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Understanding the statistics of bedload particle motions is of great importance. To model
the hop events which are defined as trajectories of particles moving successively from the
start to the end of their motions, recently, Wu et al. (Water Resour. Res., vol. 56, 2020,
p. €2019WRO025116) have successfully performed individual-based simulations according
to the Fokker—Planck equation for particle velocities. However, analytical solutions are
still not available due to (i) difficulties in treating the velocity-dependent diffusivity, and
(i1) a knowledge gap in incorporating the termination of particle motions for the equation.
To tackle the above-mentioned challenges, we first specify a Robin boundary condition
representing the deposition of particles. Second, for analytical solutions of hop statistics,
a variable transformation is devised to deal with the velocity-dependent diffusivity. The
original bedload transport problem is thus found to be governed by the classic equation
for the solute transport in tube flows with a constant diffusivity after the transformation.
Finally, through solving the spatial and temporal moments of the governing equation, we
investigate the influence of the deposition rate on three key characteristics of particle hops.
Importantly, we have related the deposition rate to the mean travel times and hop distances,
enabling a direct determination of this physical parameter based on measured particle
motion statistics. The analytical solutions are validated by experimental observations
with different bedload particle diameters and transport conditions. Based on the limited
experimental datasets, the deposition frequency is shown to decrease as the shear stress
increases when the flow rate is not small.
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1. Introduction

As a specific form of sediment transport, bedload transport describes the movement
of relatively coarse particles adjacent to the surface of the streambed under different
motions of rolling, sliding and saltation. Due to the near-bed turbulence, complex
fluid—particle interactions and particle-bed collisions, bedload particle motions are
inherently stochastic (Furbish et al. 2012a; Ancey 2020), with the probability theory
serving as a basic tool for insightful investigations. The probability description of bedload
transport has since inspired intense and ever-growing research interest, stemming from
the pioneering work of Einstein (1936, 1942, 1950) and Kalinske (1947). The statistical
characteristics of the entrainment, motions and deposition of bedload particles, and more
specifically the probability density functions (p.d.f.s) of velocities, accelerations, travel
times, hop distances and resting times are fundamental and of great importance to various
applications in the fields of geology, hydraulics and environmental sciences (Chien & Wan
1999).

Laboratory experiments are direct and the most important means of collecting statistics
for bedload particle motions. Different research groups around the world have performed
high-resolution experiments over the past decades. Important results were obtained under
different flow and sediment transport conditions. Regarding the p.d.f. of the streamwise
velocities of bedload particles, for example, the exponential-like distributions were
observed under subcritical flow conditions (Froude number Fr < 1) (Lajeunesse, Malverti
& Charru 2010; Roseberry, Schmeeckle & Furbish 2012; Fathel, Furbish & Schmeeckle
2015; Liu, Pelosi & Guala 2019), while the Gaussian-like distributions were reported for
supercritical flow conditions (Fr > 1) (Martin, Jerolmack & Schumer 2012; Ancey &
Heyman 2014; Heyman, Bohorquez & Ancey 2016). This difference in the literature for the
form of the velocity distribution was further investigated and explained by the two-regime
scaling of the hop distance—time relation (Wu, Furbish & Foufoula-Georgiou 2020), which
corresponds to two groups of particle hops (i.e. short and long trajectories) with distinct
motion statistics. It is the mix of the two that leads to the exponential-like distribution,
while the long hops alone result in the Gaussian-like distribution. Thus, the ratio of the
two groups of hops, as closely related to the transport conditions, determines the specific
form of the velocity distribution.

Regarding theoretical investigations for the kinematics of bedload particles based
on these detailed experimental measurements, great progress has been made with the
introduction and application of the Fokker—Planck (FP) equation for particle velocities.
A general form of the FP equation, where the drift and diffusivity depend on the particle
velocity, was introduced by Furbish, Roseberry & Schmeeckle (2012b) with reference to
results in statistical mechanics. The form of the drift and diffusivity can be determined
by calculating the first- and second-order moments of particle accelerations, respectively,
according to measured trajectories of bedload particles. With specific assumptions
involved, e.g. using the mean-reverting (or the Ornstein—Uhlenbeck) process to describe
the stochastic velocity of a bedload particle during motions, a simpler form of the FP
equation with a constant diffusivity can be obtained, which can be analytically solved
under the equilibrium transport condition to give a truncated Gaussian distribution for
the particle velocities (Ancey & Heyman 2014; Pierce, Hassan & Ferreira 2022). The
exponential-like distribution for particle velocities can also be theoretically obtained by
considering a different form of the FP equation with a constant diffusivity (e.g. Fan et al.
2014).

Following the previous work of Furbish ef al. (2012b), Wu et al. (2020) revised the
calculation of the acceleration by associating it with the linear interpolation for an
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intermediate velocity (or the average velocity) as the starting point during analysing the
same dataset used by Fathel et al. (2015). The most important results of the new analysis
were the determination of the zero drift and the diffusivity depending exponentially on the
particle velocity for the general form of the FP equation, correcting previous assessments
in the literature (Furbish er al. 2012b). The corresponding Monte Carlo particle-tracking
(individual-based) simulation was shown able to reproduce well the key features of the
measured kinematic quantities for bedload particle hops, including that of velocities,
accelerations, travel times, hop distances, as well as the identified two-regime scaling for
the hop distance—time relation. Note that the form of the FP equation with the diffusivity
depending exponentially on the velocity is not unique to bedload transport. It has also
been discussed for other physical processes (Cherstvy & Metzler 2013; Wang et al. 2020),
such as bombardment-enhanced diffusion (Maby 1976) and irradiation-enhanced diffusion
(Kowall, Peak & Corbett 1976).

It is the lack of an analytical analysis for the continuum FP equation (due to
difficulties in treating the velocity-dependent diffusivity) that has driven the application
of the individual-based simulation to obtain numerical solutions. Aiming at conducting
theoretical analysis enabling further exploration and discussions on the two-regime scaling
relation, in a recent work, Wu et al. (2021) devised a velocity transformation mapping
the physical velocity into an opportunely distorted velocity axis, resulting in a governing
equation intrinsically identical to that of Taylor dispersion (Taylor 1953) for solute
transport within shear flows. The major difference of this approach (Wu et al. 2021) from
the earlier work (Wu et al. 2020) is the fundamental assumption of a prescribed pattern
for the particle velocity variations. That is, it assumes that the particle is performing a
Brownian motion in the stretched velocity dimension, which can be compared with the
work of Ancey & Heyman (2014) prescribing a mean-reverting process for the particle
velocity. Instead, the governing equation used by Wu et al. (2020) was determined from
the general form of the FP equation (Furbish et al. 2012b) by experimentally obtaining
the drift and diffusivity terms according to their definitions. Consequently, although the
obtained theoretical expression (Wu et al. 2021) captures perfectly the measured data,
the relationship between corresponding drift and diffusivity in the governing equation
was shown to follow a certain fixed form, which may or may not be the case for the
bedload particle transport. Thus, there is still a need to find an analytical method to treat
the exponentially velocity-dependent diffusivity for the FP equation as introduced and
discussed by Furbish et al. (2012b) and Wu et al. (2020).

One more obstacle for analytically solving the FP equation lies in specifying an
appropriate (velocity) boundary condition for particles ceasing their motions. This
condition may be straightforward if observing the particle hop from the Lagrangian
perspective: the particle may stop its motion when its velocity decreases to zero, as
specified in previous simulations (Furbish et al. 2012b; Fan et al. 2014, 2016). And it
is also straightforward if we assign a stopping chance for the particle at each time when its
velocity drops to (or below) zero, as a means of generally describing how easily the particle
can stop its motion, the value of which of course is related to the transport environment.
In the individual-based numerical simulation by Wu et al. (2020), a stopping chance of
10 % was determined by comparing the mean travel time of the simulation with that
of the measured data. It remains unknown how to translate such a motion termination
condition (from the Lagrangian perspective) into the boundary condition for the governing
FP equation (from the Eulerian perspective), and whether there is a means of directly
estimating the corresponding parameter based on the measurements.

