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Abstract

In evolutionary theory, a key issue in selection theory is the expected time for a
given amount of allele frequency change to occur. Crow and Kimura, by assuming
weak selection, presented explicit results for several important cases of the directional
selection and of the stochastic process. Those results played an important role in the
theory of population genetics. In this paper, first we show that the weak selection
assumption can be removed from most of the results of Crow and Kimura, and then
we generalize those results to the most general selection model. Next, we estimate the
errors of the deterministic formulae produced by proving that the deterministic formulae
are limits of the corresponding stochastic formulae when the size of the population
tends to infinity. Finally, we present a result which removes the restriction of Kimura’s
corresponding results for a favourite recessive selection model, and we also observe
that the conclusion made by Kimura about the favourite dominant selection might not
be correct.
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1. Introduction

A key issue in selection theory is the expected time for a given amount of allele
frequency change to occur. Crow and Kimura presented explicit results for several
important cases of the directional selection (or purifying selection) [1, (5.13)–(5.14)
and (5.3.15)]; the values of fitnesses were 1 + s, 1 + hs and 1 with s as the selective
coefficient. In the following discussion, the variables x and y are the frequencies of
A and a alleles, respectively, with x + y = 1 and t being the time required for allele A
moving from x to xi.
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If the fitnesses are additive (h = 1/2), then, by assuming s(1 − x) ≈ 0,

t =
2
s

ln
(1 − x)xt

(1 − xt)x
, (1.1)

whereas the allele a is completely recessive to A (h = 1), by assuming s(1 − x)2 ≈ 0,

t =
1
s

[ 1
1 − xt

−
1

1 − x
+ ln

(1 − x)xt

(1 − xt)x

]
. (1.2)

If the allele a is completely dominant to A (h = 0), then, by assuming s(1 − x2) ≈ 0,

t =
1
s

[
ln

xt(1 − x)
x(1 − xt)

+
1
x
−

1
xt

]
. (1.3)

These results play an important role in theoretical population genetics and have not
been improved yet (see, for example, the article by Hartl and Clark [4, (6.15)–(6.17)]
and the books by Hedrick [5, (3.6b)–(3.6c)], Walsh and Lynch [8, (7.3c)–(7.3e)] and
Ewens [2, (1.28)]).

For Kimura’s stochastic process, consider a continuous random variable xt indexed
by continuous time t. If δt = xt+δ − xt satisfy

E(δx|xt = x) = m(x)δt + o(δt),
σ2(δx|xt = x) = v(x)δt + o(δt),

E(|δt |
k) = o(δt)

for k ≥ 3, the random variable xt is said to be a diffusion process. The infinitesimal
mean m(x) and infinitesimal variance v(x) correspond to the mean and variance of the
process over a very small time interval, respectively. These are formally defined as

m(x) = lim
δt→0

E(xt+δt − xt | xt = x)
δt

and v(x) = lim
δt→0

E(x2
t+δt
− xt | xt = x)

δt
.

As usual, diffusion processes for allele frequencies are typically obtained by setting
v(x) = x(1 − x)/(2Ne) (the per-generation variance in the change of allele frequencies
due to drift), where Ne is the effective size of the population. Then the scale function
G is defined by the infinite integral G(x) = exp[−2

∫ x
0 (m(y)/v(y)) dy].

Kimura [6] showed that the fixation probability of A at the initial frequency p is

u(p) =

∫ p
0 G(x) dx∫ 1
0 G(x) dx

and the expected conditional time to fixation at the initial frequency p is

tF =
2(1 − u(p))

u(p)

∫ p

0

u(x)
∫ x

0 G(t) dt

v(x)G(x)
dx + 2

∫ 1

p

u(x)
∫ 1

x G(t) dt

v(x)G(x)
dx (1.4)

(see the articles by Kimura and Ohta [7] and Walsh and Lynch [8] for other related
results).
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In this paper, the natural selection assumes one autosomal locus with two alleles,
A and a. The three diploid genotypes AA, Aa and aa have different fitnesses, denoted
by w11,w12 and w22, respectively. These fitnesses are assumed to be constant across
generations. Suppose that initially, that is, before selection has operated, the zygote
genotypes are in Hardy–Weinberg equilibrium [2], and the frequencies of the A and a
alleles are x and y, respectively, where x + y = 1. The zygotes then grow to adulthood
and reproduce, giving rise to a new generation of offspring zygotes. Our task is to
compute the frequencies of A and a in the second generations. As usual, let us denote
these by x′ and y′, respectively, where x′ + y′ = 1.

