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Abstract. The Westerlund 1 Galactic cluster hosts an eclectic mix of coeval massive stars. At a
modest distance of 4 — 5 kpc, it offers a unique opportunity to study the resolved stellar content
of a young (~5Myr) high mass (5 - 10" M) star cluster. With the aim of testing single-star
evolutionary predictions, and revealing any signatures of binary evolution, we discuss on-going
analyses of NTT/SOFI near-IR spectroscopy of Wolf-Rayet stars in Westerlund 1. We find that
late WN stars are H-poor compared to their counterparts in the Milky Way field, and nearly all
are less luminous than predicted by single-star Geneva isochrones at the age of Westerlund 1.
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1. Introduction

Westerlund 1 (Wd1) is amongst the most massive young clusters in the Galaxy. We
witness this coeval collection of stars at an interesting epoch, as Clark et al. (2005) have
identified a plethora of post-main sequence massive stars, indicating an age of 5+1 Myr
and a main sequence turn-off at approximately 30 — 35 Mg (O 7V).

A high fraction of dust producing WC stars and coincidental hard X-ray sources
amongst the observed Wolf-Rayet (WR) stars suggests a binary fraction approaching
unity (Crowther et al. 2006). Indeed, Schneider et al. (2014) predict that after only a few
Myr, the majority of a cluster’s most luminous stars are the products of binary interac-
tion. Here we report on preliminary tailored spectral analyses of 15 WR stars in Wdl
from Crowther et al. (2006), and discuss how derived parameters compare to single-star
and binary evolutionary models.

2. Data & Analysis Method

We obtained NTT/SOFI spectra of 23 WR stars in Wd1l using IJ and HK grisms
(R ~1000), identified by differential narrow-band imaging (Crowther et al. 2006).

We have carried out spectral modelling of 15 of these WR. stars (neglecting very late
WNO9-10 or dusty WC) — 2 of which are shown in Fig 1 — using the CMFGEN model
atmosphere code (Hillier & Miller 1998) to derive effective temperatures, luminosities,
abundances, mass-loss rates and wind velocities.

We constrain luminosities and extinction simultaneously, by requiring model spectral
energy distributions to match a combination multi-band photometry and flux calibrated
spectra, as shown in Fig. 2.

3. Results

Most WR stars are less luminous than single-star Geneva isochrones covering the
expected age of Westerlund 1; older ages are precluded by the presence of high-mass
main sequence stars. Late WN stars are generally H-poor compared to their field Milky
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Figure 1. Left. NTT/SOFI spectrum (solid) and corresponding CMFGEN model (dotted) for
Wd1-I (WN8). Right As left for Wdl-E (WC9). CMFGEN parameters are displayed in the
upper panels.
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Figure 2. Left SED of Wd1-1, with flux calibrated NTT/SOFI spectra and multiband photome-
try (R:VLT/FORS2, JHK:SOFI, [5.8]-[8.0]:GLIMPSE). Right As left for Wd1-E. Model spectra
are reddened using a Howarth (1983) extinctin law.

way counterparts. Low luminosity and H deficiency amongst the WN stars is consistent
with outcomes of binary evolution (e.g. Eldridge et al. 2008). Preliminary mass-loss rates
of the H-free early WN stars are systematically lower than those adopted by stellar
models for their luminosities. Overall, The WR stars in Westerlund 1 analysed to date
display properties that are inconsistent with the current generation of single-star models
(Ekstrom et al. 2012). Analysis of the dust producing WC stars is forthcoming.
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