DETERMINANTS IN PROJECTIVE MODULESD

OSCAR GOLDMAN

0. Introduction

The definition of the determinant of an endomorphism of a free module
depends on the following fact: If F is a free R-module of rank =, then the
homogeneous component A™F, of degree #, of the exterior algebra A F of F
is a free R-module of rank one. If a is an endomorphism of F, then « extends
to an endomorphism of A F which in A”F is therefore multiplication by an
element of R. That factor is then defined to be the determinant of a. (A
discussion of this theory may be found in [4].)

This procedure cannot be applied in general to finitely generated projective
modules since, for such modules, it may happen that no homogeneous com-
ponent of the exterior algebra is free of rank one.

In this note we show how to define the determinant of an endomorphism
of a finitely generated projective module over any commutative ring. If E is
a finitely generated projective R-module, then E is a direct summand of a
finitely generated free module: E4+E =F. If « is an endomorphism of E,
extend « to an endomorphism «; of F by defining a; to be the identity on E;.
It is proved that det a; depends only on E and «, and not on the choice of E; ;
we then define det « to be det ;. The usual elementary properties of the
determinant are valid in this more general setting and are immediate con-
sequences of the definition.

By forming the R[X]-module E® R[X], we define the characteristic poly-
nomial ¢(a, E, X) of an endomorphism a of E as det (X—a ®1). The Cayley-
Hamilton theorem, to the effect that ¢(a, E X) is in the kernel of the homo-
morphism R[X]-> Homz(E, E) defined by X - «a, is readily verified..

The characteristic polynomial ¢(0, E, X) of the zero endomorphism has a

number of interesting properties. If E is free of rank », then certainly
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¢(0. E, X) = X", but this is not the case in general. Here one finds ¢(0, E. X) =
ge;Xi with the e; mutually orthogonal idempotents whose sum is 1; and every
pﬂolynomial of this type can occur. The coefficients have the following inter-
pretation: e, generates the annihilator of E, while e+ - - - +¢; generates the
annihilator of A ‘"'E. Also, for a given E all the polynomials ¢(«, E, X) have
the same degree and the same leading coefficient independently of a.

If b is a prime ideal of R, the Ry-module E® Ry, being a finitely generated
projective module over a local ring, is free; we call its rank the p-rank of E.

With the above notation ¢(0, E, X) = il,EiXi, we have the following result:
given b, exactly one coefficient fails to‘lie in p, and if e; € p, then the. p-rank
of Eis i.

We follow the customary terminology in dealing with projective modules :
all rings have unit elements, ring homomorphisms carry the units into units

and all modules are unitary.

Section 1. The Determinant of an Endomorphism

Let R be a commutative ring and E a finitely generated projective R-module.
Because E is both projective and finitely generated, E is a direct summand of
a finitely generated free R-module: Fi=E-+E;. If a: E -~ E is an endomor-
phism of E, we extend « to an endomorphism a; of Fi by ai=a +1, that is,
a; is the identity map of E;.  If should be noticed that if both E and E; are
free R-modules, then a and a; have the same determinant. Therefore it would
be reasonable to define in general the determinant of a as deta;. This is
possible once we verify that det «; does not depend on the particular representa-
tion of E as a direct summand of a free module. In order to show that this

is the case, we need the following lemma.

LemMma 1.1. Let R be a commutative ring, A an R-module. If b is a prime
ideal of R, let fy: A~ AQrRp be defined by fp(a)=a®1l. If a€ A is such
that fw(a) =0 for all maximal ideals m of R, then a=0.

Proof. 1t follows directly from the definition of the ring of quotients Ry
that an element a< A is in the kernel of fp if, and only if, there exists an
element c€ R with c€p and ca=0. If a<= A, let N be the annihilator of @ in

R.  If fw(a) =0 for all maximal ideals m, then N ¢ m, for any maximal ideal.
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Consequently, ! = R and a=0.
As an immediate consequence of the lemma we have the following pro-
position.

ProrosiTioN 1.2 Let E be a finitely generated projective R-module. For
i=1, 2 let F;=E+E; be a finitely generated free R-module. If « = Homz(E, E),
let a;i = Homg(Fi, F;) be defined by a; = +1. Then det ay = det as.