This work is to provide a full analytical consideration for the particle hop process as
simulated by Wu et al. (2020), by tackling the above-mentioned two unsolved problems.
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First, we propose a deposition boundary condition for the FP equation accounting
for the cease of motions of particles as physically required by the hop process. It is
actually a simple Robin (the third-type) boundary condition, with an important parameter
representing the deposition rate of bedload transport. Secondly, for the analytical solutions
of hop statistics, a new variable transformation is devised to treat the exponentially
velocity-dependent diffusivity. The original bedload transport problem can be transformed
into a classic problem of solute transport in shear flows through a tube with a constant
diffusivity. We have also obtained analytical expressions relating our newly introduced
physical parameter of the deposition rate to the mean travel time and the mean hop
distance, which is another important contribution of this work. We emphasize that we
can now directly determine the deposition rate based on the measured particle motion
statistics, instead of resorting to a fitting procedure matching the predicted quantities to
the measurements, as done in the numerical simulation of the previous study (Wu et al.
2020).

The rest of this paper is structured as follows. For the bedload transport problem
formulated in § 2 using an FP equation based on the experiment of Roseberry et al. (2012),
we first specify its initial condition and the deposition boundary condition. Then, we
show how to use spatial and temporal moments to express the key statistics of the hop
events, including the distributions of travel times and hop distances, and the mean hop
distance over travel time. To find their analytical solutions, a new variable transformation
is provided in § 3, greatly simplifying the transport problem. After verifying the analytical
result with the numerical and experimental results, we further investigate the influence of
the deposition condition on these three key characteristics in § 4. Analytical expressions
are obtained relating the deposition rate to the mean travel time, and the mean hop
distance. In § 5, we further explore the variation of the deposition rate under different flow
conditions, using the recent experimental data of Liu et al. (2019). Finally, § 6 concludes.

2. Formulations
2.1. Governing equation

We consider the bedload transport under subcritical flow conditions (with Froude number
Fr < 1), which is in accordance with that analysed by Fathel ef al. (2015) and Wu et al.
(2020). Six runs of experiments (R1A, R2A, R3A, R5A, R2B and R3B) were conducted by
Roseberry et al. (2012) using relatively uniform sand (Dsg = 0.05 cm) in an 8.5m x 0.3m
flume under four different flow conditions. The flow rate was low and thus no bed form
was produced. The run R3B was later reanalysed by Fathel ef al. (2015) and it is the main
dataset used in the current analysis. Some key experimental parameters are listed in table 1.
More details can be found in the work of Roseberry et al. (2012).

We aim at studying particle hops which are defined as trajectories of particles moving
successively from the start to the end of their motions, as shown in figure 1. For simplicity,
only the streamwise motions of bedload particles are considered, enabling an idealized
theoretical analysis. Statistics of particle motions including velocities, accelerations, travel
times and hop distances can all be obtained based on tracing the particle’s streamwise
positions x* and recording the corresponding times £*.

For the individual-based simulation by Wu et al. (2020), the stochastic differential
equation (SDE) can be written as

k
& 2.1a)
ar-
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Description Parameter Reference value
Depth of water H* 12.5 cm
Velocity at 1 cm Uy 31.0cm
Median sediment particle size Dso 0.05 cm
Run time T 0.4s
Sampling interval Ar* 0.004 s
Froude number Fr 0.30-0.35
Shields number 0 0.05
Particle Reynolds number Re, 22.76
Average hop distance L 0.46 cm
Average travel time T 0.97s
Average particle velocity uk 476 cms~!
Coefficient for velocity diffusivity kg 300 cm? 53
Reference velocity for diffusivity ug 476 cm? s~
Deposition rate ry 48.8 cm? 572
Time step for simulations At} 0.0004 s

Table 1. Parameters and hop statistics of the experiments by Roseberry er al. (2012) (reanalysed by Fathel
et al. 2015) and the simulation by Wu et al. (2020).
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Figure 1. Sketch of a bedload particle hop.
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Figure 2. Schematic representation of the transformation (3.3a,b).

% = a4, (u*) + V2 WHE (1), (2.1b)

where x* is the streamwise location, r* is the time, u* is the streamwise velocity, a;
is the ‘drift’ term of velocity, k* is the diffusion coefficient of velocity and &* is the
white noise term. We use the asterisk to mark dimensional variables (which will be
non-dimensionalized later in § 3.1).

According to the reanalysis (Wu et al. 2020, figure 1) of the experimental data
as presented by Fathel er al. (2015), the drift term is zero, and the diffusivity &* is
an exponential function of u* due to the observed exponential distribution of particle
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velocities (Wu et al. 2020, (6)), namely

a, =0, k) =kje /. (2.2a,b)

The reference velocity ug is in fact equal to the mean velocity uj; and in the simulation of
Wu et al. (2020), uj = u; = 4.76 cm s~! and the constant kg = 300 cm? s73. Technically,
this velocity dependence of the diffusivity k* becomes the main obstacle for analytically
analysing the corresponding FP equation.

Note that (2.2a,b) represents one of the limited sets of drift and diffusivity that has
been directly determined based on available experimental dataset of particle kinematics
under subcritical flow conditions (Roseberry et al. 2012; Liu et al. 2019). It represents the
external force (as a result of the combined actions of turbulent flow drag, particle—particle
and particle-bed interactions) acting on the moving bedload particles, and states the nature
of its random variations. The model (2.1) describes a Markov process and thus it cannot
account for the historical effect of the velocity variations. There are other forms of the
drift a* (u*) and the diffusivity £*(«*) depending on the flow and transport conditions, as
discussed in §§ 1 and 6.

For the continuum model, we can deduce the FP equation immediately from (2.1), which
is similar to (3.9) of Ancey & Heyman (2014). We use P*(x*, u*, *) to denote the joint
p.d.f. of the streamwise position, the velocity and the time; then the governing equation
can be written as

AP* LAPY T e
a0 e~ e (0P, 2.3)

with u* € (0, o) and x* € (—00, 00).

2.2. Initial and boundary conditions

Since we are focusing on the particle hop process, we need to describe the start of the
particle motion (entrainment), the successive streamwise movement of the particle and,
eventually, the cease of motion of this particle (deposition). While the successive particle
motions are governed by (2.3), the entrainment and deposition phases of the hop process
are specified by the initial and boundary conditions for (2.3), respectively.

First, for the entrainment of bedload particles, we follow Wu et al. (2021) and consider
all bedload particles initially starting their motions at x* = 0 with u* = 0. Thus, the initial
condition is

P = 8(xX*)8(u™), (2.4)
where § is the delta function. Note that (2.4) is a rather idealized description for the
entrainment. During analysis of the particle hop statistics (e.g. velocities, accelerations,
travel times and hop distances), an important but straightforward simplification is that all
the information will not depend on when and where the particle hop starts. Hence, by
introducing (2.4) we virtually move all the starting positions to the same location for the
ensemble of hops and start their motions at the same time.

