin θ
d

dθ

[
1

sin θ
d

dθ
(β sin2 θ)

]
∂χ

∂φ
= 0, (2.21)

where the Laplacian on the spherical surface is

∇2f ≡ 1
sin θ

∂

∂θ

(
sin θ

∂f
∂θ

)
+ 1

sin2 θ

∂2f
∂φ2 . (2.22)

Similarly, using (2.20a–d) in the induction equation, (2.17) and (2.18), we obtain(
∂

∂t
+Ω

∂

∂φ

)
χ − β

∂ψ

∂φ
= 0. (2.23)

Now we consider normal mode disturbances, replacing

(ψ, χ) → (ψ, χ) exp[im(φ − ct)], (2.24)

where m is an integer representing the wavenumber in the longitudinal direction and c is a
complex constant representing the phase velocity. Using the substitution μ = cos θ , (2.21)
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and (2.23) become ordinary differential equations in μ,

(Ω − c)Lψ − ψ
d2

dμ2 [Ω(1 − μ2)] − βLχ + χ
d2

dμ2 [β(1 − μ2)] = 0, (2.25)

(Ω − c)χ − βψ = 0, (2.26)

where L is the Legendre operator

Lf ≡ d
dμ

[
(1 − μ2)

df
dμ

]
− m2f

1 − μ2 . (2.27)

We note that (2.25) and (2.26) do not hold for axisymmetric disturbances, having m =
0 (and indeed are written down having been divided throughout by im). The continuity
equation (2.13) does not allow axisymmetric disturbances that remain finite at the poles
and such disturbances are only possible when a free surface is present; see Gilman &
Dikpati (2002). Without loss of generality, we take m to be a positive integer.

Finally, for the subsequent analysis, it is convenient to introduce the variable H defined
by

H = ψ

Ω − c
= χ

β
, (2.28)

motivated by (2.26). Its governing equation is

(SH′)′ +
[

2(Ω − c)(μΩ)′ − 2β(μβ)′ − m2S
(1 − μ2)2

]
H = 0, (2.29)

with
S = [(Ω − c)2 − β2](1 − μ2), (2.30)

where the prime denotes a derivative with respect to μ. The physical meaning of H is that
it is the Lagrangian displacement in the θ direction scaled by sin θ .

The boundary conditions for (2.25), (2.26) and (2.29) are that ψ , χ and H must vanish
at the poles μ = ±1, these locations being singularities of the equations. This poses
an eigenvalue problem for the phase velocity c. Our particular interest is the situation
where we have a complex eigenvalue c = cr + ici with ci > 0, indicating the presence
of instability. In any case since (2.29) is real, solutions for c always appear in complex
conjugate pairs.

Equation (2.29) has singularities at locations μ� where S = 0 or

Ω − c = ±β. (2.31)

In general, H diverges at such points if the eigenvalue c is real, and μ� is referred to as
a critical level. In the context of instability, i.e. when c = cr + ici, ci > 0, the solution
remains analytic (for real μ) but there are strong gradients of the eigenfunctions in the
critical layer where Ω − cr ≈ ±β, since ci is usually small. We will show that the critical
layer plays a fundamental role in the instability problem.

A main contribution of this paper is an asymptotic analysis of the eigenvalue problem
for the ‘clamshell instability’, presented in § 4 in detail. In the limit of weak shear of the
zonal flowΩ ′, we derive an asymptotic solution for the eigenvalue and eigenfunction using
the method of matched asymptotic expansions, combining solutions in the bulk of the flow
and the critical layer. We will also solve the problem numerically by adopting two methods
from previous studies: one expands ψ and χ using Legendre polynomials (Gilman &
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MHD instability on a sphere

Fox 1999), and the other is a shooting method (Dikpati & Gilman 1999). The method of
Legendre polynomial expansion computes all of the eigenvalues but it can be expensive.
Similarly to Gilman & Fox (1999), we use this method whenΩ(μ) and β(μ) are expressed
by polynomials, so that their expansions merely involve several terms, resulting in a sparse
matrix for the eigenvalue problem. The shooting method is fast and provides more precise
solutions, but it needs a good guess for the eigenvalue. Such a good guess will either come
from the method of Legendre polynomial expansion or the asymptotic solution derived in
the limit of weak shear. When these two approaches are not available, some trial and error
for the initial guess has to be performed.

In what follows, we will also be interested in the mean-flow response of the linear
instability. We therefore set

u = U + u� +�U, v = v� +�V, a = A + a� +�A, b = b� +�B, (2.32a–d)

where the mean-flow modifications �U, �V , �A and �B are forced by the linear
disturbances and are independent of φ. Substituting (2.32a–d) into (2.5)–(2.10), applying
the zonal average

f̄ (θ) = 1
2π

∫ 2π

0
f (θ, φ) dφ, (2.33)

and noting the spatial periodicity of disturbances in φ, we find that �V and �B are zero
and �U and �A are governed by

∂�U
∂t

= 1

sin2 θ

∂

∂θ
sin2 θ(a�b� − u�v�), (2.34)

∂�A
∂t

= ∂

∂θ
(u�b� − v�a�). (2.35)

In the spherical system, angular momentum and the mean toroidal field are conserved,
namely

∫ π

0
2π sin2 θ

∂�U
∂t

dθ = 0, (2.36)

∫ π

0

∂�A
∂t

dθ = 0, (2.37)

as is guaranteed by (2.34) and (2.35).

3. The semicircle rules

In this section we derive semicircle rules that provide general bounds for the eigenvalue,
in the style of the celebrated theory of Howard (1961). To tackle the spherical geometry,
we will mainly follow the theory of Watson (1981) who derived semicircle rules for
hydrodynamic instability on a sphere. We will also provide alternative bounds to his
theory, which could be tighter for certain types of flows.
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We proceed by multiplying (2.29) by the complex conjugate H∗ of H and integrating
from μ = −1 to μ = 1. Applying integration by parts, we derive the integral formula∫ 1

−1

[
(Ω − c)2 − β2

] [
(1 − μ2)|H′|2 + m2

1 − μ2 |H|2
]

dμ

=
∫ 1

−1
2

[
(Ω − c)(μΩ)′ − β(μβ)′

] |H|2 dμ. (3.1)

Writing the complex phase velocity as c = cr + ici and taking ci > 0 for an unstable mode,
the imaginary part of (3.1) yields∫ 1

−1
ΩG dμ =

∫ 1

−1
[crG + (μΩ)′|H|2 ] dμ, (3.2)

with

G = (1 − μ2)
∣∣H′∣∣2 + m2

1 − μ2 |H|2 ≥ 0. (3.3)

This result has been derived by Gilman & Fox (1997). The real part of (3.1) is∫ 1

−1
(Ω2 − 2Ωcr + c2

r − c2
i − β2)G dμ =

∫ 1

−1
2

[
(Ω − cr)(μΩ)

′ − β(μβ)′
] |H|2 dμ.

(3.4)
Using (3.2) to replace the second term on the left-hand side of (3.4), we have

(c2
r + c2

i )

∫ 1

−1
G dμ =

∫ 1

−1
(Ω2 − β2)G dμ+

∫ 1

−1
2

[
β(μβ)′ −Ω(μΩ)′

] |H|2 dμ. (3.5)

Now, following Howard (1961) and Watson (1981), we quote the inequality∫ 1

−1
(Ω −Ωmax)(Ω −Ωmin)G dμ ≤ 0, (3.6)

where Ωmax and Ωmin are the maximum and minimum values of Ω for all μ, which gives∫ 1

−1
Ω2G dμ ≤

∫ 1

−1
[Ω(Ωmax +Ωmin)−ΩmaxΩmin] G dμ. (3.7)

Substituting (3.7) into (3.5) to replace the Ω2G term, we derive

(c2
r + c2

i )

∫ 1

−1
G dμ ≤

∫ 1

−1
[(Ωmax +Ωmin)Ω −ΩmaxΩmin − β2]G dμ

+
∫ 1

−1
2[β(μβ)′ −Ω(μΩ)′]|H|2 dμ. (3.8)

Finally, applying (3.2)–(3.8) again leads to the inequality

[(cr − Ω̄)2 + c2
i ]

∫ 1

−1
G dμ ≤

∫ 1

−1

(
�Ω2 − β2

)
G dμ

+
∫ 1

−1
2

[
β(μβ)′ − (Ω − Ω̄)(μΩ)′

] |H|2 dμ, (3.9)
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MHD instability on a sphere

where

Ω̄ = Ωmax +Ωmin

2
, �Ω = Ωmax −Ωmin

2
. (3.10a,b)

We have obtained two relations for c2
r + c2

i and (cr − Ω̄)2 + c2
i , namely (3.5) and (3.9).