Proof. Let m be a maximal ideal of R. The ring of quotients Rmn is a
local ring (not necessarily noetherian) so that EQ Rm, E;® Ru are all free
Rm-modules. (It follows from prop. 5.1, ch. VIII of [3] that a finitely generated
projective module over a local ring is free). Then, tensor with Rm the direct
sum Fi=E+E; to give FQRm=EQRmn+E ®Rn. The endomorphisms «
and «; extend to endomorphisms a ®1 and a;®1 which have the same relation
as do « and a;. If fin: R - Rwm is the canonical map, it is clear that det (a1 ® 1)
= fm(det a;), while at the same time det(a;®1) =det (« ®1). Now, the same
situation prevails in F,, so that fin(deta;) =det(a®1) = fin(det a»), and this'
is so for all maximal ideals m of R. Applying the lemma with A =R shows
that det a; = det ..

In view of this proposition, we define det a; as the determinant of «, and
denote it by deta. It is clear that for a free module the present definition
coincides with the usual one.

There are several properties of determinants which follow directly from

the definition.

ProrosiTiON 1.3.  Let E be a finitely generated projective R-module. If
a, B Homg (E, E), then det(aB)=deta detB. Also, detl=1. Finally, a is

an automorphism of E if, and only if, det « is a unit in R.

Proof. We use the same nétation as above, F=E+E;. It is clear that
taP)y = ai 81, from which the multiplicative property of det follows. Also1; =1,
whence det1=1. If a is an automorphism of E, these relations show that
deta is a unit in R.  On the other hand, suppose that deta is a unit in R.

1

Then a; is an automorphism of F. One verifies immediately that a;' maps E

into itself, and is the inverse of « ‘on E. Therefore a is an automorphism of E.

» I am indebted to Maurice Auslander for suggesting the main idea of this proof.
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Suppose that f: R+ S is a homomorphism. Then f gives S the structure
of an R-module and EQ®zS is a finitely generated projective S-module, where
E is a finitely generated projective R-module. If « € Homg(E, E), then a®1
is an endomorphism of £® S over S. In case E is R-free, it is obvious that
det (¢ ®1) = f(deta). If follows immediately from the definition of determinant
that this relation holds also in the case where E is projective, not necessarily

free. Thus, we have:

ProrosiTiON 1.4. Let E be a finitely generated projective R-module and
a €Home (E, E). Let f: R- S be a ring homomorphism. Then, a ® 1< Homs
(E®S, EQS) and det(a ®1) =f(det a).

There is a final simple property of determinants analogous to the classical
situation. ~We shall omit the proof since it is a straightforward consequence
of the definition.

ProrosiTioN 1.5. Let E, and E, be Sfinitely generated projective R-modules,
and let a;i = Homg (E;, E;). Then, det (a; +a3z) = det a; det as.

Section 2. The Characteristic Polynomial

Let R be as above, and let R[X] be the ring of polynomials in one in-
determinate over R. If E is a finitely generated projective R-module, then
E® R{LX] is a finitely generated projective R[ X]-module. Let « € Homg (E, E).
Then a®1 is an endomorphism of EQ® R[X], while multiplication by X is
another endomorphism. Thus, X—a® 1€ Hompx)(EQ R[X], EQ R[X]) and
det(X—a®1)e= RLX] is called the characteristic polynomial of «. We shall
denote it by ¢(a, E, X). It follows immediately from proposition 1.5 that
¢laitaz, E+E, X)=¢(a;, Ei, X)¢(as, Es, X). Also if f: R- S is a ring
homomorphism, then ¢(a®1, EQ S, X) =/ ¢(a, E, X), where /' : R[X]1 - S[X]

is the natural extension of f.

TueoreMm 2.1. (Cavrey-HamitoN). ¢(a, E, X) is in the kernel of the
homomorphism R[X] - Hompg (E, E) defined by X - a.

Proof. We note first that the Cayley-Hamilton theorem is true in case E
is free. The usual proof of the theorem for vector spaces, as for example in

[2], is valid for free modules over any commutative ring.
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Now, let E be projective and « € Homz(FE, E). Let « be the image of
¢(a, E, X) under the homomorphism X -» a. We wish to show that w =0. To
do so, we consider the submodule w(E) of E. If m is any maximal ideal of R,
all objects under consideration localize properly, and w(E)® Rm =0 because
E®Rm is a free R-module. It follows from lemma 1.1 that w(E) =0, that
is, w =0.