Second, we can specify the deposition boundary condition according to the numerical
algorithm of Wu ef al. (2020). We assume that a particle may cease its motion with a
stopping chance Py, every time its velocity drops to (or below) zero. Wu et al. (2020)
chose a value of Py, = 10 % so that the mean travel time of the simulated particle hops
can match that of the experimental measurements (Fathel et al. 2015). Therefore, we can
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impose

: opP*
ou* w*=0

— ™*P*| o, (2.5)

where the deposition rate I'* can be related to Py,,. Equation (2.5) is a Robin (third-type)
boundary condition for partially reflecting boundaries, often used in reactive transport
problems (Singer et al. 2008; Andrews 2009; Jiang et al. 2022; Wang et al. 2022b).
According to the relationship between the individual-based and continuum models, Pgp
used in the simulation can be calculated (Erban & Chapman 2007, (10)) as

Py = It | TAk 2.6)
stop = & .
0

where Af} is the time step and Az} = 0.0004 s was used in the simulation of Wu et al.
(2020). Therefore, I'* can be obtained by (2.6) as

I'*=T*=488cms™ 2 2.7

Generally speaking, I'* determines how easily a particle will cease its motion. Its value
may be related to the roughness of the bed, the flow strength, fluid—particle interactions,
particle-bed collisions, the particle diameter, etc. As discussed by Wu et al. (2020),
bedload particles moving at low speeds may encounter the zero velocity situation (or
‘zero velocity hits’) many times and thus stop early, resulting in short hop distances.
Particles performing long hops are probably spending more time moving with velocities
much greater than zero and thus have fewer chances to encounter the zero velocity
hits. One extreme case is that bedload particles cease their motions immediately when
u* =0, as in the condition imposed in the random walk simulations by Furbish et al.
(2012b) and Fan et al. (2016). It is mathematically similar to an absorbing boundary
with I'* — oo.

Note that I"* is more physically meaningful than Py, because the value of Py, varies
with the time step chosen for simulations. On the other hand, another contribution of
this work, as documented in § 4.2.2, is that we have analytically related this new physical
parameter of the deposition rate I"* to the mean travel time and the mean particle velocity,
for example. Consequently, I™* can be directly determined based on the measured particle
hop statistics, in contrast to the previous work of Wu et al. (2020) in which a similar
parameter to Py, needs to be obtained by fitting the predicted quantities to experimental
measurements.

2.3. Travel times and hop distances: relation to moments

Now we have the continuum model based on exploring the individual-based simulation
algorithm of Wu et al. (2020), we can express the key statistics of hop events of bedload
particles, such as the distributions of travel times and hop distances, using the spatial and
temporal moments of P*.

First, we derive the p.d.f. of travel times f7 (¢*), which is the period of time of a hop. By
the deposition condition (2.5), the probability flux of stopped particles (from the motion
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state to the resting state) is I"*P*(x*, u™ = 0, r*). Therefore

o.¢]

fr@ = / P (x*,u* =0,r")dx* = ' ugw* =0,r), (2.8)
—00

where 1 is the zeroth-order spatial moment and its definition extended to the nth-order

spatial moment is

o
kA / M'Prdx*, n=0,1,.... (2.9)
—00

Additionally, note that the total number of particles (both in motion and at rest) is
conserved, thus f7 can also be expressed as

d — dp
(1 — ) = ——9, 2.10
where we use the bar to denote the mean of a value over u*, namely
_ oo
ni = /0 g du®. (2.11)

Second, we can use the temporal moment of P* to express the p.d.f. of hop distances
o0
6% = / I*P*(x*,u* =0,r")dt* = Imy(x*, u* =0), (2.12)
0
where my is the zeroth-order temporal moment (Harvey & Gorelick 1995) and
o
mt & / ("P*dr*, n=0,1,.... (2.13)
0
Finally, we analyse the mean hop distance over travel time, namely the mean of all
possible hop distances at each specific travel time. Thus, the mean hop distance is a

function of travel time, denoted as L*(¢*). It can be calculated using the first two spatial
moments of the stopped particles

o
—00 B Mllu*:O

./OO T*P*| =g do™ ~ Hgleo’
w* =

—00

L*(t*) = (2.14)

By (2.14), we can see a different physical meaning of L*(#*): the position of the centroid of
the particle cloud stopped at a specific time ¢*; because 7/ is actually the normalized
first-order moment.

3. Analytical solutions for hop statistics

Based on the continuum model we have revealed the relationship between the key hop
statistics and moments. Next, we will analytically solve the three key characteristics, i.e.
the p.d.f.s of travel times (f7(t*)) and hop distances (f;"(x*)), and the mean hop distance
over travel time (L*(t*)).

As mentioned previously, the major obstacle for us to analytically treat (2.3) is the
exponentially velocity-dependent diffusivity (k*(u*)). To tackle this difficulty we devise
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a variable transformation, based on which (2.3) can be transformed into a much simpler
form, representing the main contribution of this work. Then we can directly apply the
method of Barton (1983) to obtain the analytical expressions of spatial and temporal
moments, and thus obtain f7, f; and L*.

3.1. Non-dimensionalization and the variable transformation

Before introducing the transformation for the velocity-dependent k*(u*), we non-
dimensionalize the governing equation (2.3) with the following dimensionless variables
and parameters:

u* x* r*
u—=—, X=—7"", t= ——r—,
uy 4(ug)3 ks 4(uf)? [k a1
2r* kK, » 4p* ’
= y = — = s = -,
ks /g kg ks / ()t

where constants 4 and 2 are imposed for the subsequent transformation. The resulting
dimensionless governing equation and boundary condition are

8P+ oF 482(MP) € (0,00), x € (—0o0, 00) (3.2a)
T~ — =45 ) ) y X - ) ) .2a
or T Vox T o2 !
3(e"P) r
= —P|,—0. (3.2b)
ou |, 2

Next, subject to a posteriori verification, we introduce the following transformation:
= eiu/z’ C = CMP. (33a,b)

Consequently, u = —21Inrand P = ¢/k = r’>c. With the chain rule 8/du = (3/9r)(dr/du) =
—%r(a /dr), the whole initial-boundary-value problem (2.3)—(2.4) can be rewritten as

8c+ ()Bc 10 dc cO.1). xe ) (3.40)
J— _ = - — —_— — 00, OO .
ar T o T rar\Uar ) T e Y “
0
X = —rel-, (3.4b)
ar r=1
1
Cli=0 = 58(x)8(r —1). (3.4¢)

It is seen that the above transformation greatly simplifies the original FP equation
(2.3) by transforming the problem of bedload transport with an exponentially
velocity-dependent diffusivity into a classic problem of solute transport in laminar flows
through a tube with a constant diffusivity. As a result, r is a ‘radial’ coordinate, which
can be one-to-one mapped to the velocity u; ¢ can be understood as the ‘concentration’
distribution; and the deposition boundary condition (2.5) at u = 0 becomes an absorption
condition (3.4b) at the ‘tube wall’ (r = 1), the same as the classic reactive transport
problems (Barton 1984; Wang & Chen 2017; Jiang & Chen 2018; Debnath et al. 2022).
The transformation of u is different from the (2.19) of Wu ef al. (2021) because, in their
governing equation, the form of drift and diffusivity is fixed and implies a non-zero
drift. Additionally, the form of r is similar to (25) of Cherstvy & Metzler (2013), which
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is deduced from SDEs in the Stratonovich convention and thus requires an additional
transformation back into equations in the It6 convention.
In addition, the integration of the p.d.f. can be written as

o0 o0 00 1
/ / P, u, t)dudx = / / 2rc(x, r, t) drdx, 3.5
—00 J0 —00 J0

with the mean operation over the velocity u (2.11) rewritten in terms of r as

1
E:/ 2rcdr, (3.6)
0

which is exactly the area-average operation over a tube cross-section.
Finally, we non-dimensionalize f7(¢*), f;(x*) and L*(t*) using (3.1) and (3.3a,b).
Results of (2.8), (2.12) and (2.14) can be rewritten as

Jr@) =2 po(r =1, 1), 3.7)
Ji(x) =2mp(x, r = 1), (3.8)
pi(r=1,1
L) = m, 3.9
where the dimensionless spatial moment 1, and temporal moment m,, are
o.¢] [e¢]
wn(r, ) = f Xe(x, r, ) dx,  mu(x,r) = / 'e(x, r, 1) dt, (3.10a,b)
—00 0

respectively, andn =0, 1,2, .. ..

3.2. Solutions for spatial and temporal moments

We can solve the spatial moment p,, for f7 and L in (3.7) and (3.9). Note that the transport
problem (3.4) is only slightly different from the classic Taylor dispersion of solute in a
tube flow (Taylor 1953; Aris 1956): the ‘velocity distribution’ is u(r) = —2 In r instead of
the parabolic profile, and there is no longitudinal diffusion.

