Treatment with *Saccharomyces boulardii* reduces the inflammation and dysfunction of the gastrointestinal tract in 5-fluorouracil-induced intestinal mucositis in mice

Priscilla F. C. Justino¹, Luis F. M. Melo¹, Andre F. Nogueira¹, Jose V. G. Costa¹, Luara M. N. Silva¹, Cecilia M. Santos¹, Walber O. Mendes¹, Marina R. Costa¹, Alvaro X. Franco¹, Aldo A. Lima¹, Ronaldo A. Ribeiro¹, Marcellus H. L. P. Souza¹ and Pedro M. G. Soares¹,²*

¹Department of Physiology and Pharmacology, Medical School, Federal University of Ceara, Rua Coronel Nunes de Melo 1315, Rodolfo Teófilo, Fortaleza, Ceara CEP 60.430-270, Brazil

²Department of Morphology, Medical School, Federal University of Ceara, Rua Delmiro de Farias s/n, Rodolfo Teófilo, Fortaleza, Ceara CEP 60.416-030, Brazil

(Submitted 16 April 2013 – Final revision received 3 October 2013 – Accepted 23 October 2013 – First published online 6 February 2014)

Abstract

Intestinal mucositis is an important toxic side effect of 5-fluorouracil (5-FU) treatment. *Saccharomyces boulardii* is known to protect from intestinal injury via an effect on the gastrointestinal microbiota. The objective of the present study was to evaluate the effect of *S. boulardii* on intestinal mucositis induced by 5-FU in a murine model. Mice were divided into saline, saline (control) + 5-FU or 5-FU + *S. boulardii* (16 × 10⁶ colony-forming units/kg) treatment groups, and the jejunum and ileum were removed after killing of mice for the evaluation of histopathology, myeloperoxidase (MPO) activity, and non-protein sulphydryl group (mainly reduced glutathione; GSH), nitrite and cytokine concentrations. To determine gastric emptying, phenol red was administered orally, mice were killed 20 min after administration, and the absorbance of samples collected from the mice was measured by spectrophotometry. Intestinal permeability was measured by the urinary excretion rate of lactulose and mannitol following oral administration. *S. boulardii* significantly reversed the histopathological changes in intestinal mucositis induced by 5-FU and reduced the inflammatory parameters: neutrophil infiltration (control 1.73 (SEM 0.37)%, 5-FU 1.38 (SEM 0.24)%, 5-FU + *S. boulardii* 0.62 (SEM 0.03)%). In conclusion, *S. boulardii* reduces the inflammation and dysfunction of the gastrointestinal tract in intestinal mucositis induced by 5-FU.

Key words: Intestinal mucositis; 5-Fluorouracil; *Saccharomyces boulardii*; Probiotics; Inflammation

Probiotics have been defined as ‘live microorganisms that, when administered in adequate amounts, confer a health benefit to the host’⁵. Probiotics promote crypt cell proliferation, prevent cytokine-induced apoptosis⁶, reduce pro-inflammatory cytokine production and regulate the intestinal immune system⁷. *Saccharomyces boulardii* is a probiotic thermophilic non-pathogenic yeast⁸ that is widely used in the treatment of gastrointestinal disorders associated with diarrhoea of varying aetiology⁹. In a study on irinotecan-induced intestinal mucositis, Sezer *et al.*⁸ found that the administration of *S. boulardii* reduced the severity of intestinal mucositis by significantly decreasing leucocyte migration and inflammation.

Mucositis is a major oncological problem associated with the cytotoxicity of chemotherapy and radiotherapy. According to Duncan & Grant⁹, the development of intestinal mucositis may be divided into the following stages: the inflammatory stage; the epithelial degradation stage; the ulceration/bacterial stage, followed by the re-establishment of functional epithelia.

Abbreviations: 5-FU, 5-fluorouracil; CFU, colony-forming units; CXCL, chemokine (C–X–C motif) ligand; MPO, myeloperoxidase; PAF, platelet-activating factor; TUNEL, transferase-mediated dUTP nick-end labelling; UMPO, ultrastructural myeloperoxidase.

Corresponding author: Dr P. M. G. Soares, email pedrogsoares@yahoo.com.br
The anti-metabolite agent 5-fluorouracil (5-FU) is used in the treatment of a range of cancers, including colorectal and breast cancers\(^9,10\), but it is known to induce intestinal damage, especially intestinal mucositis\(^11\), and intestinal stem cell apoptosis\(^12\). Using an animal model, Soares et al.\(^13\) found that 5-FU-induced intestinal mucositis was associated with neutrophil infiltration, increased levels of pro-inflammatory cytokines and a significant delay in gastric emptying. However, there are no previous studies that have evaluated the effect of treatment with \textit{S. boulardii} on the inflammatory and functional aspects of 5-FU-induced intestinal mucositis, which is the objective of the present study.