2. Results

2.1. Relaxing the weak selection assumption In reality, natural selection does not
always satisfy the assumption of weak selection. A question that arises is whether or
not we can establish analogues of Kimura’s [6] results without the assumption of weak
selection. The following results present an affirmative answer.

2.1.1 Deterministic formulae We first present analogues of Kimura’s equations
(1.1), (1.2) and (1.3), by removing the extra weak selection assumption as follows.

If h = 1/2,

t(x, xt) = −2
(
ln

1 − xt

1 − x
−

1 − s
s

)(
ln

xt

x
− ln

1 − xt

1 − x

)
=

2
s

ln
xt(1 − x)
x(1 − xt)

− 2 ln
1 − xt

1 − x
.

(2.1)

If h = 1,

t(x, xt) =
1
s

ln
xt

x
+

1 + s
s

(
ln

1 − x
1 − xt

+
1

x − 1
−

1
xt − 1

)
. (2.2)

If h = 0,

t(x, xt) =
1 + s

s
ln

1 − x
1 − xt

+
1
s

(
ln

xt

x
+

1
x
−

1
xt

)
. (2.3)

For the details, see purifying selection in the next subsection and Theorem 2.1 below.

2.1.2 Stochastic formulae For the fitnesses 1 + s, 1 + s/2 and 1, by using the weak
selection assumption, Kimura obtained G(x) = e−2Nsx, u(x) = (1 − e−2Nsx)/(1 − e−2Ns)
and

tF(p) =
2
s

1 − u(p)
u(p)

∫ p

0

(1 − e−2Nsx)2e2Nsx

(1 − e−2Ns)x(1 − x)
dx

+
2
s

∫ 1

p

(1 − e−2Nsx)(1 − e−2Ns(1−x))
(1 − e−2Ns)x(1 − x)

dx. (2.4)
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Table 1. Definitions.

AA Aa aa Total
Fitness w11 w12 w22

Frequency after
selection x2 2xy y2 1

Frequency after
selection w11x2 2w12xy w22y2 W = w11x2

+ 2w12xy + w22y2

Normalized w11x2/W 2w12xy/W w22y2/W 1

Without the weak selection restriction, Wright [9] showed that G(x) = (1 + sx)−2N .
Thus,

tF(p) =
2(1 − u(p))

su(p)

∫ p

0

2Nu(x){(1 + sx)2N − (1 + sx)}
(2N − 1)x(1 − x)

dx

+ 4N
∫ 1

p

u(x){(1 + sx)1−2N − (1 + s)1−2N}

s(2N − 1)x(1 − x)(1 + sx)−2N dx. (2.5)

Both equations (2.4) and (2.5) will be used to estimate the error deterministic formulae
produced.

2.2. More deterministic formulae Now we consider Table 1.
Starting with the Hardy–Weinberg equilibrium [2], first we have

∆x = x′ − x

=
w11x2 + w12x(1 − x) − x(w11x2 + 2w12xy + w22y2)

(w11x2 + 2w12xy + w22y2)

=
x(1 − x)[w11x + w12(1 − 2x) − w22(1 − x)]

(w11x2 + 2w12xy + w22y2)

=
x(1 − x)[(w11 − 2w12 + w22)x + w12 − w22]

(w11 − 2w12 + w22)x2 + 2(w12 − w22)x + w22

and then we have the following theorem.

Theorem 2.1. Let the time required for the frequency of A to move from some value x
to a value xt be denoted by t(x, xt) or t. Then we have the following results.

(1) If w11 − 2w12 + w22 = 0 (fitnesses are additive), then

t(x, xt) = −2 ln
1 − xt

1 − x
+

2w22

w12 − w22

(
ln

xt

x
− ln

1 − xt

1 − x

)
.

(2) If w11 − 2w12 + w22 , 0,w22 − w12 = 0 (recessive favoured), then w11 − w12 , 0
and

t(x, xt) =

( w22

w11 − w12
+ 1

)
ln

1 − x
1 − xt

+
w22

w11 − w12

(
ln

xt

x
+

1
x
−

1
xt

)
.

https://doi.org/10.1017/S1446181117000050 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000050


468 T.-H. Fan, S. Sun and P.-A. He [5]

Table 2. Popular selection models [4, Table 3.5].

