J. Austral. Math. Soc. (Series A) 52 (1992), 103-110

EXTREMAL PROBLEMS IN H^p

TAKAHIKO NAKAZI

(Received 6 March 1990; revised 11 July 1990 and 11 September 1990)

Communicated by P. C. Fenton

Abstract

Let $1 \le p < \infty$ and 1/p + 1/q = 1. If $\phi \in L^q$, we denote by T_{ϕ} the functional defined on the Hardy space H^p by

$$T^{p}_{\phi}(f) = \int_{-\pi}^{\pi} f(e^{i\theta})\phi(e^{i\theta}) \, d\theta/2\pi \, .$$

A function f in H^p , which satisfies $T^p_{\phi}(f) = ||T^p_{\phi}||$ and $||f||_p \le 1$, is called an extremal function. Also, ϕ is called an extremal kernel when $||\phi||_q = ||T^p_{\phi}||$. In this paper, using the results in the case of p = 1, we study extremal kernels and extremal functions for p > 1.

1991 Mathematics subject classification (Amer. Math. Soc.) 30 D 5, 46 J 15. Keywords and phrases: Hardy space, extremal problem, strong outer function.

1. Introduction

Let U be the open unit disc in the complex plane and ∂U the boundary of U. A function f which is analytic in U is said to belong to the class H^p (0 if

$$\|f\|_{p} = \lim_{r \to 1} \left\{ \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\theta})|^{p} d\theta \right\}^{1/p} < \infty.$$

The class of bounded analytic functions is denoted by H^{∞} and $||f||_{\infty} = \lim_{r \to 1} \max_{0 \le \theta \le 2\pi} |f(re^{i\theta})|$. Each $f \in H^p$ has a radial limit $f(e^{i\theta})$ almost

103

This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education, Japan.

^{© 1992} Australian Mathematical Society 0263-6115/92 \$A2.00 + 0.00

everywhere. If $h \in H^p$ has the form

$$h(z) = \exp\left\{\int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log|h(e^{it})| \, dt/2\pi + i\alpha\right\} \ (z \in U)$$

for some real α , then h is called an outer function. We call $Q \in H^{\infty}$ an inner function if $|Q(e^{i\theta})| = 1$ a.e. on ∂U . Let h be a nonzero function in H^1 . Then h is an outer function if and only if u is constant whenever $uh \in H^1$ for some $u \in L^{\infty}$ with $u \ge 0$ a.e.

DEFINITION. Let g be a nonzero function in H^1 . We say g is a strong outer function if it has the following property: if $ug \in H^1$ for some Lebesgue measurable u with $u \ge 0$ a.e., then u is constant.

For $k \in L^q$, put

$$||k + zH^{q}|| = \inf\{||k + z\ell||_{q} : l \in H^{q}\}.$$

Then $||T_k^p|| = ||k + zH^q||$ where 1/p + 1/q = 1. Also ϕ is an extremal kernel if and only if $||\phi||_q = ||\phi + zH^q||$. When $q < \infty$ and 1/p + 1/q = 1, if $k \in L^q$ there exists a unique extremal kernel ϕ in $k + zH^q$ and a unique extremal function f in H^p such that

(1)
$$f(e^{i\theta})\phi(e^{i\theta}) \ge 0$$
 a.e. θ

and

(2)
$$|f(e^{i\theta})|^p = ||\phi||_q^{-q} |\phi(e^{i\theta})|^q \text{ a.e. } \theta$$

(cf. [2, pages 132-133]). When $q = \infty$ and p = 1, if $k \in L^{\infty}$ there exists an extremal kernel ϕ in $k + zH^{\infty}$, but there may not exist any extremal functions in H^1 . Moreover, if an extremal function exists then the extremal kernel is unique. In general, there may exist many extremal functions. In this paper S_k denotes the set of extremal functions of H^1 . If S_k is weak-* compact in H^1 , then S_k consists of functions f in H^1 which have the following form:

(3)
$$f = \gamma \prod_{j=1}^{n} (z - a_j)(1 - \overline{a}_j z)g,$$

where γ is positive constant, $|a_j| \le 1$ $(1 \le j \le n)$ and g is a strong outer function and the extremal function ϕ has the form

(4)
$$\phi = \overline{z}^n \frac{|g|}{g}.$$

This has been shown by the author [4, Theorem 2]. In this paper, using this description of S_k , we describe extremal kernels and extremal functions for

1 and <math>1/p + 1/q = 1. Hence extremal functions for 1

have similar forms to those for p = 1. Previously these have been described in the case of rational kernels in different forms and by a different method (cf. [3]).