The solutions of spatial moments have been systematically studied by Barton (1983,
1984) using the Sturm-Liouville theory, with general expressions for the first four
moments provided for direct use. Barton’s results have been widely applied to studies on
various dispersion phenomena (Zeng et al. 2011; Li et al. 2018; Guan et al. 2022; Wang,
Jiang & Chen 2022a). In order not to disrupt the narrative flow, the solution procedure is
summarized in Appendix A of § A.1.

For f; in (3.8), we can solve the temporal moment t¢. The solution procedure is similar
to that of the spatial moments as presented above, and details are given in Appendix A
of § A.2. Since there is no longitudinal diffusion in the transport problem (3.4), x can be
seen as a ‘time’ variable in the resulting moment equations. Consequently, the form of the
solution of g is the same as (AS): one only needs to replace ¢ using x with corresponding
eigenvalues and eigenfunctions. The generalized integral transform technique (GITT)
method (Cotta 1993) is applied to solve the corresponding eigenvalue problem.

4. Results

We have deduced the continuum model for the bedload particle hops. A simple deposition
boundary condition for particles ceasing their motions was specified for the governing

954 A11-10


https://doi.org/10.1017/jfm.2022.959

https://doi.org/10.1017/jfm.2022.959 Published online by Cambridge University Press

Theoretical analysis for bedload particle deposition and hop

= ®

—~
S
N
—_
(=]

é‘ 5 X \
2 K&
X
S Ry 1\ &
2 ! X \ X
Z 050 SN 050 X x
X L
—C'g )TN \\\x X
& 0.10 X xR 0.10 oy
0.05 0.05
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.5 1.0 1.5 2.0
Travel time (s) Hop distance (cm)
Analytical x Experimental (Fathel et al. 2015) Numerical (Wu et al. 2020)

Figure 3. The p.d.f.s of (a) travel times f7, and (b) hop distances /7.

equation based on recent numerical and experimental studies. We then analytically solved
the three key characteristics: the p.d.f.s of travel times (fr(¢)) and hop distances (f7(x)), as
well as the mean hop distance over travel time (L(f)). Here we continue to investigate the
influence of the deposition condition on these key characteristics of hop events.

4.1. Validation by experimental and numerical results

We first validate our analytical results for the three key characteristics by the experimental
data of Fathel et al. (2015) and the numerical simulations of Wu et al. (2020). Note
that analytical expressions such as (A5) and (A8) contain series expansions which
need to be truncated. We adopted the first ten eigenvalues and eigenfunctions for the
analysis. Additionally, although we have non-dimensionalized the governing equation and
thus corresponding analytical solutions, expressions with dimensional variables are also
deduced, enabling a direct comparison with existing experimental and numerical results
(e.g. Wu et al. 2020, figures 3 and 4).

4.1.1. The p.d.f.s of travel times and hop distances

As shown in figure 3(a), the analytical result for the p.d.f. of travel times agrees well with
the numerical result, which is close to the experimental measurements. For large travel
times, fr decays exponentially with a rate almost equal to the first non-zero eigenvalue, as
shown by (3.7) and (AS). For small travel times, we can observe a noticeable deviation of
the numerical and analytical results from the experimental data, where the measurements
roughly follow an exponential decay, while the other two results decrease more sharply.
The reason for this discrepancy may be twofold. On the one hand, there exist difficulties in
experimentally tracking very short hops, giving rise to uncertainties for the corresponding
measurements. On the other hand, it may also be related to the deposition boundary
condition which may not exactly agree with the physical process of how the particle ceases
its motion. Mathematically, fr approaches infinity as # approaches zero because the initial
condition (2.4) is a delta function of u* at u* = 0.

Comparisons for p.d.f.s of hop distances among different results also demonstrate good
consistency, as shown in figure 3(b). Similar to the travel time distribution, for large hop
distances f7 decays exponentially, as revealed by (3.8) and (A14). For small hop distances,
JfL decreases sharply and thus is closer to a Weibull distribution (Fathel et al. 2015).
Namely, f; has a Weibull front and an exponential tail, as pointed out by Wu ez al. (2020)
and Wu et al. (2021).

954 All-11


https://doi.org/10.1017/jfm.2022.959

https://doi.org/10.1017/jfm.2022.959 Published online by Cambridge University Press

Z. Wu, W. Jiang, L. Zeng and X. Fu

10

Analytical
x  Experimental (Fathel ef al. 2015) %
Numerical (Wu e al. 2020) x X

Mean hop distance (cm)

0.01 0.05 0.10 0.50 1.00
Travel time (s)

Figure 4. Mean hop distance over travel time L(z).

4.1.2. Mean hop distance over travel time

For the mean hop distance over travel time L(¢), comparisons in figure 4 show an overall
similar feature among analytical, numerical and experimental results. That is, very good
agreement between the first two results in fact demonstrates the validation of the analytical
solution, since the two approaches consider almost the same idealized transport process;
their deviations from the experimental measurements highlight the limitation possibly
related to the deposition boundary condition, or the uncertainties of the measurements.
Specifically, the two-regime scaling relation (advective L ~ 1> and dispersive L ~ 1) is
consistent with previous analysis (Wu et al. 2020, 2021). The deviation of the analytical
solution at very short travel times (here * < 0.02s) may be due to the Gibbs phenomenon
of series expansion because the initial condition (2.4) is a delta function of u* at u* = 0,
based on which the mean hop distance over travel time in (2.14) is calculated.

4.2. Influence of deposition rate

The key parameter introduced in this work is the deposition rate I"*. In the calculation in
§4.1, I = 48.8 cms 2 in (2.7) is used based on the experimental and numerical studies
(Wu et al. 2020). Here, we analyse the effect of I"* on the particle hop statistics, which may
correspond to the influence of different transport conditions including the flow strength,
the roughness of the bed and the slope of the bed. Two additional cases with I™* = 0.21*
and ['* = 5T are considered, while other parameters are kept the same, for the three
key characteristics: f7(f), fp(x) and L(¢). Importantly, we eventually deduced the relation
between the deposition rate and the average travel time, or between that and the average
hop distance. This provides a means to directly determine the deposition rate based on the
physically measured particle motion statistics, instead of fitting the predicted results to the
measurements.
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4.2.1. The p.d.f.s of travel times and hop distances

The influence of I'* on the p.d.f. of travel times is shown in figure 5(«). It is seen that
the larger the I'* is, the smaller the proportion of long travel times is, and the larger the
proportion of short travel times is. This can be observed partly by the different slopes
of the exponential tail of the three curves. Since I'* is proportional to the stopping
chance as shown in (2.6), a larger I"* means that particles are more likely to stop when
its velocity decreases to zero, on average resulting in smaller travel times. For the hop
distance, similarly, increasing the deposition rate can generally reduce the hop length; and
the resulting change in shape for curves of f; is analogous to that for fr, as shown in
figure 5(b).

4.2.2. Relation of deposition rate to the average travel time and average hop distance
Other than revealing the effect of deposition rate on the shape of the p.d.f.s of travel times
and hop distances, it is interesting to observe how the mean travel time and hop distance
will depend on the deposition rate.

In figure 6, we have calculated and displayed 7, and L, as functions of the deposition
rate. Interestingly, a rather good power-law relation can be observed for both mean
quantities, which motivates us to see whether some theoretical description would be
possible. We have eventually arrived at analytical expressions of T, and L, in terms of
I', enabling a direct determination of this new quantity I" based on measured particle
statistics, instead of the fitting process used for the similar parameter of particle stopping
chance in the numerical simulation of the previous study (Wu et al. 2020). Here, we
document the deduction of this key result.