Materials and methods

Animals

Male Swiss mice weighing 25–30 g (supplied by the Department of Physiology and Pharmacology, UFC Medical School) were kept in a temperature-controlled room with access to water \textit{ad libitum} and were fasted for 24 h before all experiments. The study was approved by a local research ethics committee (protocol #34/10), and all procedures involving animals were carried out in accordance with the Guide for the Care and Use of Laboratory Animals of the US Department of Health and Human Services.

Model of intestinal mucositis induced by 5-fluorouracil

Mice were randomly assigned to one of the following three groups comprising eight mice each: saline (control); saline + 5-FU (450 mg/kg, single dose, intraperitoneally); 5-FU + \textit{S. boulardii} (16 x 10\(^8\) colony-forming units (CFU)/kg) (Merck) for 3 d. Mice were killed 3 d after treatment with \textit{S. boulardii}. Blood samples were collected, and the jejunum and ileum were removed for analyses of morphology and histopathology and determination of apoptosis, myeloperoxidase (MPO) activity, and non-protein sulfhydryl groups. The concentrations of non-protein sulfhydryl groups (mainly thiols) in the intestinal mucosa were quantified using a MPO activity assay kit\(^15\). Briefly, intestinal tissue (50 mg/ml) was homogenised in hexadecyltrimethylammonium bromide buffer (Sigma). The homogenate was centrifuged at 4500 rpm for 7 min at 4°C. MPO activity in the resuspended pellet was assayed by measuring the change in absorbance at 450 nm using o-dianisidine dihydrochloride (Sigma) and 1% H\(_2\)O\(_2\) (Merck). Results are expressed as units/mg tissue. A unit of MPO was defined as the amount of enzyme required to convert 1 \(\mu\)mol/min H\(_2\)O\(_2\) into water at 22°C.

Determination of intestinal myeloperoxidase activity

MPO is primarily found in azurophilic neutrophil granules and has been extensively used as a biochemical marker of infiltration of granulocytes into various tissues, including the gastrointestinal tract. The extent of neutrophil accumulation in the intestinal mucosa was quantified using a MPO activity assay kit\(^15\). Briefly, intestinal tissue (50 mg/ml) was homogenised in hexadecyltrimethylammonium bromide buffer (Sigma). The homogenate was centrifuged at 4500 rpm for 7 min at 4°C. MPO activity in the resuspended pellet was assayed by measuring the change in absorbance at 450 nm using o-dianisidine dihydrochloride (Sigma) and 1% H\(_2\)O\(_2\) (Merck). Results are expressed as units/mg tissue. A unit of MPO was defined as the amount of enzyme required to convert 1 \(\mu\)mol/min H\(_2\)O\(_2\) into water at 22°C.

Determination of sulfhydryl group concentrations

The concentrations of non-protein sulfhydryl groups (mainly reduced glutathione) in intestinal tissues were assessed using an assay for non-protein sulfhydryl content\(^16\). Briefly, 100 mg/ml of frozen intestinal tissue were homogenised in 0.02 M-EDTA. Aliquots of 400 \(\mu\)l homogenate were mixed with 320 \(\mu\)l of distilled water and 80 \(\mu\)l of 50% TCA to precipitate the proteins. The mixture was centrifuged (3000 rpm) for 15 min at 4°C. Aliquots of 400 \(\mu\)l of supernatant were mixed with 800 \(\mu\)l of 0.4 M-Tris buffer (pH 8.9) and 20 \(\mu\)l of 5,5-dithiobis-(2-nitrobenzoic acid) (Fluka), followed by shaking for 5 min. Within 5 min of the addition of 5,5-dithiobis-(2-nitrobenzoic acid), absorbance was read at 412 nm against a blank reagent without the homogenate. Results are expressed as \(\mu\)g/mg tissue.

Determination of nitrite concentrations

The production of NO was determined indirectly by measuring nitrite concentrations based on the Griess reaction\(^17\).
Briefly, 100 μl of intestinal tissue homogenate were incubated with 100 μl of Griess reagent (1% sulphanilamide in 1% H₃PO₄, 0.1% N-(1-naphthyl)benzethonium chloride dihydrochloride, 1% H₃PO₄-distilled water, 1:1:1:1) at room temperature for 10 min. Absorbance was measured at 540 nm in a microplate reader. Nitrite concentrations were determined from a standard nitrite curve generated using NaNO₂.