2 General kernels

The following simple theorem, which gives a relation between extremal problems of H^1 and H^p (1 , is essential in this paper.

THEOREM 1. For each p (1 and for each function

 $k \in L^q(1/p + q/q = 1)$

with $k \notin zH^q$, if ϕ is a unique extremal kernel in $k + zH^q$ and f is a unique extremal function of T_k^p then

$$\phi = \phi_0 h$$
, $f = \|\phi\|_a^{-q} Q h^{q/p}$

and

$$\|\phi\|_q^{-q}Qh^q \in S_{\phi_0}, \qquad \phi_0 = \overline{Q}|h|^q h^{-q},$$

where h is an outer function with $|\phi| = |h|$, and Q is the inner part of f. Conversely, if ϕ and f have the forms above, then ϕ is an extremal kernel and f is an extremal function of T^p_{ϕ} .

PROOF. If ϕ is an extremal kernel, then by (2) in the introduction, $\log |\phi|$ is integrable and hence there exists an outer function h with $|\phi| = |h|$. By (2), $f = \|\phi\|_q^{-q/p} Q h^{q/p}$, where Q is the inner part of f. Put $\phi_0 = \phi/h$. Then by (1) in the introduction

$$\|\phi\|_q^{-q/p}Qh^{q/p+1}\phi_0 \ge 0 \text{ a.e. on } \partial U.$$

The L^1 -norm of

$$\|\phi\|_{q}^{-q/p}Qh^{q/p+1} = \|\phi\|_{q}^{-q/p}Qh^{q}$$

is $\|\phi\|_a$. Hence

$$\|(\|\phi\|_q^{-q}Qh^q\phi_0)\|_1 = 1$$
 and $\|\phi\|_q^{-q}Qh^q\phi_0 \ge 0$ a.e.

By [2, page 133], $\|\phi\|_q^{-q}Qh^q$ belongs to S_{ϕ_0} and $\phi_0 = \overline{Q}|h|^q h^{-q}$.

When p = 2, ϕ is an extremal kernel for H^2 if and only if ϕ belongs to \overline{H}^2 . This trivial result is also a corollary of the following.

COROLLARY 1. Let ϕ be a function in L^q with $\phi \notin zH^q$, $1 < q < \infty$ and 1/p + 1/q = 1. Then ϕ is a unique extremal kernel of T^p_{ϕ} if and only if

$$\phi = \overline{Q} |h|^q h^{-q/p} \,,$$

where Q is an inner function and h is an outer function in H^{q} .

PROOF. If ϕ is a unique extremal kernel then by Theorem 1, $\phi = \phi_0 h$ and $\phi_0 = \overline{Q} |h|^q h^{-q}$. Hence the 'only if' part follows. Conversely, if $\phi = \overline{Q} |h|^q h^{-q/p}$ then $|\phi| = |h|$. Put $f = ||\phi||_q^{-q} Q h^{q/p}$. Then $\phi f \ge 0$ a.e. on ∂U and $||\phi||_q^{-q} Q h^q \in S_{\phi_0}$ if $\phi_0 = \phi/h$.

COROLLARY 2. Let g = Bh be a nonzero function in H^q $(1 < q < \infty)$, where B is an inner function and h is an outer function. Then $\|\overline{g} + zH^q\| = \|\overline{g}\|_q$ if and only if $Bh^{2-q}/|h|^{2-q}$ is an inner function.