Mathematically, the mean travel time 7}, and hop distance L, are the first-order moments
of the p.d.f.s of travel times and hop distances, respectively. With the aid of (3.7)
and (3.8),

o0 o0
T, éf th(t)dt:/ R2IMo(r=1,0dt =2I'Mp1(r = 1), 4.1)
0 0
o0 o0
L, 2 / xfr(x)dx = / X2 mo(x,r=1)dx =2I"'My o(r = 1), 4.2)
—00 —0Q
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where M), ,, is introduced as the ‘universal’ moment, i.e. the temporal-spatial moment

oo oo
My, m = / fm/ x'c(x, r, 1) dxdr, 4.3)
0 —00

forn=0,1,2,...andm=20,1,2,....
Universal moments My, and Mj o can be solved, as presented in Appendix B. By
(B4a,b), (B3) and (B7), we have

_ 1
T, = Moo = —, 44
a 00 =57 4.4)
- 1
Ly =2I'M oly=1 = —u(r)Mo,o = Tik 4.5)

Namely, the power-law relation as observed in figure 6 is in fact a reciprocal function of
r.

Finally, we can express the results by the original dimensional variables in (3.1).
Equations (4.4) and (4.5) turn out to be

L Uy ug
T, = Te T e (4.6a)
ut 2
L= (ﬁi — W =T (4.6)

Note that ug is equal to the mean particle velocity uj;, and I'* has dimensions of
acceleration. Additionally, considering the physical meaning of the deposition rate I"*,
which describes how fast the particle stops its motions, another interpretation of (4.6) can
be given as follows. The mean travel time is the time when a particle travelling with the
mean velocity u) decelerates until it is stopped under the acceleration I"*. The mean hop
distance is simply the distance during the deceleration phase, u’ 7. Note that the mean
velocity u is the average of the measured velocities at each discrete point of the hop
trajectories and thus, u); = L} /T. (4.6D) reveals no new findings.

In §2.2, we have used Py, in the individual-based simulation of Wu et al. (2020) to
determine I"* by (2.6), and I'* = 48.8 cm s~2 was obtained. We need to emphasize that
Pgop was fitted so that the simulated mean travel time can match the measured result.
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Now, we can directly use the experimental data to calculate I"* based on (4.6)

[ U S ¥
CTE Ly (THY

a

4.7)

The mean travel time in figure 3(a) is 0.97 s (see table 1), which gives I'* = 49.1 cm s72,

very close to the value used in the numerical simulation.

4.2.3. Mean hop distance over travel time

For the mean hop distance over travel time displayed in figure 7, the influence of the
deposition rate may appear rather counter-intuitive at first glance: when I'* increases, L(f)
does not decrease as expected given particles would generally have shorter hop distances
(as demonstrated in figure 5b); but instead L(r) increases with I"*,

We recall the physical meaning of L(¢) by (2.14): it tells us, on average, how far the
particle can travel during a hop with a specific travel time. What L(¢) does not tell us is the
distribution of particles with respect to travel times: by curves in figure 7 alone we have no
idea of the proportion of particles that can travel as long as, say, around #, = 0.5 s. Thus,
for a higher deposition rate there are indeed fewer particles that can travel the same period
of time t,.

On the other hand, the deposition boundary condition requires that particles are about to
stop motions by experiencing on average the same number of times when their velocities
drop to zero with a given deposition rate. This means that, at a higher deposition rate,
particles travel a period of 7, not because they survived more ‘zero velocity hits’ (than at
a lower deposition rate), but because they generally travelled with a higher velocity which
reduces their chance of experiencing a ‘zero velocity hit’. Hence, a higher mean velocity
during the hop results in a longer hop distance with the same travel time.
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Description Parameter Units Experiment S2  S3 S4 S5
Depth of water H* cm 16.9 172 177 179
Velocity at 1.5 cm UT s cm 34 35 37 38
Median sediment particle size Dsg cm 0.11 — — —
Run time T s 20 — — —
Sampling interval Ar* s 1/120 — — —
Cutoff velocity ul cms™! L5 — — —
Froude number Fr 0.279 0.280 0.294 0.300
Shields number 0 0.029 0.032 0.035 0.042
Particle Reynolds number Rep 73.41 86.55 93.13 94.22
Average hop distance L cm 0.696 0.770 0.817 0.885
Average travel time T S 0.13 0.12 0.13 0.13
Average particle velocity u) cms™! 6.7 7.9 8.5 8.6
Standard deviation of acceleration ay, cms—2 444 524 538 605
Coefficient for velocity diffusivity by (5.4) kg cm? 573 109.28 165.57 173.07 225.73
Reference velocity for diffusivity by (5.1) ug cms™! 3.85 492 478 531
Deposition rate by (5.3b) rx cm s ™2 29.65 40.97 36.80 40.82
Deposition frequency by (5.5) 1 5! 5.45 7.47 572 5.57

Table 2. Parameters and hop statistics for the experiments by Liu et al. (2019) and for the current model;
S2-S5 are labels of different experiment series. The hyphen (-) represents that this parameter is the same for
all the series.

5. Application to recent experiments: additional validation

As shown in the above sections, this present model works well for the single dataset by
Fathel et al. (2015). It is thus interesting to check its performance against bedload particle
hops under different transport conditions, which can provide additional validation for the
model in its ability to generally describe the kinematics of particle motions. To this end, we
choose experiments conducted recently by a different research group of Liu ef al. (2019),
who used much coarser sediment particles (D50 = 0.11 cm) with much larger particle
Reynolds numbers, representing distinct transport characteristics from that of Fathel et al.
(2015).

The experiments of Liu et al. (2019) were conducted in a 19m x 0.9m flume under five
low flow rates. They provided five series (S1-S5) of data, with the Froude number varying
from 0.27 to 0.30. Main experimental parameters are provided in table 2 and details can be
found in their paper. Hereinafter, we follow Liu ef al. (2019) and focus on the experimental
series S2-S5 in the analysis, because a very limited number of moving particles were
detected in S1 under the lowest shear-stress condition.

For the particle velocities, Liu ef al. (2019, (1)) reported a gamma distribution which
is closely related to the algorithm for distinguishing between motion and rest regimes
during bedload particle transport, as argued by the authors: ‘if we consider all the non-zero
particle velocities, including both the motion and the ambiguous rocking back-and-forth
state, the velocity distributions maintain the exponential trend in a lower range’. On the
other hand, we note that the current model (2.3) adopts an exponential distribution as an
approximation for the observed exponential-like form of the particle velocity distribution,
the form of which generally applies to the observations of Liu et al. (2019) for particle
velocities, thus (2.3) is expected to be able to describe the hop processes for this new
dataset.

954 Al11-16


https://doi.org/10.1017/jfm.2022.959

https://doi.org/10.1017/jfm.2022.959 Published online by Cambridge University Press

Theoretical analysis for bedload particle deposition and hop

5.1. Determine model parameters by experimental statistics

We can determine the model parameters (i.e. ujj, I"* and k) directly by the experimental
statistics according to the obtained theoretical result of (4.7). One important issue that
needs to be addressed is that Liu et al. (2019) have imposed a cutoff velocity (u) =
1.5 cm s™!) to determine the start and the end of a particle hop. Namely, particles with
velocities smaller than u]' are considered to be in the resting state. As a result, the reference
velocity u in the governing equation (2.3) may not be equal to the mean velocity u;.
This treatment may also be responsible for the observed deviation from the exponential
distribution of particle velocities at small values, as discussed above. In fact, by (C6), we
have ug = u; — u}. According to the experimental dataset of Liu et al. (2019) (table 2),
we found that the average velocity u) > L* /T, which means that the experimental hop
statistics do not satisfy the relationship in (4.6b). This inconsistency may arise from the
filter of particle velocities for small values during the data analysis (Liu et al. 2019, p.
2672). To resolve this problem, we adopt the result of (4.6b) rather than the ‘filtered’ value
for u. Therefore, the reference velocity is calculated by

Uy = — — . (5.1)

Next, we need to calculate I"* in the deposition boundary condition (2.5), which is now
changed to

*
K e/ or

o = [*P|pess, (5.2)

u*=u}

due to the introduced cutoff velocity. Fortunately, we can make a velocity translation
(u™ = u* — u’) to handle this issue, so that the corresponding analytical procedure
remains nearly the same as before. Details of the derivation are presented in Appendix C.
Note that by (C7), the relationship in (4.7) is now generalized as

r*= “ZT_*”? = u “ZL_*“: (5.3a)
a a
L ;
= X (5.3b)
(T}? T;

after the introduction of the cutoff velocity. We eventually calculated I"* based on (5.3b).