Determination of cytokine (TNF-α, IL-1β and chemokine (C–X–C motif) ligand 1) concentrations

The concentrations of cytokines (TNF-α, IL-1β and CXCL-1) in duodenum samples were determined by ELISA using protocols supplied by the manufacturer (R&D Systems). Results are expressed as pg/ml.

Measurement of gastric emptying and intestinal transit

Gastric emptying and intestinal transit were measured using the modified technique of Reynell & Spray. Mice were fed 300 μl of a test meal consisting of a non-absorbable marker (0.75 mg/ml phenol red in 5% glucose). After 20 min, mice were killed by cervical dislocation. After laparotomy, the stomach and bowels were exposed and the oesophageal-gastric, gastroduodenal and ileocecal junctions were immediately isolated by ligatures. The specimens were then moved onto a table and divided into stomach and proximal, medial and distal bowel segments. Each segment was placed in a graduated cylinder, and the total volume was measured by adding 10 ml of 0.1 M NaOH. The samples were then cut into small pieces and homogenised for 30 s. After 20 min, 1 ml of supernatant was removed and centrifuged for 10 min at 2800 rpm. Then, 150 μl of supernatant were removed and centrifuged for 10 min at 2800 rpm. The proteins in the homogenate were precipitated by adding 20% TCA and separated by centrifugation for 20 min at 2800 rpm. Then, 150 μl of supernatant were added to 200 μl of 0.5 M NaOH. The absorbance of the samples was determined by spectrophotometry at a wavelength of 540 nm, and it is expressed as optical density.

Fractional dye retention is expressed as a percentage, according to the following equation:

Gastric dye retention

\[\text{Fractional dye retention} = \frac{\text{amount of phenol red recovered in stomach}}{\text{total amount of phenol red recovered from two segments (stomach and small intestine)}} \]

Intestinal transit was calculated for each bowel segment by dividing the amount of phenol red recovered from a given segment by the amount of phenol red recovered from all the three segments, and it is expressed as a percentage.

Determination of intestinal absorption and permeability

After an overnight fast (6–8 h), mice were administered 2 ml of a solution containing lactulose (200 mg/ml) and mannitol (50 mg/ml) by gavage needle. After 1 h, mice were given access to food and water ad libitum. Urine samples were collected for the next 24 h in a flask with 25 μl of a solution containing chlorhexidine (40 mg/ml). Total urine volume was recorded, and two aliquots were stored at −20°C. Each urine sample (50 μl) was mixed with 50 μl of a solution containing melibiose (3-6 mm) and diluted in 2-9 ml of twice-distilled and deionised water. After centrifugation and filtration via a Millipore membrane (0.22 μm), 50 μl were employed for sugar determination using HPLC with pulsed amperometric detection as described previously. The urinary recovery of both lactulose and mannitol was calculated as a percentage of the dose ingested. Both these sugars are hydrophilic and have a low affinity for the monosaccharide transport system and, thus, are absorbed passively in a non-mediated fashion and excreted in the urine. Mannitol, a monosaccharide, has a radius of 0.4 nm and is absorbed transcellularly through aqueous pores in the cell membrane, reflecting the total epithelial absorptive surface area. By contrast, lactulose, a disaccharide with a radius of 0.52 nm, is absorbed paracellularly via extrusion zones at villus tips and tight junctions, reflecting the disruption of intestinal barrier function.

Statistical analysis

Results are reported as means with their standard errors for each group. Data were submitted to ANOVA followed by Bonferroni’s test (parametric data) or the Kruskal–Wallis test and Dunn’s test (non-parametric data). The level of statistical significance was set at \(P < 0.05 \).