PROOF. If $\|\overline{g} + zH^q\| = \|\overline{g}\|_q$ then \overline{g} is a unique extremal kernel and $|\overline{g}| = |h|$ by the definition of g. By Corollary 1, $\overline{Bh} = \overline{Q}|h|^q h^{-q/p}$ and hence $\overline{B}|h|^2 h^{-2} = \overline{Q}|h|^q h^{-q}$. This implies the 'only if' part. The 'if' part is also clear by Corollary 1.

COROLLARY 3. (i) If g and g^{-1} are in H^{∞} and nonconstant, then for any q with $1 < q < \infty$, and $q \neq 2$, $\|\overline{g} + zH^{q}\| \neq \|\overline{g}\|_{q}$.

(ii) If g is an inner function, then for any q with $1 < q < \infty$, $\|\overline{g} + zH^q\| = \|\overline{g}\|_q$.

(iii) Suppose $2 < q < \infty$. If $g \in H^q$ is a nonconstant outer function, then $\|\overline{g} + zH^q\| \neq \|\overline{g}\|_q$.

(iv) If $1 < q \le 2$, then there exists an outer function g in H^q such that $\|\overline{g} + zH^q\| = \|\overline{g}\|_q$.

(v) If $2 < q < \infty$, then there exists a nonzero function g such that g is not an inner function in H^q and $\|\overline{g} + zH^q\| = \|\overline{g}\|_q$.

PROOF. (i) If g and g^{-1} are i H^{∞} , then for any q with $1 < q < \infty$, $g \in H^{q}$ and $g^{2-q}/|g|^{2-q}$ is not an inner function if $q \neq 2$. For, if $g^{2-q}/|g|^{2-q} = Q$ is inner, then $g^{q-2}Q$ is a nonnegative function in H^{∞} and hence it is a nonzero constant. Thus g is a constant. This contradiction and Corollary 2 imply (i). Part (ii) is clear from Corollary 2.

(iii) When $2 < q < \infty$, if g is outer then $g^{q-2} \in H^{q/q-2} \subset H^1$. If $\|\overline{g} + zH^q\| = \|\overline{g}\|_q$, then by Corollary 2 there exists an inner function Q

such that

$$Q = \frac{g^{2-q}}{|g|^{2-q}} = \frac{|g|^{q-2}}{g^{q-2}}.$$

Hence Qg^{q-2} is a non-negative function in H^1 and hence Qg^{q-2} is outer (see [4, Proposition 5]). Thus Q and g are constants. This contradiction implies (iii).

(iv) When 1 < q < 2, put $g = \{-(z-1)^2\}^{1/2-q}$. Then $g^{2-q}/|g|^{2-q} = z$. Now part (iv) follows from Corollary 2.

(v) Put $B = z^2$, Q = z and $g = \{-(z-1)^2\}^{1/q-2}$. Then $Bg^{2-q}/|g|^{2-q} = Q$ and $g \in H^q$ if q > 2.

3. Special kernels

Let C denote the space of continuous functions on ∂U and set $A = H^{\infty} \cap C$. Then $H^{1} = (C/zA)^{*}$. If $\phi_{0} \in C$, then $S_{\phi_{0}}$ is weak-* compact (cf. [4, page 225]). If $k \in L^{q}$ is a good function, then the ϕ_{0} in Theorem 1 may satisfy the condition that $S_{\phi_{0}}$ is weak-* compact.

THEOREM 2. Let 1 and <math>1/p + 1/q = 1. Suppose $\phi = \phi_0 h$ is a unique extremal kernel of T_{ϕ}^p and S_{ϕ_0} is weak-* compact, where h is an outer function in H^q with $|\phi| = |h|$. If f is an extremal function of T_{ϕ}^p , then

$$\phi = \overline{z}^n \frac{|g|}{g} \prod_{j=1}^s (1 - \overline{a}_j z)^{2/q} \left\{ \prod_{j=s+1}^n (z - a_j)(1 - \overline{a}_j z) \right\}^{1/q} g^{1/q}$$

and

$$f = \|\phi\|_q^{-q} \prod_{j=1}^s (z-a_j)(1-\overline{a}_j z)^{2/p} \left\{ \prod_{j=s+1}^n (z-a_j)(1-\overline{a}_j z) \right\}^{1/p} g^{1/p},$$

where $|a_j| < 1$ if $1 \le j \le s$, $|a_j| = 1$ if $s + 1 \le j \le n$ and g is a strong outer function.