For the velocity diffusive coefficient k', we can use the experimental statistics of the
acceleration distribution. Note that the acceleration distribution depends on the time step
At* used for measurements or numerical simulations. In the experiments of Liu et al.
(2019), the time step Ar* = 1/120 is small enough and we can use the Euler—-Maruyama
scheme to approximate the acceleration distribution, as presented in Appendix D. By
(D17), ki can be approximated by

K = %At*(a;‘,d)z e/ (5.4)

5.2. Comparison of results under different flow rates

With all model parameters determined (see table 2), we can obtain the analytical
expressions for the three key characteristics and compare them with the experimental
results of Liu ef al. (2019). We also adopted the first ten eigenvalues and eigenfunctions
for the analysis, the same as that in § 4.1.
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Comparisons for the p.d.f.s of the travel times and hop distances for the four different
flow rates are shown in figure 8. Although the analytical results can largely capture
the shapes of the experimentally determined p.d.f.s, there are observable discrepancies
especially for small travel times and short hop distances. The fact that the number of
measured short hop events is much smaller than the expected value is probably due to
the same reason as discussed in §4.1.1. Apart from the ‘unavoidable uncertainties in the
automated particle-tracking process’ as mentioned by Liu et al. (2019), another possible
reason is that Liu et al. (2019) ‘further and significantly restricted the whole datasets to
long particle trajectories, with integrated displacement over 10Dsg, and experiencing at
least one step-stop-step sequence of motion and rest’. Consequently, a large number of
short trajectories were expected to be filtered during the data analysis, resulting in an
underestimate of the proportion for short hop distances with small travel times.

For the mean hop distance over travel time L(f), the analytical results show good
agreement with the experimental results for all the four different flow rates, as shown in
figure 9. Although the analytical result overestimated the portion of p.d.f.s for small travel
times and short distances in figure 8, this theoretical model captures well the result of
the mean hop distances during travel times spanning over two orders of magnitude, which
is calculated for each travel time interval by dividing the measurements into bins. Since
these bin statistics do not reflect the proportion (or relative magnitude) of hops travelling
with different time periods, the result of the mean hop distance in figure 9 shows that the
analytical model can correctly predict the information of, on average, how long a distance
a particle can travel during the hop with a specific travel time.

The influence of flow condition on the p.d.f. of travel times and hop distances has been
discussed by Liu et al. (2019). Here, we focus on its effect on the deposition rate. We
have estimated I"* by (5.3b) using 7, and L. Table 2 and figure 8 show that the travel
time distribution is insensitive to the flow rate, as reported by Liu ef al. (2019), while the
average hop distance increases with the flow rate. Therefore, informed by (5.3b), we know
that the deposition rate may also grow as the flow rate increases, although the value of I™*
for experiment S2 is larger than that of S3 because 7}, = 0.12 s of S2 is the smallest. This
overall increasing tendency of I'* over the flow rate for S3-S5 is rather counter-intuitive
because it is expected that the deposition effect should be weakened as the bed shear
stress increases. This can be explained by the fact that the velocity diffusion coefficient
also increases with the flow rate. Therefore, to quantify the net effect of deposition, we
introduce a new parameter according to the stopping probability in (2.6)

¢ ko' ks ee/”

(5.5)

based on the deposition boundary condition (5.2). The unit of £} is s~! and thus we call
f the deposition frequency, which can reflect the stopping possibility of the deposition
event. As a result, as shown in table 2, f; decreases as the flow rate increases as expected
for S3—S5. However, due to a lack of systematic experimental studies, at this stage, we
cannot draw any further conclusions on the relation between the deposition frequency and
the flow rate.

6. Concluding remarks

For the statistics of bedload particle hops in subcritical flows, this work has provided a
full analytical consideration of the numerical simulations of Wu et al. (2020) based on the
experimental data of Fathel er al. (2015), and the obtained analytical solutions are further
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(g:h).

validated by experimental observations with a quite different bedload particle diameter
and transport conditions (Liu ef al. 2019). To bridge the gap between the continuum
model and the individual-based simulation, a deposition boundary condition for the
governing FP equation is specified according to the numerical algorithm and experimental
measurements for the first time. It is a simple Robin boundary condition, with an important
parameter representing the deposition rate of bedload particles, which is similar to the
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stopping chance for the numerical simulation. We have analytically shown that the newly
introduced physical parameter of deposition rate is inversely proportional to the mean
travel time or the mean hop distance, enabling a direct determination of the deposition
rate based on the measured particle motion statistics. This is in contrast to the previous
numerical simulation (Wu et al. 2020) using a fitting procedure matching the predicted
quantities to the measurements for determining the stopping chance.

We have provided an analytical method to obtain theoretical results for particle hop
statistics. The key is to treat the exponentially velocity-dependent diffusivity, which was
determined by Wu et al. (2020) during a reanalysis of the experimental data (Fathel et al.
2015). We have devised a variable transformation such that the original bedload transport
problem can be transformed into a simple problem of solute transport in laminar flow
through a tube with a constant diffusivity. We can then directly use the classic analytical
technique of Barton (1983) for solutions.

We have validated our analytical solutions using the numerical results of Wu et al.
(2020), and the experimental results of Roseberry et al. (2012) (reanalysed by Fathel et al.
2015) and that of Liu ef al. (2019). Then we investigate the influence of the deposition
rate on three key characteristics of hop events: the p.d.f.s of travel times (fr(¢)) and hop
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distances (f7.(x)), and the mean hop distance over travel time (L(¢)), which are derived
using the spatial and temporal moments with Taylor—Aris theory. It is found that a larger
deposition rate can result in a longer mean hop distance over travel time, which can be
counter-intuitive at first glance. From the limited experimental dataset under different flow
rates, it is observed that the deposition frequency decreases as the shear stress increases
when the flow rate is not small.

We emphasize that the theoretical framework of this present paper is different from the
earlier work of Wu et al. (2021) mainly in the following two aspects. First, Wu et al. (2021)
imposed a fundamental assumption on the pattern for the particle velocity variations (i.e.
the particle is performing a Brownian motion in the stretched velocity dimension), which
can be regarded as a certain simplification based on the general form of the FP equation
(Furbish et al. 2012b). Instead, the present work directly used the general form of the
FP equation with experimentally determined drift and diffusivity terms according to their
definitions (Furbish et al. 2012b; Wu et al. 2020). No further simplification is required.
Second, regarding the governing equations deduced in the two papers, the present work
can describe the solute transport process in a tube flow (under a cylindrical coordinate
system) as reflected by (3.4) and figure 2, while Wu et al. (2021) describes a process under
a Cartesian coordinate system.

The FP equation proposed by Furbish er al. (2012b) is noted in this paper as a ‘general
form’ in the sense that the forms of the drift and the diffusivity terms in the equation
are open and can be arbitrary functions of the particle velocity based on experimental
observations. Although specific forms have been used in the literature, including linear
or constant drift and diffusivity, for example, the set of terms with a zero drift and an
exponential form of diffusivity as presented in (2.2a,b) is one of the limited sets of results
that have been directly determined based on the available experimental datasets of particle
kinematics. This spells out the value of the present analytical work, while at the same
time points out also the limitations and possible extensions in the future. For example, it
remains to be seen how the forms of the two terms vary with the transport conditions,
and if there exists a general form of the drift and diffusivity that can be applied to both
subcritical and supercritical flows.