In the case of MHD instability in Cartesian geometry, e.g. the study of Hughes & Tobias
(2001), two similar equations hold but the integrals involving |H|2 are not present. In that
case, one can derive two semicircle rules straightforwardly by bounding the integrals of
G. In our case of spherical geometry, however, we need to consider how to bound the two
|H|2 integrals in order to find semicircle rules. First, we note that we have one bound for
|H|2 from the definition of G in (3.3), namely

0 ≤ |H|2 ≤ 1 − μ2

m2 G. (3.11)

This holds at each location ofμ, and so we refer to it as the pointwise bound. An alternative
is to bound the integral of |H|2. For this task, we invoke the theorem of Rayleigh’s
quotient. Let L be a linear Sturm–Liouville operator and λ be the smallest eigenvalue for
the corresponding Sturm–Liouville problem LH + λH = 0, with homogeneous boundary
conditions at μ = a and μ = b. Then, for arbitrary smooth functions H(μ), the Rayleigh
quotient R satisfies

R = −

∫ b

a
H∗LH dμ∫ b

a
|H|2 dμ

≥ λ. (3.12)

The smallest eigenvalue of the Legendre operator L defined in (2.27) is λ = m(m + 1).
Thus, applying integration by parts to the numerator of (3.12), we obtain

0 ≤
∫ 1

−1
|H|2 dμ ≤ 1

m(m + 1)

∫ 1

−1
G dμ. (3.13)

We refer to (3.13) as the integral bound for |H|2.
Now we apply our two bounds (3.11) and (3.13) to (3.5) and (3.9). For the pointwise

bound, substituting (3.11) into (3.5) gives

(c2
r + c2

i )

∫ 1

−1
G dμ ≤

∫ 1

−1

{
Ω2 − β2 + 1 − μ2

m2 2
[
β(μβ)′ −Ω(μΩ)′

]+}
G dμ,

≤
{
Ω2 − β2 + 1 − μ2

m2 2
[
β(μβ)′ −Ω(μΩ)′

]+}
max

∫ 1

−1
G dμ,

(3.14)

where the plus sign superscript is defined by

f + = max( f , 0). (3.15)

We have therefore arrived at the semicircle rule

c2
r + c2

i ≤
{
Ω2 − β2 + 1 − μ2

m2 2
[
β(μβ)′ −Ω(μΩ)′

]+}
max

. (3.16)
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C. Wang, A.D. Gilbert and J. Mason

Similarly, if we apply (3.11) to (3.9), we derive another semicircle rule using the pointwise
bound

(cr − Ω̄)2 + c2
i ≤

{
�Ω2 − β2 + 1 − μ2

m2 2
[
β(μβ)′ − (Ω − Ω̄)(μΩ)′

]+}
max

. (3.17)

To apply instead the integral bound, we first take the functions multiplying G and |H|2
out of the integral in (3.5) and then use (3.13). We obtain

(c2
r + c2

i )

∫ 1

−1
G dμ ≤ (Ω2 − β2)max

∫ 1

−1
G dμ+ 2

[
β(μβ)′ −Ω(μΩ)′

]
max

∫ 1

−1
|H|2 dμ

≤ (Ω2 − β2)max

∫ 1

−1
G dμ+ 2

[
β(μβ)′ −Ω(μΩ)′

]+
max

m(m + 1)

∫ 1

−1
G dμ.

(3.18)

Hence, we have another semicircle rule

c2
r + c2

i ≤ (Ω2 − β2)max + 2
m(m + 1)

[
β(μβ)′ −Ω(μΩ)′

]+
max . (3.19)

Similarly, applying the integral bound to (3.9) yields

(cr − Ω̄)2 + c2
i ≤ (�Ω2 − β2)max + 2

m(m + 1)

[
β(μβ)′ − (

Ω − Ω̄
)
(μΩ)′

]+
max .

(3.20)

In summary, we have derived four semicircle rules: (3.16), (3.17), (3.19) and (3.20).
Watson’s (1981) semicircle rule corresponds to (3.17) with the field switched off (though
the latter is tighter due to a more careful treatment of the geometric term). In the limit
of small scale, m → ∞, the geometric terms proportional to (1 − μ2)/m2 or 1/m(m + 1)
vanish and we recover the semicircle rules derived by Gilman (1967), Cally (2000) and
Hughes & Tobias (2001) for MHD instability in Cartesian geometry, which can be further
reduced to the theory of Howard & Gupta (1962) when the magnetic field is uniform. When
both limits are applied, (3.17) and (3.20) both reduce to the semicircle rule of Howard
(1961). In that problem, the semicircle centred at (cr, ci) = (0, 0) completely includes the
other centred at (Ω̄, 0) and becomes redundant.

A distinguishing feature of the current theory is that, for each possible semicircle centre,
i.e. (cr, ci) = (0, 0) and (Ω̄, 0), there are two possible radii resulting from the two different
methods used to bound |H|2. The smaller radius will represent a tighter bound and, thus,
be the effective one. We have found that, depending on the profiles of Ω and β, either of
the two bounding methods can be tighter. In general, the results of the pointwise bounding,
(3.16) and (3.17), are tighter when the shear ofΩ or β are prominent, because these bounds
take the maximum of the sum of functions, in contrast to (3.19) and (3.20) that take the
sum of the maxima of two functions. On the other hand, when the shears of Ω and β are
weak, the integral bounds (3.19) and (3.20) can be tighter due to the smaller coefficient of
1/m(m + 1).
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MHD instability on a sphere

In an effort to make the results more compact and uniform, we present an alternative
way to write the semicircle rules using functional expressions,

c2
r + c2

i ≤ E[f1, g1], (cr − Ω̄)2 + c2
i ≤ E[f2, g2], (3.21a,b)

where E is a functional defined by

E
[

f , g
] = min (C[ f , g],D[ f , g]) , (3.22)

with

C[ f , g] =
{

f + 1 − μ2

m2 g+
}

max
, D[ f , g] = fmax + 1

m(m + 1)
g+

max, (3.23a,b)

corresponding to the pointwise or integral bounds, respectively. The functions in (3.21)
are

f1 = Ω2 − β2, g1 = 2
[
β(μβ)′ −Ω(μΩ)′

]
, (3.24a,b)

f2 = �Ω2 − β2, g2 = 2
[
β(μβ)′ − (Ω − Ω̄)(μΩ)′

]
. (3.25a,b)

We now demonstrate the application of these semicircle rules to instability problems.
Following Hughes & Tobias (2001), we first study the instability criterion. Since all the
rules need to be satisfied by the complex value of c for an arbitrary unstable mode, if the
radius of either semicircle disappears, or if the semicircles for the two centres become
disjoint, then instability is impossible. Using the notation in (3.21), these conditions are

E[ f1, g1] ≤ 0 or E[ f2, g2] ≤ 0 or
√

E[ f1, g1] +
√

E[ f2, g2] ≤ |Ω̄|, (3.26a–c)

any of which is a sufficient condition for stability. A straightforward example of an
application of (3.26b) is the case of constant Ω and β: the semicircle rule (3.20) for this
flow becomes

(cr − Ω̄)2 + c2
i ≤

[
2

m(m + 1)
− 1

]
β2 ≤ 0, (3.27)

given that m ≥ 1. Hence, the flow is linearly stable when Ω and β are constants. In fact,
the phase velocities for this flow can be solved analytically, since the waves are spherical
harmonics (Márquez-Artavia, Jones & Tobias 2017), but through this example we have
shown the power of the semicircle rule: for this specific flow, it can give a bound that is
tight enough to exclude the possibility of instability. We note that this analysis is based on
(3.20) which is found using the integral bound (itself tight for spherical harmonics); use
of the pointwise bound is not tight enough to rule out instability for this flow.

We recall that, for the MHD problem in Cartesian geometry, for example, Hughes &
Tobias (2001), the magnetic field may only reduce the radii of the semicircles, or keep
them the same. Hence, they explored how the field profile may realise one of (3.26) to
guarantee stability, and studied the tightness of these bounds. In our spherical problem, on
the other hand, the important feature is that the magnetic field may increase the radii
of the semicircles through the geometric terms (those proportional to (1 − μ2)/m2 or
1/m(m + 1)), and this is often accompanied by the destabilising effect of the magnetic
field. It is therefore of interest to show examples of the semicircles compared with the
actual eigenvalues for sample profiles. Motivated by the solar differential rotation profile,
for the basic state angular velocity, we consider the typical differential shear given by
(1.1). The parameters are chosen as r = 1 and s = 0.24 as in Gilman & Fox (1997). For
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Figure 1. Semicircle rules for the zonal flow (1.1) with r = 1, s = 0.24 and the magnetic field of (a) profile
(3.28) with σ = 1 and (b) profile (3.29) with σ = 0.1, d = 1/

√
2 and w = π/6. The wavenumber is m = 1

for both figures. Solid lines represent the result of (3.16) and (3.17), and dashed lines represent the result
of (3.17) without the magnetic field. All semicircles plotted are the tightest, here from the pointwise bound.
The star represents the numerical solution for the unstable mode: c = 0.95 + 0.023i for panel (a) and c =
0.87 + 0.0074i for panel (b).

the basic state magnetic field, we consider two examples: the first is a ‘linear shear’ profile
considered by Gilman & Fox (1997) and Cally (2001),