Results

Effects of Saccharomyces boulardii on intestinal mucositis induced by 5-fluorouracil

Initially, a dose–response analysis was carried out for *S. boulardii* (1.78 × 10⁹, 5.34 × 10⁹, 16 × 10⁹ and 48 × 10⁹ CFU/kg). An increase in weight was observed in the control group throughout the study period. By contrast, the weight of the 5-FU group decreased considerably (9.75 (SEM 0.58)% on day 3 after 5-FU administration compared with that of the control group. Treatment with *S. boulardii* at doses 1.78 × 10⁹ and 5.34 × 10⁹ CFU/kg did not reverse the weight loss in the 5-FU group; however, treatment with *S. boulardii* at doses 16 × 10⁹ and 48 × 10⁹ CFU/kg significantly prevented (\(P < 0.05 \)) weight loss in the 5-FU group. Thus, we chose to use a submaximal dose (16 × 10⁹ CFU/kg) for all the other experiments (Table 1). Stools suggestive of diarrhoea were observed in the ileal segments of the 5-FU group. It was possible to detect the presence of solid faeces in the saline and 5-FU + *S. boulardii* groups compared with the 5-FU group (Fig. 1). Significant leucopenia was observed on day 3 after 5-FU administration (1675 (SEM 138) cells/mm³) compared with the control (5289 (SEM 851) cells/mm³). Treatment with *S. boulardii* did not prevent 5-FU-induced leucopenia (2825 (SEM 303) cells/mm³).
Table 1. Reduction of weight loss (%) by *Saccharomyces boulardii* in mice with 5-fluorouracil (5-FU)-induced intestinal mucositis

(Mean values with their standard errors)

<table>
<thead>
<tr>
<th>Groups (n 8)</th>
<th>Study period (d)</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>Mean</td>
<td>SEM</td>
<td>Mean</td>
<td>SEM</td>
</tr>
<tr>
<td>5-FU</td>
<td>4·42</td>
<td>0·46</td>
<td>7·66</td>
<td>0·49</td>
</tr>
<tr>
<td>5-FU + S. boulardii (1·78 × 10⁸ CFU/kg)</td>
<td>6·22</td>
<td>0·82</td>
<td>8·05</td>
<td>0·67</td>
</tr>
<tr>
<td>5-FU + S. boulardii (5·34 × 10⁸ CFU/kg)</td>
<td>4·29</td>
<td>0·96</td>
<td>6·79</td>
<td>0·57</td>
</tr>
<tr>
<td>5-FU + S. boulardii (16 × 10⁸ CFU/kg)</td>
<td>0·65*</td>
<td>0·77</td>
<td>3·39*</td>
<td>0·57</td>
</tr>
<tr>
<td>5-FU + S. boulardii (48 × 10⁸ CFU/kg)</td>
<td>2·17*</td>
<td>0·61</td>
<td>6·16</td>
<td>0·61</td>
</tr>
</tbody>
</table>

CFU, colony-forming units.

*Mean value was significantly different from that of the 5-FU group (P<0·05).

Effects of *Saccharomyces boulardii* on histopathological changes in intestinal mucosa

Compared with the control group, the 5-FU group presented the following histopathological changes in the jejunal and ileal mucosae: mucosa with shortened villi with vacuolated cells; crypt necrosis; intense inflammatory cell infiltration; vacuolisation; oedema. Histopathological changes induced by 5-FU were significantly reversed in the 5-FU + *S. boulardii* group, as demonstrated by the microscopic scores (Table 2). The photomicrographs in Fig. 2 show intense inflammatory cell infiltration, vacuolisation and oedema in the jejunum (Fig. 2(c)) and ileum (Fig. 2(g)) of the 5-FU group compared with the control group (Fig. 2(a) and (c)). Treatment with *S. boulardii* for 3 d (Fig. 2(i) and (l)) reversed the changes in both segments. Furthermore, 5-FU markedly increased the apoptotic index of intestinal crypt cells in the jejunum (Fig. 2(f)) and ileum (Fig. 2(h)) compared with the control (Fig. 2(b) and (d)), which was prevented by treatment with *S. boulardii* (Fig. 2(j) and (m)).

5-FU induced a significant decrease in the villus height (Fig. 3(a)), an increase in the crypt depth (Fig. 3(d)) and a decrease in the villus: crypt ratio (Fig. 3(c)) in the jejunum and ileum compared to the control. Figure 3(b) shows that treatment with *S. boulardii* reversed the 5-FU-induced increase in crypt depth in both segments. Similarly, the decrease in the villus: crypt ratio observed in the 5-FU group was significantly reversed by treatment with *S. boulardii* (Fig. 3(e)).

Effects of *Saccharomyces boulardii* on myeloperoxidase activity and on reduced glutathione and nitrite concentrations

Following the administration of 5-FU, we observed a significant increase in neutrophil infiltration in the jejunum (5·87 (SEM 1·06) ultrastructural MPO (UMPO)/mg) and ileum (14·09 (SEM 2·99) UMPO/mg) compared with the control (jejum 1·73 (SEM 0·36) UMPO/mg and ileum 1·51 (SEM 0·17) UMPO/mg). Treatment with *S. boulardii* reduced neutrophil infiltration in the jejunum (3·08 (SEM 0·46) UMPO/mg) and ileum (3·67 (SEM 0·85) UMPO/mg) (Fig. 4(a)).