Regarding the velocity boundary condition for the governing FP equation, the deposition
condition (2.5) is of the simplest possible form to account for the termination of bedload
particle hops. Although this boundary condition is widely used in reactive transport
problems, it may not be the most appropriate condition for bedload transport problems.
As discussed in the results section, there is a noticeable deviation of both the analytical
and numerical results from the experimental measurements for the p.d.f. of travel times at
small values (figure 3), and in this region the curves for the analytical and numerical results
decrease more quickly than the exponential distribution. This suggests that a modification
to the deposition condition may be needed. Recently, Wu er al. (2021, (2.29)) applied a
‘bulk’ absorption term to the FP equation to account for the deposition, which means
that bedload particles may have an equal chance of ceasing their motions at any velocity
(Ancey et al. 2008; Ma et al. 2014; Wu et al. 2021; Pierce et al. 2022). Alternatives such
as the time-fractional deposition process (Li et al. 2021) may also be considered.

Moreover, this work focuses only on the hop processes of the bedload particle transport.
With the resting times taken into account, bedload particle transport across time scales
can be analysed which contains multiple alternating processes of particle hops and rests
(entrainment and deposition) (Parker, Paola & Leclair 2000; Garcia 2008; Ancey &
Heyman 2014). And the p.d.f. of particle resting times is also closely related to the possible
form of the boundary conditions. For example, some studies (Heyman et al. 2013) have
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suggested an exponential distribution of resting times and thus a similar entrainment
condition to the deposition condition (a Poisson process). As a comparison, there are other
studies (Martin et al. 2012; Martin, Purohit & Jerolmack 2014; Fraccarollo & Hassan
2019; Liu et al. 2019; Pretzlav, Johnson & Bradley 2021) suggesting a power-law-like
distribution for the resting times, although a simple form of the entrainment condition is
not available yet. It is noted that, by incorporating other physical processes like the burial
and exhumation of particles during their streamwise transport (Wu et al. 2019a,b), the
power-law-like resting time distribution can be recovered which consequently induces the
anomalous diffusion of bedload particles. Future theoretical work should therefore include
an appropriate entrainment condition for bedload transport models.
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Appendix A. Solution procedure for spatial and temporal moments
A.l. Spatial moments for fr and L

Here, we solve the spatial moment p,, for fr and L in (3.7) and (3.9). First, according to the
definition of moments (3.10a,b) and applying integration by parts to (3.4), we can obtain
the initial-boundary-value problem for p, as

dn 19 ( dun
- 1=-— , Al
at u(r) =1 ror (r ar ) (Alay
ou
n = _F//Ln|r=l, (Alb)
ar r=1
1
s56(r—1), n=0,
_g=12 Al
Monle=0 0. n=1.2... . (Alc)

forn=0,1,2,...and u_1 = u_p = 0.
Next, we can write the eigenvalue problem for (A1)

10 g

—(r2) =2 A2

ror (rar) & (A2a)
0

98— _rgl-, (A2b)
ar r=1

where A is the eigenvalue to be solved, and g(r) is the corresponding eigenfunction. Their
solutions are

2=l aJo(e;r)

i &)= :
Vo + o)

(A3a,b)
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Index i /l,‘ a; l[/,‘ b,‘
0 2.171 0.487 1.552 0.338
1 17.647 0.663 14.964 —0.630
2 52.273 0.691 72.347 —0.506
3 180.608 0.702 106.569 —1.142
4 274.374 0.704 168.923 —0.737
5 387.877 0.705 270.245 —0.671

Table 3. The first few eigenvalues and coefficients of initial conditions for spatial and temporal moments.

where Jj is the zeroth-order Bessel function of the first kind and {4;}7°, are the roots of
aiJo(ai) = —I'Jo(ay). (A4)

The first few eigenvalues are provided in table 3.

Here, {gi(r)}:2,, forms a basis for the function space satisfying the boundary condition
(A1b).

For g, from (2.8) of Barton (1984), we have

po(r, ) =Y aie™Mgi(r), (AS5)
i=0

where coefficient g; is related to the initial condition

o

ai:<ﬂo(r’t:0)7gi(r)>:—a i:Oala~'~7 (A6)
2\ oF + 12
and the angle brackets define the inner product:
L[]
(fi.f2) = f rfi(Nf2(r) dr, (A7)
0

where f1(r) and f>(r) are arbitrary functions. The values of the first few a; are presented in
table 3.
For w1, by (2.9) of Barton (1984) we have

Bi,j (e—/ljl‘ _ e—/l,'l‘)

[e¢] oo
Y aj
pi(r, =Y aiBiite Mgi(r)+ Y -

gi(r), (A8)
i=0 i.j=0 Ai = 4
JE
where coefficient B; ; is related to u(r) and can be calculated as
Bij = (u(r)gi(r), gj(r) = (=21nrgi(r), g;(r)), (A9)
fori,j=0,1,...
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A.2. Temporal moments for fi,

Here, we solve the temporal moment g for f; in (3.8). First, according to the definition
(3.10a,b) and applying the integration by parts to (3.4), the governing equation of m,, is

omy, 10 omy,
— 8onCli=0 — nmp—1 + u(r) =-—\r ; (A10)
ox ror ar
forn=20,1,2,... and §; is the Kronecker delta. The boundary condition of m, is in the

same form as (3.4b).
Note that in the initial condition (3.4¢), c¢;n;; 1s a Dirac delta function of x. Therefore, we
can rewrite the problem of m,, as

9 1 119 /9
M _ —nmy_ = ————|r M , (Alla)
ox u(r) u(r) r or or
3
Ml Pyl (Al11b)
ar r=1
— §(r—1), n=0,
Mleeo = A 200 T D (Allc)
0, n=12,....

Now we can see that the above initial-boundary-value problem of m,, is very similar to
(A1) of u,, and we can also use the method of Barton (1983, 1984) for the analytical
solution.

The corresponding eigenvalue problem for (A11) is

1 10 oh
— ——(r— ) = —yh, (Al2a)
u(r) r or ar
oh
—_— = —Th|—, (A12b)
ar r=1

where 1 is the eigenvalue and A(7) is its eigenfunction. The inner product is defined as

1
(fhfz)réfo ru(nfi(nfa(r)dr, (A13)

where f1(r) and f>(r) are arbitrary functions.

Suppose we have found a sequence of solution of eigenvalues, denoted as {;}:°,, and
the corresponding eigenfunctions {hi};?i(). Then, similar to (A5), by (2.8) of Barton (1984),
we have

e}
mo(x, r) =Y bie” Vi hy(r), (Al4)
i=0

where the coefficient b; is

hi(1)
2 9

The values of the first few b; are presented in table 3.

Next, we solve the eigenvalue problem (A12) by the GITT method (Cotta 1993; Rubol,
Battiato & de Barros 2016; Guo & Chen 2022) because the diffusion term contains u(r),
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which makes it more complicated than (A2). Fortunately, we can use the function basis
{g,-(r)};?io by (A2), and perform a series expansion for /;(r) using the GITT method

[e¢)
hi(r) =Y nygi(r), i=0,1,..., (A16)
j=0

where 7;; is the expansion coefficient. We can also express the results in the matrix form.
Defining n; = (ni0, nit, - - )T and g = (g0, g1, -+ )T, then h; = nl.Tg, where T denotes the
transpose. Performing the integral transform for (A12a), we obtain the linear equation for
the coefficient vector g

An; = i, (A7)

where the elements of matrix A are

ij = \8i r . (AIB)
u(r) ror ar T

Therefore, y; is the eigenvalue of A and 5, is the corresponding eigenvector, which can
be obtained after a truncation for the series expansion (A16) to some degree. The first few
Y; are presented in table 3. Finally, we remark that one can also apply the GITT method
directly to (A10) and thus expand mq with the function basis {g,'(r)};?io. A similar solution
procedure was presented in the work of Rubol ef al. (2016, (12)).