The characteristic polynomial of the zero endomorphism is especially in-
teresting. Clearly ¢(0, E, X) is the determinant, in R[ X], of the endomorphism
defined by multiplication by X in EQ R[X]. Using the homomorphism R[X]
- R defined by X - 1 shows that ¢(0, E, 1) =1. The multiplicative property
of the determinant gives ¢(0, E, XY) =¢(0, E, X) ¢(0, E, Y) where X and Y
are independent indeterminates over R. Set ¢(0, E, X) = ioei X, ee= R Ap-
plying the multiplicative property shows that ge;eri Yy’ : Zk]ek X*v* so that
comparing the coefficients of the different monomials gives eje; = dije;i.  The

equation ¢(0, E, 1) =1 translates into >)e; = 1. Thus, we have proved:

ProrosiTioN 2.2. If ¢(0, E, X) = ieiXi is the characteristic polynomial
of thé zero endomorphism of E, then th:z:oeo, e, ..., en are mutually orthogonal
idempotents with e+ e+ - - e, =1.

Of course, if F is a free R-module of rank n, then ¢(0, E, X)=X". In

general the polynomial ¢(0, E, X) need not have that form.

ProrosiTiON 2.3. Let e, . . ., en be mutually orthogonal idempotents in R
whose sum is 1. Then, there exists a finitely generated projective R-module E

such that ¢(0, E, X) = >e; X'
£=0

Proof. The conditions imposed on the ¢'s imply the relation > e X'=

i=0

Ii (1—ej+e; XV, as may be verified by direct computation. Since ¢(0, E;4 Es, X)
j= ¢(0, E;, X)¢(0, E,, X), it follows that we need only prove the following:
if e R is an idempotent, then there is a finitely generated projective R-module
A such that ¢(0, 4, X) =1—e+eX. Now, since ¢ is idempotent, A =Re is a
direct summand of R, so that it is finitely generated projective. Furthermore,
the definition of determinant shows directly that ¢(0, Re, X) =1—-e+eX.

The Cayley-Hamilton theorem applied to ¢(0, E, X) shows that ¢(0, E, 0)

= ¢y annihilates E£. Also, it is clear that ¢(0, E, 0) = det 0, and the above con-
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struction shows that det 0 need not be 0 in general; although it is the zero

endomorphism of E. Some properties of det 0 will be discussed later.

Section 3. The Local Rank of a Module

Let E be a finitely generated projective R-module. If p is a prime ideal of
R, then EQ Ry is a free Rp-modﬁle of finite rank. We shall call the rank of
EQ® Ry the p-rank of E. It is sometimes of interest to know how the p-rank of
E depends on .

TueoreM 3.1. Let ¢(0, E, X) = ‘é_oe;X" be the characteristic polynomial
of the zero endomorphism of E. If b ;s_ a prime ideal of R, then exactly one of
the €'s is not in p; if ei kD, then the p-rank of E is i. If ej=0 there is a
prime ideal p such that the p-rank of E is j.

Proof. Since i&ei =1, not all of the ¢’s are in p; suppose e;Ep. Forj=x1
we have eje; =0, sz) that ¢; = p because p is a prime ideal. Since e;€p and
eiej =0 for j =1, it follows that fp(e;) =0 where fy: R— Ry. Also, because
ei(1—e;) =0, we have fp(e;) =1. Therefore if fp: RLX] - RyLX] is the exten-
sion of fp, we find that f/}(0, E, X)=X". But /p(0, E, X) =¢(0, EQ Ry, X),
while ¢(0, EQ Ry. X) =X" if m is the p-rank of E. Thus, m=1.

Now, suppose ¢; = 0. Since the intersection of all prime ideals of R is the
set of nilpotent elements of R, and since no non-zero idempotent is nilpotent,
we have e; & p for some prime ideal p. It follows from the above that the p-
rank of E is just j.

We have as an immediate consequence the following :

CoroLLARY 3.2. If R has no non-trivial idempotents, then the p-rank of E

is the same for all p.

If we set ¢(0, E, X) = i}e;Xi with e, = 0, theorem 3.1 shows that = is
i=0
the maximum of all p-ranks of E. We shall call » the Rrank of E. Theorem

3.1 also shows that the p-ranks of E are completely determined by the knowl-
edge of the polynomial ¢(0, E, X).