PROOF. By hypothesis S_{ϕ_0} is weak-* compact. Hence by (3) in the introduction and Theorem 2, we have

$$\|\phi\|_q^{-q}Qh^q = \gamma \prod_{j=1}^n (z-\alpha_j)(1-\overline{\alpha}_j z)g_1$$

[5]

Takahiko Nakazi

where γ is a positive constant, $|\alpha_j| \leq 1$ $(1 \leq j \leq n)$ and g_1 is a strong outer function, and Q is the inner part of f. Put $g = \gamma g_1$. Then g is also a strong outer function and $|g|g^{-1} = |g_1|g_1^{-1}$ and we can write the right hand as the following:

$$\|\phi\|_q^{-q}Qh^q = \prod_{j=1}^n (z-a_j)(1-\overline{a}_j z)g$$

where $|a_j| < 1$ if $1 \le j \le s$ and $|a_j| = 1$ if $s + 1 \le j \le n$. Hence

$$Q = \prod_{j=1}^{s} \frac{z - a_j}{1 - \overline{a}_j z} \text{ and } h^q = \|\phi\|_q^q \prod_{j=1}^{s} (1 - \overline{a}_j z)^2 \prod_{j=s+1}^{n} (z - a_j)(1 - \overline{a}_j z)g.$$

By (4) in the introduction, $\phi_0 = \overline{z}^n |g|g^{-1}$. Now Theorem 1 implies the theorem.

COROLLARY 4. Let 1 and <math>1/p + 1/q = 1. If $k = k_2/k_1 \in L^q$ with $k \notin zH^q$ and k_j is a nonzero function H^∞ for j = 1, 2, then the extremal kernel ϕ of T_k^p has the form

$$\phi = \overline{Q}_1 Q_2 h_2 / h_1 = \phi_0 h, \ \phi_0 = \overline{Q}_1 Q_2 \quad and \quad h = h_2 / h_1$$

where $k_1 = Q_1 h_1$, $k_1 \phi = Q_2 h_2$, Q_j is inner and h_j is outer. If Q_1 is a finite Blaschke product then Q_2 is also a finite Blaschke product and degree of $Q_2 \leq$ degree of Q_1 . Suppose $\{\beta_j\}_{j=1}^n$ are the zeros of Q_1 , $\{\alpha_j\}_{j=1}^t$ are the zeros of Q_2 and $t \leq n$. If f is a unique extremal kernel of T_k^p , then

$$\phi = \prod_{j=t+1}^{s} (1 - \overline{a}_j z)^{2/q} \left\{ \prod_{j=s+1}^{n} (z - a_j)(1 - \overline{a}_j z) \right\}^{1/q} \\ \times \gamma^{1/q} \prod_{j=1}^{t} \frac{(z - \alpha_j)(1 - \overline{\alpha}_j z)^{2/q-1}}{(z - \beta_j)(1 - \overline{\beta}_j z)^{2/q-1}} \prod_{j=t+1}^{n} \frac{1}{(z - \beta_j)(1 - \overline{\beta}_j z)^{2/q-1}}$$

and

$$\begin{split} f &= \|\phi\|_q^{-q} \prod_{j=t+1}^s (z-a_j)(1-\overline{a}_j z)^{2/p-1} \left\{ \prod_{j=s+1}^n (z-a_j)(1-\overline{a}_j z) \right\}^{1/p} \\ &\times \gamma^{1/p} \prod_{j=1}^t \frac{(1-\overline{\alpha}_j z)^{2/p}}{(1-\overline{\beta}_j z)^{2/p}} \prod_{j=t+1}^n (1-\overline{\beta}_j z)^{-2/p} \,, \end{split}$$

where $|a_j| < 1$ if $t+1 \le j \le s$, $|a_j| = 1$ if $s+1 \le j \le n$ and γ is a positive constant.