AA Aa aa
General fitness w11 w12 w22

(a) Recessive lethal 1 1 0
(b) Detrimental alleles
(1) Recessive 1 1 1 − s
(2) Additive 1 1 − s/2 1 − s
(c) General dominance
(1) Purifying selection 1 1 − hs 1 − s
(2) Positive selection 1 + s 1 + hs 1
(d) Heterozygote advantage 1 − c1 1 1 − c2

(e) Heterozygote disadvantage 1 + c1 1 1 + c2

(3) If w11 − 2w12 + w22 , 0,w11 − w12 = 0 (dominant favoured), then w12 − w22 , 0
and

t(x, xt) = ln
1 − x
1 − xt

−
1

xt − 1
+

1
x − 1

+
w22

w12 − w22

(
ln

xt

x
− ln

1 − xt

1 − x
+

1
x − 1

−
1

xt − 1

)
. (2.6)

(4) If w11 − 2w12 + w22 , 0,w11 − w12 , 0 and w22 − w12 , 0, then

t(x, xt) =
w22

w12 − w22
ln

xt

x
−

w11

w11 − w12
ln

1 − xt

1 − x

+
w2

12 − w11w22

(w12 − w22)(w11 − w12)
ln

w12 − w22 + (w11 − 2w12 + w22)xt

w12 − w22 + (w11 − 2w12 + w22)x
.

(2.7)

Proof. The proof of this theorem is routine and is therefore omitted. �

Note that the time function introduced above is additive. By Theorem 2.1, we are
able to give more explicit time-required formulae. Table 2 contains the most popular
selection models. We will present explicit time-required formulae for all of the cases.

Case 1. Selection against recessive (Table 2 (b)(1)) By equation (2.6),

t(x, xt) = ln
1 − x
1 − xt

−
1

xt − 1
+

1
x − 1

+
w22

w12 − w22

[
ln

xt

x
− ln

1 − xt

1 − x
+ 1/(x − 1) − 1/(xt − 1)

]
and, hence,

t(x, xt) =
1 − s

s
ln

xt

x
−

1
s

(
ln

1 − xt

1 − x
−

1
1 − xt

+
1

1 − x

)
.
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Recall that the result corresponding to Kimura’s one for h = 0, or with the
approximation 1 − sy2 ≈ 1 of Hartl and Clark [4, (6.15)], is

t =
1
s

[1
y
−

1
yt

+ ln
y(1 − yt)
yt(1 − y)

]
.

Case 2. Additive selection (Table 2(b)(2), where the values of fitness are 1, 1 − s/2 and
1 − s.) By equation (2.6),

t(x, xt) = −2 ln
1 − xt

1 − x
+

w22

w12 − w22

(
ln

xt

x
− ln

1 − xt

1 − x

)
.

If w11 = 1 + s,w12 = (2 + s)/s,w22 = 1, then we have equation (2.1).
If h , 1 and h , 0,

t(x, xt) =
1 − s
s − sh

ln
xt

x
−

1
sh

ln
1 − xt

1 − x
+

1 − 2h + h2s
(s − sh)h

ln
1 − h + (2h − 1)xt

1 − h + (2h − 1)x
. (2.8)

As expected, it can be shown that when h approaches zero, the right-hand side of
equation (2.8) approaches equation (2.3), and when h approaches 1, the right-hand side
of equation (2.8) approaches equation (2.2). This is because the integrand, regarded
as a function of h, is continuous on the compact subset [0, 1] and hence is uniformly
continuous.

Case 3. Positive selection (Table 2(c)(2), where the values of fitness are 1 + s, 1 + hs
and 1.) If h = 1/2 or h = 1, we already have equations (2.1) and (2.2). Now let h , 0
and h , 1. By equation (2.7) in Theorem 2.1,

t(x, xt) =
1 + s
s − sh

ln
1 − xt

1 − x
+

1
sh

ln
xt

x
+

sh2 + 2h − 1
sh − sh2 ln

h − (2h − 1)xt

h − (2h − 1)x
. (2.9)

As in the case of positive selection, it can be shown that when h approaches 1, the
right-hand side of equation (2.9) approaches the right-hand side of equation (2.2).

Case 4. Heterozygote advantage (Table 2(d), where the values of fitness are 1 − s1, 1
and 1 − s2.) By equation (2.7),

t(x, xt) =
1 − s2

s2
ln

xt

x
+

1 − s1

s1
ln

1 − xt

1 − x

+
s1s2 − s1 − s2

s1s2
ln

s2 − (s1 + s2)xt

s2 − (s1 + s2)x
.