In 5-FU-treated mice, we detected significantly reduced glutathione concentrations in the jejunum (270·90 (SEM 38·50) μg/mg) and ileum (46·01 (SEM 6·30) μg/mg) compared with those in the control mice (jejum 477·60 (SEM 25·20) μg/mg and ileum 186·80 (SEM 22·80) μg/mg), an effect that was reversed after treatment with *S. boulardii* by 52·43% (521·30 (SEM 48·53) μg/g) in the jejunum and by 52·94% (144·90 (SEM 29·83) μg/g) in the ileum (Fig. 4(b)).

Figure 4(c) shows that 5-FU increased nitrite concentrations in the jejunum (86·43 (SEM 10·93) μM) and ileum (44·66 (SEM 5·46) μM) compared with the control (37·00 (SEM 2·39) and 25·08 (SEM 1·38) μM, respectively). By contrast, treatment with *S. boulardii* reduced nitrite concentrations in the jejunum and ileum (40·28 (SEM 9·85) and 32·26 (SEM 5·23) μM, respectively).

Effects of *Saccharomyces boulardii* on TNF-α, IL-1β and chemokine (C–X–C motif) ligand 1 production

As shown in Fig. 5(a) and (b), in mice with intestinal mucositis induced by 5-FU, the concentrations of TNF-α and IL-1β...
increased significantly \((P<0.05)\) in the jejunum (56.34 and 81.73 %, respectively) and ileum (195.44 and 107.45 %, respectively) compared with those in the control mice. Similarly, CXCL-1 concentrations were increased by 5-fold in the jejunum and 3-fold in the ileum. By contrast, treatment with \(S. boulardii\) significantly \((P<0.05)\) reduced TNF-\(\alpha\) and IL-1\(\beta\) concentrations by 48.92 and 32.21 % in the jejunum and by 38.92 and 61.79 % in the ileum, respectively. Treatment with \(S. boulardii\) decreased CXCL-1 concentrations by 5-fold in the jejunum (198.9 (SEM 151.5) pg/ml) and by 3-fold in the ileum (376.6 (SEM 107.1) pg/ml) (Fig. 5(c)).

Effects of Saccharomyces boulardii on gastric emptying and gastrointestinal transit

Gastric retention was significantly \((P<0.05)\) higher in mice with intestinal mucositis induced by 5-FU (54.91 (SEM 3.42) %) than in the control group (25.21 (SEM 2.55) %) (Fig. 6(a)). This change was reversed by treatment with \(S. boulardii\) (31.38 (SEM 2.79) %). Fig. 6(b) shows a significant level of retention in the proximal, medial and distal bowel segments (5-FU v. saline) associated with diarrhoea. Treatment with \(S. boulardii\) reversed these changes. We observed that \(S. boulardii\) alone had no effect on gastric emptying, but had a mild effect on medial bowel segments. However, the intestinal transit curve of \(S. boulardii\) alone had a course similar to that of the intestinal transit curve of saline.

Similarly, gastrointestinal transit was significantly slower in the 5-FU group than in the saline group (median geometric centre: 1.83 (SEM 0.07) v. 2.32 (SEM 0.08); \(P<0.05\), but was normalised by treatment with \(S. boulardii\) (2.31 (SEM 0.06)) (Fig. 6(c)).

Effects of Saccharomyces boulardii on intestinal absorption and permeability

In mice treated with 5-FU, the excretion of mannitol was reduced to 4.96 (SEM 1.24) % compared with that in the saline-treated mice (9.54 (SEM 2.10) %) (Fig. 7(a)).
This reduction in mannitol absorption following 5-FU administration reflects a substantial decrease in the mucosal absorptive area. Mice treated with 5-FU exhibited an increase in lactulose excretion (6.60 (SEM 2.05) %), but this increased excretion was not significantly different from excretion in the saline-treated group (3.65 (SEM 0.95) %) (Fig. 7(b)). Additionally, the lactulose:mannitol ratio was significantly (*P*, 0.05) increased in the 5-FU-treated group than in the control group (1.38 (SEM 0.24) v. 0.52 (SEM 0.03)), but was normalised by treatment with *S. boulardii* (0.62 (SEM 0.03)) (Fig. 7(c)).