β = σμ, (3.28)

where σ is a constant. The second is a profile with a pair of opposite Gaussian
distributions, studied by Dikpati & Gilman (1999) and Cally (2001),

β = σ

2
√

1 − d2

[
exp

(
− 4(μ− d)2

w2(1 − d2)

)
− exp

(
− 4(μ+ d)2

w2(1 − d2)

)]
, (3.29)

where ±d are the centres of two Gaussian distributions and w is a width parameter.
These profiles are idealised models for the solar magnetic field. From solar magnetogram
observations, the magnetic field is antisymmetric about the equator, and (3.28) is the
simplest antisymmetric profile while (3.29) further models the belt patterns seen from
observations. We plot the semicircles for the field profiles (3.28) and (3.29) in figure 1(a,b)
in solid lines, respectively. Mode m = 1 is chosen, which is the only wavenumber where
the flow is unstable. We choose σ = 1 for (3.28) corresponding to a strong field, and
σ = 0.1 for (3.29) corresponding to a weak field, and take w = π/6 and d = 1/

√
2 for

(3.29). Due to the strong shear in β, the semicircles (3.16) and (3.17) from use of the
pointwise bound (3.22a) have smaller radii, and so are plotted. We also plot the semicircle
(3.17) in the absence of a magnetic field in dashed lines; the other semicircle (3.16) is the
same with or without the magnetic field. There is an unstable mode for each field profile,
which is solved numerically and we plot as a star in each panel. As mentioned earlier, in
the absence of a magnetic field, the flow (1.1) is unstable when s/r > 0.29 (Watson 1981);
hence, the flow with r = 1, s = 0.24 that is considered here is hydrodynamically stable,
and the instability is induced by the magnetic field.

The region where the two semicircles with solid lines overlap is the domain for all
possible values of c. The star lies inside this region, as we expect. For the strong field
case of figure 1(a), the magnetic field significantly enlarges the original, hydrodynamic
semicircle (shown dashed) centred at Ω = Ω̄ , though the actual unstable mode still lies
inside this semicircle. For the weak field case of figure 1(b), the magnetic field slightly
reduces the purely hydrodynamic semicircle, which is a little surprising since the field has
a destabilising effect (the β = 0 system is stable for this flow). In general, the situation
of figure 1(a) (in which the magnetic field enlarges the semicircle centred at Ω = Ω̄) is
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MHD instability on a sphere

typical for field-induced instabilities. The opposite case (in which the field destabilises the
flow but reduces the radius, as in figure 1b) is relatively rare: it only happens for a weak
field with certain profiles. As suggested by Gilman & Fox (1997), the maximum possible
growth rate from the semicircle rule can be much larger than the actual growth rate, but the
rules are still powerful in giving rigorous bounds on c in the complex plane. Note that in
figure 1(a) the star is very close to the edge of the semicircle centred atΩ = 0, suggesting
a tight bound in this case.

Further remarks on the situation seen in figure 1(a) may be helpful here. We note that
the magnetic field increases one of the semicircles, but the eigenvalue still lies inside the
original hydrodynamic semicircle. The explanation is that the bounding of H in terms of
|G|2 is over all possible functions, not necessarily the solutions of the eigenvalue problem;
thus, the bound can give a much larger domain than that attained by an actual eigenvalue.
We note that we have not found unstable modes outside the hydrodynamic semicircle, and
so we cannot answer the question of whether the larger semicircle induced by the magnetic
field really represents a larger possible domain, or just a looser bound. We leave this issue
for future consideration.

We give another example of the prediction of the semicircle rules for profiles that are
related to the analysis of the clamshell instability in the subsequent sections. We consider
a magnetic field with β = 0 at a certain latitude, which coincides with the location where
|Ω| reaches its maximum. The standard profiles (1.1) with (3.28) or (3.29) studied above
have this property when rs > 0 (the case for solar differential rotation). It can be shown
from (3.21)–(3.25a,b) that

E[ f1, g1] ≥ (Ω2)max, E[ f2, g2] ≥ �Ω2. (3.30a,b)

If Ω is not a constant function of latitude, in other words the fluid flow is sheared, then
using (3.30a,b) it is evident that the sufficient conditions for stability given in (3.26) are
never satisfied. In fact, the lower limits given by (3.30a,b) are the results of Howard (1961),
where there is a finite-area semicircle for any sheared flow in the plane. A key observation
here is that the semicircle rules we have obtained always allow the possibility of instability
in a sheared flow on the sphere provided the magnetic field vanishes at the latitude where
the rotation rate is greatest. We will demonstrate that such an instability does indeed exist,
in the limit of weak shear, by our analysis in § 5.1.

We finally note that in addition to the theory we present, there could be other versions
of semicircle rules. Our derivation is based on the equation for H = ψ/(Ω − c) in
Sturm–Liouville form, following the approach of Watson (1981), but Thuburn & Haynes
(1996) and Sasaki et al. (2012) worked on the Sturm–Liouville equation of η = ψ/[(Ω −
c)

√
1 − μ2] and derived semicircle rules different from Watson’s. At present, we do not

know which version is tighter. Indeed, there could more versions that result from other
substitutions. For MHD instability in Cartesian geometry, Deguchi (2021) improved the
traditional semicircle rules by finding the inner envelope of a family of semicircles, and so
a yet tighter bound. These approaches could provide avenues to extend our theory, and we
leave them for future study.

4. Analysis of the clamshell instability

Cally (2001) and Cally et al. (2003) have shown that when the magnetic field is strong
and its profile is broad, MHD instability on a sphere features a clamshell pattern in which
the field lines on the two hemispheres are tilted in opposite directions. In figure 2 we give
an example of such a clamshell pattern, which corresponds to the basic state (1.1) and
(3.28) plus the unstable mode with its eigenfunction shown in figure 3. Without loss of
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Figure 2. Magnetic field lines for the instability of the basic state Ω = 1 − 0.1μ2, β = μ with wavenumber
m = 1. The eigenvalue is obtained numerically as c = 0.982 + 0.00847i. The plotted results correspond to the
basic state plus the unstable mode with a small amplitude shown in figure 3.
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Figure 3. Eigenfunctions for the instability of the profile given in figure 2. The tilting mode (4.5a–d) is
plotted using circles. The eigenfunctions are normalised by max |H| = 0.07 and ImH = 0 as μ → 1.

generality, we normalise the eigenfunction by max |H| = 0.07 and Im H = 0 as μ → 1
throughout the paper; other normalisations would yield a similar pattern to figure 2 as
long as |H| remains small.
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MHD instability on a sphere

In this section we will undertake an asymptotic analysis of this instability in the limit
of weak shear Ω ′ of the basic zonal flow Ω . We will derive an asymptotic solution for
the eigenvalue c in this limit, which will provide insights into the instability mechanism
applying to a wide range of profiles of Ω and β.

4.1. The tilting mode
While (2.25), (2.26) and (2.29) look quite complicated, for azimuthal wavenumber m = 1,
they admit a very simple solution for arbitrary Ω and β, namely

c = 0, ψ =
√

1 − μ2Ω, χ =
√

1 − μ2 β, H =
√

1 − μ2. (4.1a–d)

The physical meaning of this solution lies in the rotational invariance of the spherical
geometry: if we apply a solid body rotation to the entire zonal flow and magnetic field, the
tilted flow and field are still solutions of the governing equations. When the angle of tilting
is small, the solution given in (4.1a–d) gives the difference between the tilted and original
states. To see this, first note that the rotation through an infinitesimal angle α about the
x axis is given by (x, y, z) → (x, y − αz, z + αy) and corresponds to the spherical polar
coordinate change

θ → θ − α sinφ, φ → φ − α cot θ cosφ. (4.2a,b)

Thus, any function f (θ, φ) is mapped under such a rotation by

f (θ, φ) → f (θ + α sinφ, φ + α cot θ cosφ) � f (θ, φ)+ α[sinφ fθ + cot θ cosφ fφ].
(4.3)

Apply this to a streamfunction Ψ (θ) for the basic state, satisfying U = Ω sin θ = −Ψθ
(cf. (2.20a–d)), and we find that the tilted streamfunction is

Ψ → Ψ + α sinφ Ψθ = Ψ − α sinφ sin θ Ω = Ψ +
(

1
2

iα
√

1 − μ2Ω eiφ + c.c.
)
.

(4.4)

The difference corresponds to a multiple 1
2 iα of the steady solution (4.1a–d) to the linear

problem (and likewise a multiple 1
2α is a rotation around the y axis). For hydrodynamic

stability, this neutral mode was noticed by Watson (1981) (although there appears to be
a mistake in the form of the eigenfunction given). A well-known analogue is the neutral
mode arising from the translational invariance of a vortex in the plane: shifting the entire
m = 0 vortex gives an m = 1 solution to the linear problem with zero eigenvalue, as noted
by Bernoff & Lingevitch (1994).