Case 5. Heterozygote disadvantage (Table 2(e), where the values of fitness are 1 + s1,1
and 1 + s2.) By equation (2.7),

t(x, xt) =
1 + s2

−s2
ln

xt

x
−

1 + s1

s1
ln

1 − xt

1 − x

+
s1s2 + s1 + s2

s1s2
ln

s2 − (s1 + s2)xt

s2 − (s1 + s2)x
.
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2.3. Estimation of the error deterministic formulae produced The deterministic
formulae cannot predict an accurate result due to the two assumptions, namely, (1) the
population size is infinite; (2) assuming that the generation time scale is infinitesimal
so that we could use the integral operator. For the second source of errors, we could
use a directional computer iteration.

For stochastic estimation, we will focus on the additive fitness case. Recall that the
expected conditional time to fixation is calculated at the initial frequency p as

tF =
2(1 − u(p))

u(p)

∫ p

0

u(x)
∫ x

0 G(t) dt

v(x)G(x)
dx + 2

∫ 1

p

u(x)
∫ 1

x G(t) dt

v(x)G(x)
dx,

where

G(x) = exp
[
−2

∫ x

0

m(y)
v(y)

dy
]
, u(p) =

∫ p
0 G(x) dx∫ 1
0 G(x) dx

and v(x) =
x(1 − x)

2N
.

If fitnesses are 1 + s, 1 + s/2 and 1, then note that

G(x) = [1 + sx]−2N and u(x) =
1 − (1 + sx)−2N+1

1 − (1 + s)−2N+1 .

Let s be fixed; then equation (2.5) is reduced to

tF(p) =
2(1 − u(p))

su(p)

∫ p

0

2Nu(x){(1 + sx)2N − (1 + sx)}
(2N − 1)x(1 − x)

dx

+ 4N
∫ 1

p

u(x){(1 + sx)1−2N − (1 + s)1−2N}

s(2N − 1)x(1 − x)(1 + sx)−2N dx. (2.10)

Now t̄F can be regarded as a function of N, and denote t(p, N) = tF(p). Then, for
p2 ≥ p1, write t(p1, p2,N) = t(p1,N) − t(p2,N). Recall the deterministic equation (2.1):

t(x, xt) =

∫ xt

x

2(1 + sx)
sx(1 − x)

dx =
2
s

ln
xt(1 − x)
x(1 − xt)

− 2 ln
1 − xt

1 − x
.

We will prove that

lim
N→∞

t(p1, p2,N) = t(p1, p2). (2.11)

This result gives us some indication that both deterministic and stochastic processes
may be correct theories to reveal complicated biological phenomena. We prove it as
follows: (1) first we prove that the first term in equation (2.10) vanishes when α→∞;
(2) then we prove that the second term in equation (2.10) approaches

2
s

∫ xt

x

1 + sx
x(1 − x)

dx =
2
s

ln
xt(1 − x)
x(1 − xt)

− 2 ln
1 − xt

1 − x
.

Equation (2.11) allows us to estimate the error of deterministic formulae.
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Similarly, if the left-hand side of equation (2.11) takes Kimura’s function
G(x) = e−2Nsx, then the right-hand side is that of equation (1.1). That is,

lim
N→∞

t(p1, p2,N) =
2
s

[
ln

(1 − p1)p2

(1 − p2)p1

]
. (2.12)

Once again this result assures us that both deterministic and stochastic processes are
correct theories.

The above procedure can also be applied to a more general selection model, where
the fitnesses are 1 + s, 1 + sh and 1. Assuming weak selection, we have G(x) =

e−2Ne[2shx+s(1−2h)x2] and, in general, G(x) = [1 + 2shx + s(1 − 2h)x2]−2N . Substituting
G(x) into the left-hand side of equation (2.12), we are still able to prove that the right-
hand-side function is equation (2.9). That is,

lim
N→∞

t(x, xt,N) =
1 + s
s − sh

ln
1 − xt

1 − x
+

1
sh

ln
xt

x

+
sh2 + 2h − 1

sh − sh2 ln
h − (2h − 1)xt

h − (2h − 1)x
.

2.4. Remarks on fixation probability of mutant genes In the literature, much
attention has been given to calculating a newly arisen favourable recessive mutation
(h = 0), at the initial rate x = 1/2N and N = Ne (effective population size). Previously,
Haldane [3] used the theory of branching processes to obtain an approximation
of u =

√
s/N ≈ 1.41

√
s/(2N), while Wright [9] obtained an approximation of

u = 1.1
√

s/(2N). Kimura [6] obtained u =
√

2s/(Nπ) for large N. Since
√

2s/(Nπ) =

1.31
√

s/(2N), we see that Kimura’s result lies between those of Haldane [3] and
Wright [9] and hence is a good approximation: 1.1

√
s/(2N) ≤

√
2s/(Nπ) ≤

√
s/N.