PROOF. The first part is clear. For the second part, since $\phi_0 = \overline{Q}_1 Q_2$ and S_{ϕ_0} is non-empty by Theorem 2, Q_2 is a finite Blaschke product of degree at most degree Q_1 . We will prove only the third part. Since $\phi_0 = \overline{Q}_1 Q_2$ is a continuous function, S_{ϕ_0} is weak-* compact and hence we can apply Theorem 2 to the corollary. Since

$$\phi_0 = \prod_{j=1}^n \frac{1 - \overline{\beta}_j z}{z - \beta_j} \prod_{j=1}^t \frac{z - \alpha_j}{1 - \overline{\alpha}_j z},$$

putting S^1 = the unit sphere of H^1 , we obtain that

$$S_{\phi_0} = \left\{ \gamma \prod_{j=t+1}^n (z-a_j)(1-\overline{a}_j z)g_1 \in S^1 \colon |a_j| < 1 \\ \text{if } t+1 \le j \le s \text{ and } |a_j| = 1 \text{ if } s+1 \le j \le n \right\}$$

and

$$g = \gamma g_1 = \gamma \prod_{j=1}^t \frac{(1 - \overline{\alpha} - jz)^2}{(1 - \overline{\beta}_j z)^2} \prod_{j=t+1}^n (1 - \overline{\beta}_j z)^{-2}.$$

This can be proved from the fact that

$$\left(\prod_{j=1}^{t} \frac{1-\overline{\beta}_j z}{z-\beta_j} \prod_{j=1}^{t} \frac{z-\alpha_j}{1-\overline{\alpha}_j z}\right) \prod_{j=1}^{t} \frac{(1-\overline{\alpha}_j z)^2}{(1-\overline{\beta}_j z)^2} \ge 0 \text{ a.e. on } \partial U$$

and

$$S_{\phi_1} = \left\{ \gamma_1 \prod_{j=t+1}^n (z - a_j) (1 - \overline{a}_j z) \prod_{j=1,t+1}^n (1 - \overline{\beta}_j z)^{-2} \in S^1 : |a_j| < 1 \\ \text{if } t + 1 \le j \le s \text{ and } |a_j| = 1 \quad \text{if } s + 1 \le j \le n \right\}.$$

where $\phi_1 = \prod_{j=t+1}^n \frac{1-\overline{\beta}_j z}{z-\beta_j}$.

Thus Theorem 2 implies the corollary if the concrete forms of ϕ_0 and g are used.

A. J. Macintyre and W. W. Rogosinski [3] described completely the extremal functions and the kernels in the case of rational kernels, by a different method. Their result follows from Corollary 4. When a kernel k is analytic on ∂U , the extremal kernel [5, page 141] and the extremal function [1] had been described.

If a kernel k is analytic on ∂U , then the extremal kernel ϕ of k is of the form $\phi = Q^{2/p}G$ where Q is a trigonometric polynomial and G is

Takahiko Nakazi

110

holomorphic on ∂U (cf. [5, page 141]). It is not difficult to see that S_{ϕ_0} is weak-* compact. Hence we can apply Theorem 2 to ϕ . This describes an extremal kernel and an extremal function a little differently from [5] and [1].

Acknowledgement

We are very grateful to the referee who improved the exposition and pointed out the errors in the first draft of this paper.

References

- [1] Y. Abu-Muhanna, 'Support points of the unit ball of $H^p(1 \le p \le \infty)$ ', Proc. Amer. Math. Soc. 89 (1983), 229-235.
- [2] P. L. Duren, Theory of H^p Spaces, Academic Press, New York, 1970.
- [3] A. J. Macintyre and W. W. Rogonsinski, 'Extremum problems in the theory of analytic functions', Acta Math. 82 (1950), 275-325.
- [4] T. Nakazi, 'Exposed points and extremal problems in H¹', J. Funct. Anal. 53 (1983), 224-230.
- [5] H. S. Shapiro, 'Regularity properties of the element of closest approximation', Trans. Amer. Math. Soc. 181 (1973), 127-142.

Faculty of Science Hokkaido University Sapporo 060 Japan