Interestingly, for the MHD problem, (2.25), (2.26) and (2.29) also admit a slightly
different mode that involves the tilting of the basic state. If Ω is a constant, i.e. the zonal
flow is solid body rotation, then for arbitrary β, we also have an exact solution for m = 1,

c = Ω, ψ = 0, χ =
√

1 − μ2β, H =
√

1 − μ2. (4.5a–d)

In this solution there is no velocity disturbance and the magnetic field lines are slightly
tilted, similar to (4.1a–d), but now they rotate with the solid body rotation Ω(μ) = c,
frozen into the flow. Furthermore, if the magnetic field vanishes somewhere, say

β = 0, at μ = μ�, (4.6)

then (2.31) is satisfied and μ� is a critical level where (2.29) becomes singular. However,
the solution (4.5a–d) remains regular there. The mathematical picture is that (2.29) has
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two linearly independent solutions: one is singular at μ = μ�, the other is regular there
and is the solution (4.5a–d).

The solution (4.5a–d) is closely related to the clamshell instability. From now on, we
refer to it as the tilting mode. For the example shown in figures 2 and 3, the shear of Ω is
weak, and so we expect that the tilting mode (4.5a–d), derived for constant Ω , is relevant.
In figure 3 we plot the eigenfunctions that correspond to the clamshell pattern in figure 2
together with (4.5a–d). We see that in most of the region the tilting mode agrees very well
with the unstable mode; however, interestingly, the latter is reversed across μ = 0. It turns
out that the weak shear in Ω excites the singular solution, which becomes dominant at
the critical level; this is at μ� = 0 for the magnetic profile β = μ. The singularity has a
dramatic impact on the eigenfunction: it reverses the sign of the tilting mode, opening up
the clamshell in figure 2, and importantly it destabilises the flow. Based on this intuition,
we will undertake an asymptotic analysis to solve the eigenvalue problem in § 4.2. Readers
who are not interested in the technical details of the matched asymptotic expansions may
jump to the final result given by (5.1), noting that a star subscript represents the value of a
function evaluated at μ = μ�.

It is noted that we have not yet found a normal mode instability that is induced by the
mode (4.1a–d). This is perhaps because this mode is ‘too stable’: the eigenvalue c = 0
remains unchanged, no matter how Ω and β vary. Note that when Ω = 0, (4.1a–d) and
(4.5a–d) become identical, and then our analysis indicates that the resonance between the
two modes may induce algebraic growth (instead of exponential growth) of the magnetic
field. But given Ω = 0 is not very common in astrophysics, this is of limited interest, and
we will not discuss it further.

4.2. The matched asymptotic expansions
We consider profiles of Ω(μ) and β(μ) such that the variation in Ω is weak and β is
zero at a location denoted by μ = μ�. For simplicity, in the present study we assume that
there is only one such μ� in the domain (although the case of multiple μ� may be studied
following the same method). We also take β to pass through zero atμ = μ� with a gradient
that is not small. Thus, close to μ�, we have the approximation

β ≈ β ′
�(μ− μ�), μ ≈ μ�, (4.7a,b)

where β ′
� is β ′ evaluated at μ = μ�, and we assume that β ′

� is of order unity (or larger).
Apart from these prescriptions, Ω(μ) and β(μ) are general functions. We perform
matched asymptotic expansions that combine the bulk of the flow, where the disturbance
is mainly represented by the tilting mode, and the critical layer near μ = μ�, where the
solution changes rapidly. The azimuthal wavenumber will be fixed at m = 1, since this is
the only wavenumber that admits the tilting mode.

We express Ω and c by

Ω = Ω0 + εΩ1(μ), c = Ω0 + εc1 + · · · . (4.8a,b)

Here the leading-order rotation is Ω0 /= 0, which is a constant representing the angular
velocity of the solid body rotation, while ε is a small number representing the amplitude
of the weak shear and Ω1 is an arbitrary function representing the shear profile. The
eigenvalue c is Ω0 at leading order, following the tilting mode (4.5a–d). The weak shear
εΩ1 induces a small correction εc1 to the eigenvalue, and our goal is to determine this.
Also, ifΩ0 = 0 in (4.8a,b), butΩ as a whole is weak compared with β, we can still follow
a similar asymptotic analysis. This situation is perhaps less relevant for astrophysical
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MHD instability on a sphere

applications and so the derivation is consigned to Appendix A; it is different in detail,
but the final result (5.1) is the same.

4.2.1. Outer solution
Away from the critical level μ = μ�, we expand H as

H = H0(μ)+ εH1(μ)+ · · · , (4.9)

where H0 has the profile of the tilting mode but is discontinuous across the critical layer,
as we see in figure 3. Thus,

H0(μ) =
{

A−
√

1 − μ2, μ < μ�,

A+
√

1 − μ2, μ > μ�,
(4.10)

where A+ and A− are constants. Here H1 represents the small correction that is induced
by the weak shear in Ω . Substituting (4.8a,b) and (4.9) into (2.29) and collecting terms at
O(ε), we obtain the equation for H1,

[
β2(1 − μ2)H′

1

]′ +
[

2β(μβ)′ − β2

1 − μ2

]
H1 = 2Ω0(Ω1 − c1)H0. (4.11)

Using the method of variation of constants, noting that H1 must be zero at μ = ±1, the
solution for H1 can be obtained in the form

H1(μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hs(μ)

∫ μ

1
2Ω0 [Ω1(ν)− c1] H0(ν)hr(ν) dν

−hr(μ)

∫ μ

1
2Ω0[Ω1(ν)− c1]H0(ν)hs(ν) dν + Cahr(μ), μ� < μ < 1,

hs(μ)

∫ μ

−1
2Ω0 [Ω1(ν)− c1] H0(ν)hr(ν) dν

−hr(μ)

∫ μ

−1
2Ω0[Ω1(ν)− c1]H0(ν)hs(ν) dν + Cbhr(μ), −1 < μ < μ�.

(4.12)

Here hr and hs are the regular and singular solutions of the corresponding homogeneous
equation, given by

hr(μ) =
√

1 − μ2, hs(μ) =

⎧⎪⎪⎨
⎪⎪⎩

√
1 − μ2

∫ μ

μa

1
β(ν)2(1 − ν2)2

dν, μ� < μ,μa < 1,

√
1 − μ2

∫ μ

μb

1
β(ν)2(1 − ν2)2

dν, −1 < μ,μb < μ�,

(4.13a,b)

where μa and μb may be arbitrarily chosen in the given range, and Ca and Cb
are undetermined constants, a consequence of hr satisfying both boundary conditions.
Using (4.7a,b), we can deduce that H1, hs ∼ (μ− μ�)

−1 as μ → μ�. Hence, unlike the
leading-order term H0, the correction H1 is essentially singular at μ = μ�. In other words,
combining the tilting mode H0 (in either hemisphere) with weak shear excites the singular
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mode of the system. When μ− μ� = O(ε), εH1 becomes as large as H0 and the expansion
(4.9) becomes disordered. We note the singular behaviour of H′

1,

H′
1 = A±

(1 − μ2
�)

3/2β ′2
� (μ− μ�)2

∫ μ�

±1
2Ω0 [Ω1(μ)− c1] (1 − μ2) dμ

+O
(

1
μ− μ�

)
, μ → μ±

� , (4.14)

which we will use later.

4.2.2. Inner solution
The region μ− μ� = O(ε) is the critical layer where H varies significantly. We therefore
introduce a local stretched coordinate, writing

η = μ− μ�

ε
, H = H(η)+ · · · . (4.15a,b)

Substituting (4.7a,b), (4.8a,b) and (4.15a,b) into (2.29) we find that the leading-order local
equation is

d
dη

{[
(Ω1� − c1)

2 − β ′2
� η

2
] dH

dη

}
= 0, (4.16)

where Ω1� is Ω1 evaluated at μ = μ�. Integrating with respect to η, we obtain

dH
dη

= α1

(Ω1� − c1)2 − β ′2
� η

2 , (4.17)

and, hence,

H = α1

2(Ω1� − c1)|β ′
�|

[
log

(|β ′
�|η +Ω1� − c1

) − log
(|β ′

�|η −Ω1� + c1
)] + α2 (4.18)

for some constants α1 and α2.
A striking property of the critical layer is the presence of a significant jump in H from

one side to the other, which is shown in figure 3(c) (also see the later figure 5). Such a
jump can be understood from the asymptotic solution (4.18) as follows. If we select the
branch cuts of the logarithm functions to lie on the negative real axis then, for Im c1 > 0,
their large-variable limits are

log
[|β ′

�|η ± (Ω1� − c1)
] ∼

{
log |β ′

�η|, η → +∞,

log |β ′
�η| ∓ iπ, η → −∞.

(4.19a,b)

Hence,

H ∼
⎧⎨
⎩
α2, η → +∞,

−iπα1

(Ω1� − c1)|β ′
�|

+ α2, η → −∞.
(4.20a,b)

The first term of (4.20b) clearly indicates the jump of H across the critical layer. This
jump is important because it reverses the tilting direction to form the clamshell pattern,
and induces instability through the presence of the imaginary unit i, as we will see later.
According to (4.19), the jump of the logarithm functions is contingent on the existence of
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–4

–2

0

2

4

η

φ

Figure 4. The magnetic field lines in the critical layer, corresponding to figure 2 near the equator. We have
superimposed the basic magnetic field with the asymptotic local solution (4.18), where α1 and α2 are found by
matching to A− and A+ via (4.22) and (4.24), and A− and A+ are obtained by fitting to the numerical solution
shown in figure 5.