However, all those results work only when selection pressure is not small. The
reason is that there is a well-known result for no selection action (only pure drift
action): u = 1/2N. But when the selection coefficient s approaches zero (meaning
no selection action), the above results do not approach 1/2N. For this reason, we
present the following equation:

u =

√
α

2N
√
π{N0,1(

√
2α) − 0.5}

, (2.13)

where α = 2Ns and N0,1 is the standard accumulative normal distribution
function. Equation (2.13) is not hard to prove by considering the approximation√

2αN0,1(
√

2αp) − 0.5 =
∫ p

0 e−αx2
dx, which is ≈

√
αp when p is small.

To get Kimura’s result, suppose that α is not small; for example, let α ≥ 10. We
have N0,1(

√
2αp) ≈ 1 and, if p = 1/2N, then

u = u
( 1
2N

)
=

√
α

2N
√
π(1 − 0.5)

=

√
2s
Nπ

.

Note that equation (2.13) is valid for all α. When α ≥ 3, our formula reduces to a
simpler form of Kimura’s result, u =

√
2s/(Nπ). For example, when α = 3, our result

gives u = 1/N, while Kimura’s formula yields
√

3/π(1/N).
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From equation (1.4), there is an exact solution

u
( 1
2N

)
=

∫ 1/2N
0 e−2Nsx2

dx∫ 1
0 e−2Nsx2 dx

.

Now we calculate the fixation probability of a newly arisen allele for the more general
case, as described in equation (1.4). Kimura [6, (5.9)] showed that if 0 < h� 1, then

u
( 1
2N

)
=

eαh2/(1−2h) √2s(1 − 2h)/Nπ

1 − 2Φ
√

2h2α/(1 − 2h)
,

where Φ(x) = (1/
√

2π)
∫ x

0 e−t2/2 dt. We can prove that this equation holds for 0 < h <
1/2.

2.5. Corrections to Kimura’s remark For the case when h = 1, Kimura [6, p. 897]
remarked that “For the completely dominant gene (D = 2h − 1 = 1) with small
selection advantage s > 0, we may use the formula u = 2s, unless Ns is small”. Here
we show that this comment may not be correct.

We will consider the case of h > 1/2, which is a bit more general. In fact,∫ p

0
e−2sNe2hx+2sNe(2h−1)x2

dx = eαh2/(2h−1)
∫ p

0
e[αh2/(2h−1)][1−(2h−1)x/h]2

dx

= eαhcc
∫ 1

1−p/c
eαhcy2

dy,

where c = h/(2h − 1). Hence, we further have

u(p) =

∫ 1
1−p/c eαhcy2

dy∫ 1
1−1/c eαhcy2 dy

=

∫ 1
0 eαhcy2

dy −
∫ 1−p/c

0 eαhcy2
dy∫ 1

0 eαhcy2 dy −
∫ 1−1/c

0 eαhcy2 dy

=

∫ √αhc
0 ey2

dy −
∫ (1−p/c)

√
αhc

0 ey2
dy∫ √αhc

0 ey2 dy −
∫ (1−1/c)

√
αhc

0 ey2 dy

→
eαhc − e(1−p/c)2αhc

eαhc − e(1−1/c)2αhc
=

1 − e[1−(1−p/c)2]αhc

1 − e[1−(1−1/c)2]αhc
→ 1

when α (or αhc)→∞. This means that whatever value the initial frequency is, when
the population size approaches infinity, the fixation probability approaches 1.

If h = 1,

u(p) =

∫ 1
1−p eαy2

dy∫ 1
0 eαy2 dy

.

Then, for any initial frequency p, u(p)→ 1 when Ns→∞, which implies that the
conclusion above made by Kimura may not be correct.
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3. Conclusion

We presented some explicit results for various most general deterministic models
of a general type without the weak selection restriction. Theorem 2.1 presents the
most general and unified results. Since any deterministic formula always presents an
approximation, we also estimated the errors produced by the deterministic formulae,
which are important in practice. We have shown that the integral used in deducing
these formulae does not produce a significant error. In particular, we have estimated
that for the population of over 105 and for values of the selection coefficient larger than
0.05, the error produced by the deterministic model is negligible. In addition, we have
examined the result of Kimura on fixation probability of a newly arisen mutant. For
a newly arisen favourable recessive mutation, we have established a formula which
generalizes several results of Kimura [6], Haldane [3] and Wright [9]. For a newly
arisen allele for the more general case as described in equation (1.4), we have removed
an unnecessary restriction made by Kimura. Also, for a newly arisen favourable
dominant mutation, we have indicated why Kimura’s comment need not always be
correct.
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