Appendix B. Solution for universal moments

According to the definition (4.3) of the universal moment, the governing equations for
M, ,» can be obtain by applying the integration by parts to (A1) or (A10)

10 oMy
—80mtnli=0 — Mn,m—l - u(r)Mn—l,m =——\r s (Bla)
ror ar
oM,
R = =T Myl =1, (B1b)
ar r=1

forn=0,1,2,...andm =0, 1,2,.... Here, M_; o, M_1,_1 and My _; all equal to zero.
By calculating the cross-sectional mean of M,, ,, with respect to r, which is

1
Mn,m:/ 2rMy, pm (r) dr, (B2)
0

we immediately have

— S0mMnli=0 — Mn,m—l - M(")Mn—l,m = 2Fjun,mlr:l- (B3)

According to (4.1) and (4.2), the mean travel time 7}, and the mean hop distance L, are
related to My 1 and M o, respectively. Now with (B3), we have

T, =2I'Mo1l,=1 = Moo, La=2Miol,=1 = —u(r)Mo. (B4a,b)

Therefore, we only need to solve Mg o.
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By (Bla), the governing equation of My g is

10 oMo o
—pol=0o=—-—1r . (BS)
ror ar
Its general solution can be written as
rq 7’
Moo = / — / — po(r,t =0)dr +A | dr” + B, (B6)
or 0
where A and B are undetermined constants. Note that A = 0 because In r|,—g = —00. And

the initial condition (Alc) of g is a delta function. Therefore,

rl r
Mo,o(r)=/ 7(/
o " \Jo

"1 H{@ -1
= —/ ——(r )dr”+B
o 2

/!

— po(r, t =0) d/) dr" + B

1
~5H(r=1Dlnr+B, (B7)

where H (r) is the Heaviside step function. According to the boundary condition (B15b), we
have
= —IB, (BS)

N —

namely B = 1/21I").

Appendix C. Deposition condition with a cutoff velocity
If one imposes the cutoff velocity to determine the resting state, then the deposition
condition for the bedload particle hops should be modified, as presented in (5.2). The
initial condition (2.4) also needs modification

Pi =808 —u). (CD

init

To handle the cutoff velocity, we impose the velocity translation, u™* = u* — u*. Then,
with a modified velocity diffusion coefficient

K2 RE e, (C2)
the transformed bedload transport problem,
aP* aPr 92 i
T R el Rl (C3a)
oP*
§ g =P, (C3h)
u*=0
Phy = 8(x")8™), (C3c¢)

is nearly in the same form as the original one (2.3)—(2.5), with only a slight difference in
the advection term. Therefore, we can still use the dimensionless variables and parameters
in (3.1), and then introduce the transformation for the exponential diffusivity term in
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(3.3a,b), replacing u* and k}; with u's and k", respectively. We can change the advective
term in (3.4a) to have

Bc+[,()+ ]8c 19 dc (c4)
— r —=—-——\r=—,
at ! e ax  radr \ or
where the dimensionless cutoff velocity u. = uf /ug. In fact, we can also keep using the
original transport problem for ¢ with a different definition for the ‘velocity profile’ u(r) =
—2Inr + u,.. Then the analytical solution procedure for the spatial and temporal moments
are exactly the same.

We have the following results for the hop statistics. First, the p.d.f. of particle velocities
under the equilibrium transport conditions now becomes

1 * * *
f;}(u*) = — e_(u _uc)/uo’ (CS)
Uo
and thus [ uof fo(*) du® = 1. The average velocity is
LZ k * k o3k * k * k
ﬁ=“a= . w fy(u”) du™ = ug + ug.. (C6)
a ¢
For the average travel time and average hop distance, the relationship (4.6) is changed to

* M?; _ MZ _u?
TH—F— I , (C7a)

ur
0
L:; = MZTZ = (MS + M?)F (C7b)

Appendix D. Acceleration distribution

We can use the Euler—-Maruyama scheme for discrete SDEs to approximate the p.d.f. of
accelerations with a small time step. First, the Euler—Maruyama approximation of (2.16)

is
AU 2k*(U)Ar<A&*
At* At
where A is the random variable of acceleration a*, U is the random variable of velocity u*
and A&E* ~ N(0, 1) follows the standard normal distribution. The time step Ar* should be
small enough (Miao et al. 2018).
Next, we write A* as a product of three factors

A= 2kSAA = 2kSZ (D2)
Va2 T AT

k*(U X
AUy = k(—) = U/, (D3)
0

A= (D1)

where Z = A1A>,

and A, = A&*. Note that A; is a function U and U ~ Exp(1/ug) follows an exponential
distribution (because the velocity distribution is exponential Wu et al. 2020). With the
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inverse function U(A1) = 2ugIn(Ay), the p.d.f. of Ay is

dU
fay (@) = flu*(ap)] 7 (D4)
1
1 u*(ay)\ | 2ug
= —exp (— — |2 (D5)
u u; ai
1 2ugInay \ | 2ug
= e (-0 ) | (D6)
u u; aj
11 |2ug
== (D7)
up ay | ai
2
— (D8)
a;
The p.d.f. of A, is Gaussian,
Jay(a2) = : % (D9)
A2 az) = mexp 2 N

According to rules for the joint p.d.f. of the product of two independent random variables,
for Z = A1A;, we have

f2(2) = faa, (@ = /

o0

1
— i, (@)f, (i) da,. (D10)
o0 |a2| a

Note that A| € [1, +00), then

S | 2 1 2a3
(z)=/ —— e 9?2 — | 22 das. (D11)
T, . 2m jaa| \ 2

For z > 0, we have

2] oy 1 (243
A1A (Z):/ ——e 2?2 — [ Z22) day
T, 0 27 laa] \ 23

Z
:—2 l/ a%e_“%/zdaz
0

v2nz3
2 1 2 B Z
_ a2 hd i
_\/ﬂ?[ “c +V2Erf(«/§>]
_1 2\ _ V21 ap
s Erf(ﬁ) N P12

where Erf is the error function. Note that fz(z) is an even function. Finally, for the
acceleration in (D2), we just need to put in the constant factor /2k;/At*

o 1 a*
fa(a™) = \/WfAlAz (W) : (D13)

Note that the above approximated form for the p.d.f. of acceleration is complicated. In
practice, the simple Laplace distribution (Laplace(0, b)) is a more common choice for
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Figure 10. Comparison of p.d.f. of acceleration for experiment S5 of Liu ez al. (2019). ‘Approximation’
represents the solution by (D13).

approximation (Wu et al. 2020). As shown in figure 10, the Laplace distribution even
gives a better prediction than that by the numerical approximation (D13). The mean of
the absolute of acceleration (mean absolute deviation, a, ;) or the standard deviation of
acceleration (aj,;) is useful for the estimation of the parameter b. Using the property of
independent distributions, we have

2
Ar*

2k o Jk(u* o 1
Sy gt / W) (%) du [2 / 1y —— e/ da2:|

Ar* 0 k() 0 V27

*
— % </~oo eu*/Zuéi efu*/ué du*) o) 1
\V ars \ o u; V2

=4 ko D14
O\ mAr D14)

Note that the mean absolute deviation of Laplace(0, b) is b and thus

k*
b=4 Aot*. (D15)
T

If one uses the standard deviation of acceleration, note that the standard deviation of A
does not exist probably because (D1) is only a first-order approximation. Thus, we have to
use the Laplace distribution as an approximation and the variance (a, d)2 = 2b%. Together
with (D15), we have

*
Dnad = HA| = 1Az KA

ks = A (k). (D16)
Finally, if one imposes the cutoff velocity, the analysis is similar after we make the
translation u™ = u* — u, as presented in § C. We just need to replace »* and kj; in (D14)

with «/* and kf)* (defined in (C2)), respectively. Then, (D16) is generalized for the presence
of the cutoff velocity as

ks e/ = kit = LA (al,)?. (D17)
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