–1.0 –0.5 0

μ
0.5 1.0

–8

–6

–4

–2

0H

2

4

Im

Re

6

8
(×10–2)

Figure 5. The comparison of the eigenfunction H between the asymptotic solution (solid lines) and numerical
solution (circles) for the unstable mode of figure 3. The asymptotic solution of H consists of the outer solution
(4.9), (4.10), (4.12) and the inner solution (4.18), with the matching condition (4.22) and (4.24). The eigenvalue
c of the asymptotic solution (5.1) is 0.984 + 0.00778i, while its numerical solution is 0.982 + 0.00847i.

a non-zero |β ′
�|, highlighting the role of the gradient of the magnetic field at the critical

level.
The magnetic field lines in the critical layer, rendered by the local solution (4.18) plus

the basic magnetic field, are shown in figure 4. It may be seen that the critical layer
induces a pair of closed loops in the field line pattern, which is also visible in figure 2
near the equator. Note that such a pattern was not shown in the corresponding figure of
Cally (2001) (first and second panel of his figure 4), since he did not draw field lines in
the critical layer in the early stage of the evolution. Also note that at later times, Cally’s
(2001) simulation has shown that the field lines on the two hemispheres will reconnect
as a result of dissipation. This is quite different from the ideal MHD instability that we
currently study: in our figure 4, the field lines on the two hemispheres are separated.
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4.2.3. Matching and eigenvalue
Matching the inner and outer solution provides relations between the constants α1, α2,
A− and A+, and so determines the eigenvalue c1. We first match H′ from the inner and
outer solution in an intermediate region μ− μ� = O(ε1/2). Here H′

0 � εH′, so that we
can neglect the former in the outer solution. Hence, matching (4.17) and (4.14) via

1
ε

dH
dη

∣∣
η→±∞ = εH′

1
∣∣
μ→μ±

�
, (4.21)

we find that

α1 = A−
(1 − μ2

�)
3/2

∫ −1

μ�

2Ω0[Ω1(μ)− c1](1 − μ2) dμ

= A+
(1 − μ2

�)
3/2

∫ 1

μ�

2Ω0[Ω1(μ)− c1](1 − μ2) dμ, (4.22a,b)

this providing two relations between α1, A+ and A−. Next, we match H: at μ− μ� =
O(ε1/2), the outer solution of H is dominated by the tilting mode H0, so that the matching
condition is

H∣∣
η→±∞ = H0

∣∣
μ→μ±

�
. (4.23)

According to (4.10) and (4.20),

α2 = A+
√

1 − μ2
�,

−iπα1

(Ω1� − c1)|β ′
�|

+ α2 = A−
√

1 − μ2
�. (4.24a,b)

Combining (4.22) and (4.24), a non-trivial solution for α1, α2, A− and A+ yields an
equation that determines the eigenvalue c1 for Im c1 > 0,

1∫ μ�

−1
2Ω0[c1 −Ω1(μ)](1 − μ2) dμ

+ 1∫ 1

μ�

2Ω0[c1 −Ω1(μ)](1 − μ2) dμ

= iπ
|β ′
�|(1 − μ2

�)
2(c1 −Ω1�)

. (4.25)

An example of the comparison between the asymptotic and numerical solutions is shown
in figure 5. Note that if (4.25) yields a solution with Im c1 < 0, it is not a valid normal
mode solution, since it contradicts our branch cut selection (4.19) based on Im c1 > 0.

It is useful to express (4.25) using the original variables c andΩ instead of c1 andΩ1 via
(4.8a,b). The resulting equation is presented as (5.1) at the beginning of the next section,
where we also discuss its implications. This is an equation for the eigenvalue c with ci > 0,
and with Ω� equal to Ω(μ�). We have replaced Ω0 = Ω� for the leading-order solid body
rotation; as the shear is weak, Ω is approximately constant everywhere. Equation (5.1) is
derived under the condition thatΩ and β are of the same order and the shear ofΩ is small
compared with both of these. In Appendix A we also present the analysis for the situation
where Ω as a whole is small compared with β. The derivation is a little different but the
final result remains the same as (5.1), and so this equation is generally applicable as long
as the shear Ω ′ is weak compared with the magnetic field β.
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MHD instability on a sphere

s = 0.12 s = 0.06

β = μ 0.9780 + 1.037 × 10−2i 0.9895 + 4.897 × 10−3i
β = sinμ 0.9780 + 1.035 × 10−2i 0.9895 + 4.892 × 10−3i
β = eμ − 1 0.9779 + 1.033 × 10−2i 0.9895 + 4.890 × 10−3i
Asymptotic solution 0.9805 + 0.933 × 10−2i 0.9902 + 4.666 × 10−3i

Table 1. Numerical solutions for the eigenvalue c = cr + ici for m = 1,Ω = 1 − sμ2, s = 0.12 and 0.06, and
three profiles of β with β = 0 and β ′ = 1 at μ� = 0. The solutions are computed by a shooting method. The
three profiles have the same asymptotic prediction for c, given by (5.1) and shown in the last row of the table.

5. Results and discussion

The result of our analysis is the following implicit equation for the complex wave speed c,
taken to have a positive imaginary part ci > 0 that gives the growth rate of a mode:

c −Ω�∫ μ�

−1
[c −Ω(μ)](1 − μ2) dμ

+ c −Ω�∫ 1

μ�

[c −Ω(μ)](1 − μ2) dμ
= 2iπΩ�

|β ′
�|(1 − μ2

�)
2 . (5.1)

Here we recall that the magnetic field profile β(μ) has a single, simple zero at the critical
latitude given by μ = μ�, where the gradient β ′

� /= 0 and the angular velocity is Ω�.
The equation is valid provided the shear Ω ′(μ) of the angular velocity profile is small
compared with the magnetic field.

5.1. General results
Equation (5.1) has a relatively simple form and we can use it to gain significant insights
into the instability properties for general profiles of Ω and β. First, we observe that β
only enters this equation through β ′

� = β ′(μ�), where μ� is the location where β = 0.
The other properties of β (e.g. the value of β at other latitudes) do not affect (5.1). This
is a curious property, because the MHD instability is global, yet the magnetic field only
affects the instability through its local behaviour in the critical layer. To test this finding,
we consider three different profiles: β = μ, sinμ and eμ − 1. They all have μ� = 0 and
β ′
� = 1, and so the same asymptotic result for c given by (5.1). For the zonal flow, we

select Ω = 1 − sμ2 with s = 0.12 and s = 0.06; the case of s = 0.12 has been used by
Cally (2001) as a model for solar differential rotation. The results of the eigenvalues are
displayed in table 1. For comparison, the asymptotic solution (5.1) is given in the last row.
We see that the eigenvalues c for the various profiles are indeed close, and interestingly,
to a much higher degree than the precision of the asymptotic solution. We summarise this
conclusion as follows: the magnetic field profile only affects the instability through the
location where it passes though zero and the value of its gradient there.

To proceed further, we rewrite (5.1) as

c −Ω�

(c −Ω�)I− + J−
+ c −Ω�

(c −Ω�)I+ + J+
= iQ, (5.2)
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where

I− =
∫ μ�

−1
(1 − μ2) dμ = μ�−1

3
μ3
� + 2

3
, I+=

∫ 1

μ�

(1 − μ2) dμ = −μ� + 1
3
μ3
� + 2

3
,

J− =
∫ μ�

−1
(Ω�−Ω)(1 − μ2) dμ, J+=

∫ 1

μ�

(Ω�−Ω)(1 − μ2) dμ,

Q = 2πΩ�

|β ′
�|(1 − μ2

�)
2 . (5.3a–e)

In general, (5.2) is a quadratic equation for c and its solution is

c = Ω� + 1
2(I − iQI+I−)

{
− J + iQ(I−J+ + I+J−)

±
[
J2 − Q2(I+J− − I−J+)2 + 2iQ(I+J− − I−J+)(J+ − J−)

]1/2
}
, (5.4)

where

I = I+ + I−=4
3
, J = J+ + J−=

∫ 1

−1
(Ω� −Ω)(1 − μ2) dμ. (5.5a,b)

Of the two solutions given by (5.4), only those with ci > 0 are valid. At this point, it is
not straightforward to obtain an exact condition for ci > 0 to hold, but it is easy to find a
sufficient condition as follows. Given that the second line of (5.4) has both positive and
negative signs, if its first line already has a positive imaginary part, then at least one of the
solutions has positive ci. Therefore, a sufficient condition for instability is

Im
(

iQ(I−J+ + I+J−)− J
2(I − iQI+I−)

)
= πΩ�(I2−J+ + I2+J−)

|β ′
�|(1 − μ2

�)
2
(
I2 + Q2I2+I2−

) > 0. (5.6)

A simple example is the situation where |Ω�| is the maximum of |Ω|, then according
to (5.3c,d), both Ω�J+ and Ω�J− are positive, and (5.6) is guaranteed. This leads to the
conclusion: if the angular velocity of the zonal flow is greatest at the critical level, then
the flow is unstable. This agrees with the statement earlier that the semicircle rules always
allow instability for such flows, discussed at the end of § 3. For model solar differential
rotation profiles,Ω is indeed largest at the equator, and so provided β passes (transversely)
through zero there, the flow is always unstable. The instability induced by the magnetic
profile β = σμ that we showed in figures 2 and 3 belongs to this category.