Tueorem 3.3. If the R-rank of E is n, then for any endomorphism o of
E the polynomial ¢(a, E, X) has degree n. Furthermore, the leading coefficient
of ¢(a, E, X) is independent of «.
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Proof. Set ¢la, E, X) = izian i with @y % 0. There exists a prime ideal
p such that fy(am) %0, with fp: R—> Ry as usual. Since 2_/p(ai)Xi is the
characteristic polynomial of a®1 in E@ Ry, its degree m is equal to the p-rank
of E, which in turn is <#. Hence m < #n. Since there exists some prime ideal
p such that the p-rank of E is #, it follows that m > n, hence m = n.

Let ¢(0, E, X) = :EoeiXi. If p is a prime ideal such that e, <& p, then the
p-rank of E is # and therefore fp(an) =1. Hence a,—1 is annihilated by some
element of R not in p. Denote by b the annihilator of a,—1. We have there-
fore the implication: e, p = b p. It follows immediately that e,=radb.
Since e, is idempotent, this shows that e, b, or e,ax = e,.

Now suppose p is such that e,=p. Then the p-rank of E is less than n,
so that fp(a@n) =0. If ¢ is the annihilator of a,, we find: ex€p = cEp. Now,
e, €D is the same as 1 —e, &, and therefore we conclude that 1—-e,=radec.
Again, because 1 -- e, is idempotent, we have 1 - e, ¢ or (1 —es)a,=0. Thus,
an =enan. Since we have already established the equality e.a.=e., we con-
clude that a, =ex.

Section 4. The Exterior Algebra
Before starting on the proper subject matter of this section, we need some

preliminary results.

LeMMA 4.1. Let e and €' be idempotents in the commutative ring R. If
Re= Re', then e=¢€'. If rad (Re) =rad (Re'), then e =¢'.

Proof. If Re= Re' then e =ae¢' and ¢ =be with a and b suitable elements
of R. Combining the equations shows that e=abe, and ¢ =abe’. From the
idempotence of e and ¢’ we get He=¢ or be' =e¢. Multiplying by a yields
abe’ = ae' = ¢, while abe'=¢' or e=¢'"

From rad (Re) = rad (Re') and the idempotence of e and ¢’ we get Re = Re’
and therefore e =¢'

If E is an R-module we call the annihilator of E, and denote by a(E), the
set of all a < R such that aE=0. Clearly a(E) is an ideal in R. We say that
E is faithful if a(E) = 0.

Lemma 4.2, If E is a finitely generated projective R-module, then o(E) is
a divect summand of R.
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Proof. The lemma is a consequence of the considerations in the appendix
of [1]. However for the sake of completeness we include a proof of the state-
ment. Let T be the ideal in R generated by all f(x) as x ranges through E
and f ranges through Homy (E, R). Then, we shall show that R=a(E) +g.
If a=a(E), then af(x) = f(ax) =0, so that a(E)T = 0.

Let 21, ..., x» be a set of generators of E, and let F be a free R-module
of rank #. By mapping the generators of F onto the x; we obtain an epimor-
phism of F on E; since E is projective, it follows that E is a direct summand
of F. Let f1, ..., fn be the restrictions to E of the coordinate maps of F.
Then, f; € Homg (E, R) and >\ fi(y)x; =y, for all ye E. In particular, we have
% =2 filx;)% or 25 (fi(x;) — ;)% = 0. It follows from this that det (fi(x;) — 6:;)
ea(]zE‘). Now, ea;h fi{z;) €T and the value of det(fi(x;) —di) is (=1)"+¢,
where ¢ is also in the ideal . "Thus, 1€a(E)+ % so that a(E)+T=R It
follows from this and the fact that a(E)T =0 that R is the direct sum of a(E)
and 2.

If E is an R-module we denote by A E the exterior algebra of E, and by
A'E the homogeneous part of degree i of A E. (We refer the reader to [4]
for details concerning A E). In general we have A°E=R 3nd A'E=E.
Also, N(Ei+ Ey) = 530 A E;® N7 E, (direct sum). If F is a free module, then
A'F is also free. ﬁ follows from this that A'E is a finitely generated pro-

jective R-module whenever E is a finitely generated projective R-module.