5.2. The solution for μ� = 0 and even Ω
The solutions (5.4) may be further simplified and yield transparent results when the critical
level is located at the equator (μ� = 0) andΩ has even or odd symmetry, which we discuss
in §§ 5.2 and 5.3, respectively.

The case in which μ� = 0 and Ω is an even function of μ is perhaps most relevant to
the Sun, and therefore, most studies on the clamshell instability focus on this case (for
example, Gilman & Fox 1997; Cally 2001; Cally et al. 2003; Miesch 2007; Miesch et al.
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Figure 6. Solutions of c = cr + ici vs σ for the profiles Ω = r − sμ2 and β = σμ with r = 1, s =
0.05, 0.1, 0.2 and wavenumber m = 1. The asymptotic solution (5.11) is plotted by dashed lines, and the
numerical solutions are plotted by solid lines.

2007). We then have J+ = J− and I+ = I− = 2/3 and the two solutions of (5.4) are

c = Ω� + 3iQJ+
6 − 2iQ

and c = Ω�−3
2

J+. (5.7a,b)

The first solution (5.7a) is complex, and may give an unstable mode. Using the original
variables, (5.7a) becomes

c = Ω�−
3πΩ�

∫ 1

0
(Ω�−Ω)(1 − μ2) dμ

2πΩ� + 3i|β ′
�|

. (5.8)

Its imaginary part is

ci =
9πΩ�|β ′

�|
∫ 1

0
(Ω� −Ω)(1 − μ2) dμ

4π2Ω2
� + 9β ′

�
2 . (5.9)

For the standard profile

Ω = r − sμ2, β = σμ, (5.10a,b)

we find that

cr = r − 4π2r2s
20π2r2 + 45σ 2 , ci = 6π|σ |rs

20π2r2 + 45σ 2 . (5.11a,b)

As discussed in the last paragraph of § 4.2.3, this solution is accurate in the limit when
s is small or |σ | is large. Note that large |σ | at fixed r and s corresponds to the situation
whereΩ as a whole is weak compared with β. The detailed analysis for this case is shown
in Appendix A. The results of (5.11) are plotted in figure 6 by dashed lines, and may be
compared with the numerical solutions shown by solid lines. We see that the asymptotic
solution gives very good predictions in general, and that these become more precise as s
decreases or as σ increases.
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With the asymptotic solution for the growth rate ci given by (5.11b), we may address
the question of whether instability persists when the parameters approach limiting values.
Gilman & Fox (1997) raised the question of whether there is a lower limit of positive s
and an upper limit of σ for the instability to take place. These thresholds do not seem
to exist according to their numerical solutions, but the unstable mode becomes more
and more singular at the critical level as s decreases or σ increases, causing numerical
difficulties. Our asymptotic solution can easily address this problem: (5.11b) indicates that
such limits indeed do not exist: instead, as s → 0+ or σ → ∞, ci remains positive at O(s)
or O(σ−1) provided that rs > 0. The clamshell instability is therefore quite different from
hydrodynamic shear instability on a sphere, which requires the shear to exceed a threshold
(s/r > 0.29, Watson 1981) to overcome the stabilising effect of the rotation. The fact that
the instability survives for an arbitrarily strong magnetic field is also surprising, but we
note that regardless of the strength of σ , the magnetic field always vanishes at μ� = 0, and
it is this feature that plays a fundamental role in inducing the instability.

The solution (5.9) can also provide insights into the instability for general flow profiles,
not only those related to solar differential rotation. From the condition of ci > 0, we have:
for μ� = 0 and an even profile of Ω(μ), the condition for instability is

Ω�

∫ 1

0
(Ω� −Ω)(1 − μ2) dμ > 0. (5.12)

This indicates that the flow is prone to instability when the angular velocity Ω� at the
critical level (the equator in this case) is large compared with Ω(μ) on the rest of
the sphere. If |Ω�| is the largest among all |Ω|, then the flow is definitely unstable.
Interestingly, (5.12) only involves the hydrodynamic shear, and β does not affect this
condition once μ� = 0 is set. Equation (5.12) is also quite different from conditions for
hydrodynamic shear instability: the latter usually involve constraints on the curvature of
the basic-flow profile (cf. Rayleigh’s inflection-point theorem), but (5.12) does not involve
Ω ′′ at all.

We can also derive a bound for the growth rate from (5.9), namely

ci <

9π|Ω�| |β ′
�| max |Ω� −Ω|

∫ 1

0
(1 − μ2) dμ

12π|Ω�β ′
�|

≤ 1
2

max |Ω�−Ω|, (5.13)

where the inequality x2 + y2 ≥ 2|xy| has been used in the denominator. Again, once μ� =
0 is set by the magnetic field, this bound only involves the hydrodynamic shear. We note
that the semicircle rules studied in § 3 suggest that the magnetic field may increase the
radii of the semicircles and, hence, the bound for the growth rate, but this does not happen
in (5.13). However, we also note that the semicircle rules apply to general velocity and field
profiles, and (5.13) is the result for the more specific situation in which the rotation profile
is even with weak shear, and the magnetic profile passes through zero at one location.

Clearly when Ω is even, Ω1 is also even, and from (4.22) we have A− = −A+. Thus,
the critical layer makes the tilting modes opposite on the two hemispheres (as also shown
in figure 3c), which explains the typical clamshell pattern shown in figure 2.

Finally, we comment on the other solution (5.7b). The physical meaning of this solution
is that it makes the singularity of H′

1 given in (4.14) vanish. Thus, to leading order, the
weak shear does not trigger the singularity of the critical level of the tilting mode. One
may need to go to higher orders in the asymptotic expansion, which may contain potential
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MHD instability on a sphere

singularities and yield an even smaller ci. Our numerical solution suggests that, for the
basic state profiles (5.10a,b), the higher-order solution of (5.7b) has ci < 0 and is therefore
not a valid normal mode solution. However, when the critical level μ� is slightly off the
equator, (5.7b) becomes an unstable normal mode, as we will show in § 5.4.

5.3. The solution for μ� = 0 and odd Ω −Ω�

The situation in which μ� = 0 and the shear profileΩ −Ω� is an odd function of μ is less
relevant to the Sun, but as a basic model it is still of interest to fluid mechanics and we may
draw useful general conclusions in this case. Here we have J+ = −J−, I− = I+ = 2/3 and
the imaginary part of (5.4) can be simplified to

ci = ±
√√√√ 81|Q|J2+

8(Q2 + 9)
(√

Q2 + 9 + |Q|
) . (5.14)

Except for the special case of J+ = 0 (for which we would need to pursue higher orders
of the asymptotic expansion), there is always a positive ci solution and so, surprisingly, we
may conclude that if μ� = 0 andΩ(μ)−Ω� is odd, the flow is always unstable. Bounding
the denominator of (5.14) from below via (Q2 + 9)(

√
Q2 + 9 + |Q|) > 9 × 2|Q|, we

obtain a bound for the unstable growth rate,

ci <
3
4 |J+| ≤ 1

2 max |Ω�−Ω|. (5.15)

Interestingly, this bound is the same as (5.13), but we expect it to be looser since we have
bounded positive terms by zero. To give a concrete example for this instability, we consider

Ω = r + sμ, β = σμ, (5.16a,b)

where Ω features a ‘linear shear’ profile, analogous to Couette flow. Then we have

Q = 2πr
|σ | , J+= − s

4
. (5.17a,b)

The results of (5.14) with (5.17a,b) are shown figure 7(a), where they are compared with
the numerical solution. Again good agreement is found and the agreement improves as s
becomes smaller or σ becomes larger. The behaviour of ci is similar to the previous case
of even Ω , as is cr (not shown). An example for the solution of H is shown in figure 7(b).
Because Ω as a whole is neither even nor odd, H has no symmetry property either.

5.4. An example for μ� /= 0
When the critical level is off the equator (i.e. μ� /= 0), there is no obvious symmetry
property that can simplify the asymptotic solution for c given by (5.4). We have not been
able to obtain general conclusions regarding the condition for instability in this case, but
the asymptotic solution can still be helpful in understanding numerical results. As an
example, we consider

Ω = 1 − 0.1μ2, β = μ− d. (5.18a,b)

The zonal flow features the solar differential rotation as before, and β is a linear
profile with the critical level located at μ� = d. When d = 0, we recover the standard
configuration (5.10a,b).
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Figure 7. Instability of the profiles Ω = r + sμ and β = σμ with r = 1, m = 1. (a) Curves of ci vs σ for
s = 0.05, 0.1, 0.2. The asymptotic solution (5.14) with (5.17a,b) is plotted by dashed lines, and the numerical
solution is plotted by solid lines. (b) Numerical solution showing H for r = σ = 1 and s = 0.1, with eigenvalue
c = 0.96 + 0.0087i.

The asymptotic solution for c computed from (5.4) versus d is shown in figure 8 (dashed
lines), where it is compared with the numerical solution (solid lines). In figure 8(a) we also
plot the value of Ω at the critical level, Ω� = 1 − 0.1d2 (dotted line). The main feature
of this asymmetric case is that both solutions of (5.4) can have positive ci, and thus, there
are two branches of unstable modes. When d slightly departs from zero, the mode that
corresponds to (5.7b) becomes unstable (red dashed line), and its growth rate dominates
over the other unstable mode for a large range of d. On the other hand, as d increases,
the unstable mode that corresponds to (5.7a) (blue dashed line) is weakened significantly,
and disappears at d ≈ 0.37. Again good agreement is found between the asymptotic and
numerical results, but interestingly, there is a topological difference between them: the
asymptotic solution predicts that when the two eigenvalues are close, the curves of ci
intersect while those of cr avoid the intersection, while the opposite is true of the numerical
solution.

It appears from figure 8(a) that cr is always smaller than Ω�, which demands an
explanation. When the mode of the blue dashed line (or the red solid line) has cr approach
Ω� at d ≈ 0.37 (left panel), the corresponding ci (right panel) approaches zero. Thus, Ω�
appears to be an upper bound for cr for unstable modes. There is an underlying reason for
this phenomenon, related to the conservation of angular momentum, as we will explain in
§ 5.5.

The eigenfunctions of the two unstable modes at d = 0.36 are plotted in figure 9.
Figure 9(a) is the mode with the smaller growth rate ci. In fact, we have chosen d such that
this mode is almost as close to a neutral mode as we can compute numerically. The very
small ci makes the critical layer have a very fine structure. There is a significant difference
in the amplitudes of the tilting modes on the two sides of the critical layer. Figure 9(a) has
a much larger, stronger tilting mode to the left of the critical level, while figure 9(b) has
the opposite feature.

5.5. The conservation of angular momentum
The asymptotic analysis clearly indicates that the critical layer plays a fundamental role
in making the flow unstable. In our previous studies of instability induced by critical
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Figure 8. Eigenvalue c = cr + ici vs d whenΩ = 1 − 0.1μ2, β = μ− d and m = 1. The solid lines represent
the numerical solution, and the dashed lines are the results of the asymptotic solution (5.4). The dotted line in
panel (a) represents the rotation rate Ω at the critical level μ� = d, i.e. Ω� = 1 − 0.1d2. The inset in panel (a)
shows the region where the two eigenvalues become close.
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Figure 9. Two numerical solutions of the eigenfunction H corresponding to figure 8 at d = 0.36. The
eigenvalues are (a) c = 0.985 + 2.05 × 10−4i, (b) c = 0.965 + 8.36 × 10−3i. The case of panel (a) is the one
with almost the smallest growth rate that we can compute.

layers (Riedinger & Gilbert 2014; Wang & Balmforth 2018; Wang, Gilbert & Mason 2022),
conservation of momentum provides a useful tool for understanding the mechanism of the
instability. Indeed, it has been found that the critical layer provides a source of mean-flow
momentum, which drives the exponential growth of the outer flow. In the current problem
in spherical geometry, the relevant conservation law is that of angular momentum (2.36),
namely, ∫ π

0
2π sin2 θ

∂�U
∂t

dθ = 0. (5.19)

It is of interest to understand how this conservation is achieved, i.e. how different regions
contribute to the integral and balance each other.
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Substituting (2.20a–d), (2.24) and (2.28) into (2.34), we can derive the rate of change
of angular momentum per latitude,

2π sin2 θ
∂�U
∂t

= ∂

∂θ

∂L
∂t
, (5.20)

with

∂L
∂t

=
[
4π(1 − μ2)

{[
|Ω − c|2 − β2

]
Im(HH′∗)− ciΩ

′|H|2
}]

e2cit. (5.21)

Here L(θ, t) represents the total mean-flow angular momentum between the north pole and
co-latitude θ . Recall that the primes denote derivatives with respect to μ = cos θ . For the
clamshell instability studied above, Ω − c, Ω ′ and ci are all small at order O(ε), so that
outside, or at the edge of the critical layer, we have

∂L
∂t

= −4π(1 − μ2)β2Im(HH′∗)e2cit, (5.22)

to leading order of ε. This result corresponds to the fact that the Maxwell stress, i.e. a�b�
in (2.34), has the dominant contribution to the mean-flow response, whilst the Reynolds
stress u�v� has a minor effect due to the weak shear. We can then study the integral of
(5.20) over θ in different regions. We define θ� as the value of θ at the critical level
(i.e. cos θ� = μ�) and set � = O(ε1/2) as the half-thickness of the critical layer. Then,
outside the critical layer the integrals are∫ θ�−�

0
2π sin2 θ

∂�U
∂t

dθ = ∂L
∂t

∣∣∣∣
μ=μ�+�sin θ�

= 8πciΩ0|A+|2e2citI+, (5.23a)

∫ π

θ�+�
2π sin2 θ

∂�U
∂t

dθ = −∂L
∂t

∣∣∣∣
μ=μ�−�sin θ�

= 8πciΩ0|A−|2e2citI−, (5.23b)

where I− and I+ are the positive quantities defined in (5.3) and we have used H = H0 and
H′ = εH′

1 from § 4.2.1 as the leading-order approximation on the edge of the critical layer.
Inside the critical layer, using the inner solution given in § 4.2.2, we find the integral to be

∫ θ�+�

θ�−�
2π sin2 θ

∂�U
∂t

dθ = −∂L
∂t

∣∣∣∣
∞

η→−∞
= 4επ2(1 − μ2

�)|α1|2
|β ′
�|

Re
(

1
c1 −Ω1�

)
e2cit.

(5.24)

Applying the relations between the constants α1, α2, A− and A+ given in (4.22) and (4.24),
we can show that the value of (5.24) exactly cancels the sum of (5.23a) and (5.23b),
and results in (5.19) being satisfied. The critical layer thus provides a source of angular
momentum that balances that of the outer flow. We note that without the critical-layer
angular momentum (5.24), the only possibility that (5.23a) and (5.23b) could add up
to zero is if ci = 0, i.e. the tilting modes by themselves have to be neutral modes. This
demonstrates how the angular momentum provided by the critical layer is necessary to
drive the instability.

We may gain some further insights by considering the sign of the mean angular
momentum inside and outside the critical layer. Without loss of generality, we consider the
case in whichΩ0 > 0. Then both (5.23a) and (5.23b), giving the mean angular momentum
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of the tilting components, are positive, so that the contribution from the critical layer (5.24)
must be negative to make the conservation law (5.19) possible. Since

Re
(

1
c1 −Ω1�

)
= c1r −Ω1�

(c1r −Ω1�)2 + c2
1i
, (5.25)

we require
c1r < Ω1� or cr < Ω�. (5.26)

This means that, for any unstable mode, the real part of the phase velocity must be smaller
than the velocity of the zonal flow at the critical level. We can verify that all of the solutions
we have showed previously satisfy this condition. For example, in (5.11a) we have cr < r
for s > 0, and in figure 8(a) the curve of Ω� is always above that of cr. In the situation
of figure 8(a), we may also view (5.26) as a necessary condition for the existence of an
unstable mode: when cr is about to exceed Ω� at d ≈ 0.37, the unstable mode disappears.

We may undertake a similar analysis for the conservation of the mean toroidal field as
shown by (2.37), but we were not able to obtain straightforward general conclusions. This
is mainly because the local integral of ∂t�A in the critical layer has a less transparent
expression. Nevertheless, we document these results in Appendix B for the readers’
interest.

6. Conclusions

We have studied the linear instability of two-dimensional MHD flows on a sphere, a
problem with potential application to the instability of the solar tachocline. We derived
semicircle rules for the complex phase velocity, which provide rigorous bounds for general
flow and field profiles. The terms arising purely from the spherical geometry bring new
features to the problem. We used two bounding methods, which provide two versions of
the semicircle rules, each of which may be tighter for certain types of flows. We also found
that the magnetic field may increase the radii of the semicircles, which does not happen in
the case of Cartesian geometry (Hughes & Tobias 2001).

We then undertook an analytical study of the ‘clamshell instability’. Previous studies
have found that the instability tilts the basic magnetic field lines on the two hemispheres
in opposite directions, giving a pattern of an opening clamshell (Cally 2001; Cally et al.
2003). We studied this instability theoretically through an asymptotic analysis in the limit
of weak shear of the basic zonal flow. We found that if the basic zonal flow is a pure
solid body rotation, there exists an eigenmode that slightly tilts the entire magnetic field
and makes it rotate with the zonal flow. We refer to this disturbance as a ‘tilting mode’.
Including an additional weak shear in the zonal flow excites the critical level of the tilting
mode, located at the node of the sheared field profile. Disturbances exhibit a strong singular
behaviour near the critical level, inside the critical layer. We found that the critical layer
reverses the direction of tilting and makes the flow unstable.