TueoreM 4.3. Let E be a finitely generated projective R-module of R-rank

n and let ¢(0, E, X) = De; X'. Then a( N"*'E) is generated by eo+ €1+ - + * +ei.
i=0 :

In particular N"E =0 and N"7'E=0. Finally, N"E is a faithful R-module

if, and only if, ¢(0, E, X) = X", and in that case all N'E are faithful, for
0<i<m

Proof. Let p be a prime ideal of R and suppose that the p-rank of E is
m. Then, EQ Ry is a free Rymodule of rank m. Since A" (E® Ry) = A""(E)
©® Ryp, we find that /\i+l(E)®Rp =0 if, and only if, m<i. On the other hand,
it follows from theorem 3.1 that m< i if, and only if, ec+e,+ - - + e ED.
Thus, A"'(E)® Ry=0 is equivalent with e;+e,+ -+ - +e&Ep. But A(E)
®Ry=0 is equivalent with a( A™'(E))&p, and therefore a( A*(E)) Cp is
equivalent with ep+ - - - +e;=p. Now if a is any ideal of R, the intersection
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of all prime ideals containing a is rad a so that we have rad (a(A'"'E))
=rad (R(ey+ * - +¢)). But a( A’"'E), being the annihilator of a finitely
generated projective R-module, is generated by an idempotent, while e+ -+ - -
+e; is also an idempotent. It follows from lemma 4.1 that a( A7"'(E)) is
generated by ec+e+ - - - + e

Because ii:,e; %1 and ‘__ioe,: 1, we have A"E=x0 and A"'E=0. Also,

n—1

A" E is faithful if, and only if, its annihilator is 0, ie., if and only if 2(]&-
i=0
n=1
=0. But De; =1 — e, so that A”E is faithful is equivalent with e, = 1.
i=0
Since the various e; are mutually orthogonal, the latter condition is equivalent
with ¢(0, E, X) = X*. It then follows also that each a( AT"'E)=0fori< n—1.

Since ¢, = det 0 we have immediately the following.

CoROLLARY 4.4. E is faithful if, and only if, det 0 =0.
A finitely generated projective R-module E of R-rank n is called orientable
if A"E is a free R-module of rank one. By theorem 4.3 we have for such a

module ¢(0, E, X)=X". Obviously free modules are orientable.

ProrosiTION 4.5. If E: and E, are orientable, then E\+ E, is also. If
F=E + E:, with F and E, orientable, then E. is also orientable.

Proof. Suppose E; and E, are orientable with R-ranks s, and #., respec-
tively. Then A™"E;=0, for j=>1, so that A™"™(E, + E) = AN"E® A™E,.
Since the R-rank of E;+ E, is obviously #;+ n., it follows that E; + E, is orien-
table.

Suppose now that F = E; 4 E,, with E, orientable of rank # and F orien-
table of rank m. Since ¢(0, F, X) =¢(0, £y, X)¢(0, E., X) and ¢(0, F, X)
= X" while ¢(0, Ei, X)=X" it follows that ¢(0, E:, X) =X""". Thus the
R-rank of E; is #n — m and therefore A”F= A"E,® AN™ "E,. Since A™F and
A"E; are both free of rank one, it follows that A™ "E, is also free of rank
one and we conclude that E, is orientable.

The proposition just proved shows that the isomorphism classes of orien-
table modules constitute a subgroup of the projective class group of R.

If « is an endomorphism of a module E, then « extends to an endomor-
phism @ of AE by defining @(x; A+ -+ Axy) =alx)A - -+ Aalxy). Clearly @
maps each A"E into itself.
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TueoreM 4.6. Let E be an orientable module of R-rank n and a an endo-
morphism of E. Then the restriction of & to N"E coincides with multiplication
by det a.

Proof. Suppose E4- E;=F with F a free module. Let #n; be the R-rank of
E., so that F has rank n+#,.. Extend « to an endomorphism a; of F by de-
fining a; to be the identity on E;; then det a =det a;.

Now A"™™MF= A"E® A™E,, with all three modules free of rank one. It
is clear that @, =a®1 on A""™F, while &, restricted to A”"™F coincides

with multiplication by det oy =det «. The result follows immediately.
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