Through matching the tilting mode and the critical layer, we derived the asymptotic
solution for the complex phase velocity, from which we obtained properties of the
instability for general profiles. Our investigations indicate that the magnetic field only
affects the instability through the location of the critical level and its gradient at the critical
level; the other details of the field profile do not matter. A sufficient condition for instability
is that the critical level is located where the angular velocity of the zonal flow is greatest.
When the zonal flow is even about the equator and the critical level is on the equator, we
derived a simple expression for the unstable growth rate, which indicates that the flow is
susceptible to instability when the angular velocity at the critical level is large compared
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with that on the rest of the sphere. When the shear of the zonal flow is odd and the critical
level is on the equator, the flow is always unstable. A simple bound for the unstable growth
rate was derived for these two types of flows with even or odd symmetry properties. In the
absence of symmetry, when the critical level is off the equator, there can be two branches
of unstable modes. The results of the asymptotic solution are in good agreement with the
numerical solutions.

A mechanism for the instability has been provided via the conservation of angular
momentum. The critical layer provides a source of angular momentum, which must be
balanced by a corresponding sink for the surrounding tilting mode. In order that the
angular momentum of the tilting mode and critical layer have opposite signs, the phase
velocity of the unstable mode must be smaller than the velocity of the zonal flow at the
critical level.

Our study reveals several problems that are left for future research. We found that
the magnetic field can increase the radii of the semicircles (over those for the purely
hydrodynamic flow), but we have not yet found an unstable mode that resides in this new
region. It is interesting to investigate whether it can be found for different flow and field
profiles. In addition, when the magnetic field is relatively strong, the destabilising effect
of the field is always associated with an increase of the semicircle radius. It remains an
open question as to whether there is a deeper link between these observations. The theories
of Thuburn & Haynes (1996), Sasaki et al. (2012) and Deguchi (2021) that may provide
different semicircles could be possible routes to approach this problem.

The clamshell instability we studied occurs for idealised MHD flows with weak shear
and a strong field that vanishes at one location. There are flows with field-induced
instabilities that do not belong to this category; for example, strong shear combined with
a weak magnetic field (Gilman & Fox 1997; Cally 2001), magnetic field profiles with
multiple zero points (Dikpati & Gilman 1999) and narrow bands of magnetic field (Dikpati
& Gilman 1999; Cally et al. 2003). Dissipation may also be of potential interest: our results
indicate that, for ideal MHD, the field lines on the two sides of the critical layers are
separated, so it would be interesting to explore the details of the reconnection caused by
diffusion as seen in the simulation of Cally (2001). It has also been found that diffusion
may destabilise the flow even when the zonal flow has no shear (Sharif & Jones 2005).
Beyond the incompressible MHD setting, instabilities also arise in shallow-water MHD
systems in spherical geometry (Márquez-Artavia et al. 2017; Gilman & Dikpati 2002). A
deeper understanding might be gained by studying whether a similar asymptotic analysis
is applicable to these instabilities. We also plan to explore the theory of nonlinear critical
layers, to understand the saturation of growing disturbances.
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Appendix A. The asymptotic solution for weak zonal flow

In this appendix we consider the matched asymptotic expansion for the situation where
the zonal flow Ω as a whole is weak compared with the magnetic field β. In this case,
we no longer require that Ω is a solid body rotation at leading order. As before, only the
wavenumber m = 1 is considered since it is the only wavenumber that admits the tilting
mode solution (4.5a–d). The requirement for β is the same as before, i.e. that it passes
through zero at μ� with a gradient that is of order unity or larger. As we noted previously,
the derivation here is slightly different to that presented in the main text but the final
equation that determines the eigenvalue, (5.1), remains the same.

We may regard the weak zonal flow as a perturbation to the tilting mode (4.5a–d) at
Ω = 0, which also perturbs c away from zero,

Ω = εΩ1(μ), c = εc1 + · · · . (A1a,b)

For the outer solution of H, the expansion is

H = H0 + ε2H1 + · · · . (A2)

Here H0 is still expressed by the piecewise tilting mode (4.10), but the next order of (A2)
is now ε2, due to the absence of O(ε) terms in the coefficients of H in (2.29). Substituting
(A1a,b) and (A2) into (2.29), the O(ε2) terms yield an equation for H1,

[β2(1 − μ2)H′
1]′ +

[
2β(μβ)′ − β2

1 − μ2

]
H1

= [(Ω1 − c1)
2(1 − μ2)H′

0]′ +
[

2(Ω1 − c1)(μΩ1)
′ − (Ω1 − c1)

2

1 − μ2

]
H0. (A3)

Since H0 satisfies (2.29) for c = 0, β = 0 and Ω = Ω1 − c1 for any Ω1 and c1 (see the
exact solution (4.1a–d)), we may simplify (A3) to

[β2(1 − μ2)H′
1]′ +

[
2β(μβ)′ − β2

1 − μ2

]
H1 = 2c1(Ω1 − c1)H0. (A4)

We may now solve for H1 using the same method as before. We find that ε2H1 ∼ ε2(μ−
μ�)

−1, which becomes as large as H0 when μ− μ� ∼ ε2. Hence, the critical layer has the
small length scale of ε2.

For the inner solution, the leading-order terms in the local equation are still those with
spatial derivatives, due to the small length scale:

(SH′)′ = 0, S = (Ω − c)2 − β2. (A5a,b)

In order to obtain a local solution that is uniformly valid throughout the critical layer,
Ω − c needs to balance β, which implies that Ω − c ∼ β � β ′

�(μ− μ�) = O(ε2) in the
critical layer. But in (A1a,b), both Ω and c are at O(ε), so the only possibility is that c is
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the same as Ω at order ε, and their difference is at order ε2, which means that

c = Ω� + ε2c2 + · · · . (A6)

Introducing the local coordinate

η = μ− μ�

ε2 , H = H(η)+ · · · , (A7a,b)

(A5a,b) becomes
d

dη

[
(c2

2 − β ′2
� η

2)
dH
dη

]
= 0. (A8)

The remainder of the calculation is the same as § 4. We solve (A4) and (A8), and then
match them to find the equation for the eigenvalue. The final result is

c2∫ μ�

−1
(c1 −Ω1)(1 − μ2) dμ

+ c2∫ 1

μ�

(c1 −Ω1)(1 − μ2) dμ
= 2iπc1

|β ′
�|(1 − μ2

�)
2 . (A9)

Using the original variables, this equation becomes

c −Ω�∫ μ�

−1
(c −Ω)(1 − μ2) dμ

+ c −Ω�∫ 1

μ�

(c −Ω)(1 − μ2) dμ
= 2iπc

|β ′
�|(1 − μ2

�)
2 , (A10)

which we may now compare to (5.1). The only difference is that the Ω� on the right-hand
side has now been replaced by c. However, according to (A6), c andΩ� are the same up to
order O(ε2), so (A10) and (5.1) are equivalent in the limit of small ε, and we may use the
latter as the uniform expression.

To demonstrate the accuracy of the asymptotic solution, we consider the standard flow
(5.10a,b) with r = s,

Ω = s − sμ2, β = σμ. (A11a,b)

In this case, there is no longer a solid body rotation to leading order inΩ , but our analysis
indicates that the solution (5.11) with r = s is still valid when s is small. The comparison
between (5.11) with r = s and the numerical solution is plotted in figure 10. We see that
the asymptotic solution is very precise for most parameters. It only fails when σ becomes
small, and in this case the assumption that Ω � β is no longer valid.

Appendix B. The conservation of the mean toroidal field

Performing an analysis similar to § 5.5 for the mean toroidal field governed by (2.35), we
find that∫ θ�−�

0

∂�A
∂t

dθ = −2ciβ
′
�|A+|2,

∫ π

θ�+�
∂�A
∂t

dθ = 2ciβ
′
�|A−|2, (B1a,b)

and ∫ θ�+�

θ�−�
∂�A
∂t

dθ = −2ciβ
′
�

{
π2|α1|2

|Ω1� − c1|2β ′2
�

+ 2Im
[

πα1α
∗
2

(Ω1� − c1)|β ′
�|

]}
. (B2)

Given the conservation law (2.37), the mean-field modification in the critical layer is
therefore responsible for the difference between |A−| and |A+|, i.e. the amplitudes of
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Figure 10. Eigenvalue c = cr + ici vs σ for the basic stateΩ = s(1 − μ2), β = σμ with s = 0.1 and s = 0.2.
Solid lines represent numerical solutions, and dashed lines represent the asymptotic solution (5.11) with r = s.

the tilting modes on the two sides of the critical layer. However, such a difference is not
necessary for the instability, and it is also not easy to determine the sign of (B2) without
further knowledge of the relation between α1 and α2; we conclude that limited insights can
be drawn from this conservation law.
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