Discussion

In the present study, treatment with *S. boulardii* was able to prevent diarrhoea and weight loss, which are important symptoms of intestinal mucositis induced by 5-FU. In addition, treatment with *S. boulardii* significantly decreased apoptosis and reversed histopathological changes in murine intestinal mucositis induced by 5-FU, partly due to reductions in inflammatory parameters (concentrations of nitrite, reduced glutathione and cytokines and infiltration of neutrophils). Interestingly, *S. boulardii* also reversed 5-FU-induced gastrointestinal function alterations (gastric emptying, gastrointestinal transit, and intestinal absorption and permeability). Our findings...
are in part consistent with those of Sezer et al. (7), who observed significantly lower levels of leucocyte migration and inflammation in a model of irinotecan-induced intestinal mucositis treated with *S. boulardii*. Nevertheless, this study did not investigate the role of *S. boulardii* in the altered function of the gastrointestinal tract in mucositic intestines.

Epithelial damage and neutrophil infiltration in the mucosa during the inflammatory stage of mucositis have been observed in several other studies (22). Mucositis induced by anti-neoplastic drugs destroys epithelial cells, subsequently inducing a local inflammatory response (22,23). Using an *ex vivo* model, Edens et al. (24) found that the migration of neutrophils to epithelial cells can induce changes in the permeability of the intestinal epithelium, possibly explaining the finding of dyspepsia in animals with 5-FU-induced intestinal mucositis.

In a hamster model of oral mucositis induced by 5-FU, Lima et al. (25) observed important macroscopic and microscopic lesions and increased MPO activity, which could be inhibited...
by treatment with pentoxifylline and thalidomide. Another study using methotrexate revealed a significant increase in villous atrophy in rat intestinal mucosa after treatment (26). Intestinal injury may include brush-border hydrolase activity changes, blunted villus height, crypt deepening and increased crypt cell apoptosis with decreased proliferation (27, 28).

Prisciandaro et al. (29) reported that probiotic supernatants derived from Escherichia coli Nissle 1917 and Lactobacillus fermentum BR11 lowered the histological scores and MPO activity levels in the jejunum of rats treated with 5-FU. Smith et al. (30) successfully reversed inflammation (as demonstrated by a decrease in MPO activity) using Lactobacillus fermentum BR11, thereby reducing the severity of 5-FU-induced intestinal mucositis in the rat jejunum. Moreover, treatment with S. boulardii has been shown to reverse increased serum nitrate and nitrite concentrations in models of gastrointestinal damage induced by non-steroidal anti-inflammatory drugs (31).

In a study of colitis in mice induced by Citrobacter rodentium, Wu et al. (32) demonstrated that treatment with S. boulardii significantly attenuated weight loss, lowered intestinal crypt hyperplasia and histological damage scores, and reduced MPO activity. Canonici et al. (33) observed that S. boulardii secrete substances capable of increasing enteroocyte migration, regardless of cell proliferation. This increase in migration was associated with the ability of S. boulardii to promote cellular–extracellular matrix interactions.

In the present study, S. boulardii significantly reduced the concentrations of pro-inflammatory cytokines (IL-1β and CXCL-8) in the mouse jejunal and ileal segments that were increased by the administration of 5-FU, in correlation with previous findings regarding gastric inflammation. Melo et al. (34) found TNF-α, IL-1β and CXCL-1 to be important mediators in the pathogenesis of intestinal mucositis induced by irinotecan and concluded that treatment with pentoxifylline and thalidomide had a protective effect on intestinal structures. More recently, Soares et al. (35) evaluated the role of platelet-activating factor (PAF) in the pathogenesis of intestinal mucositis induced by 5-FU using PAF receptor knockout mice and a PAF receptor antagonist (BN52021). The intestinal mucosa of mice treated with PAF receptor antagonist was shown to be protected against damage caused by exposure to 5-FU.

Fidan et al. (36) concluded that the administration of S. boulardii may have a protective effect against diarrhoeal pathogens by reducing the pro-inflammatory response. The authors observed decreased secretion of pro-inflammatory cytokines (IL-1β) in animals treated with S. boulardii, but higher concentrations of anti-inflammatory cytokines (IL-4 and IL-10), suggesting that S. boulardii has a protective effect by reducing the pro-inflammatory response. In addition, Lee et al. (37) observed that treatment of HT-29 cells with TNF-α and IL-1β increased CXCL-8 concentrations in a murine model of trinitrobenzene sulphonic acid-induced colitis, whereas the effect was inhibited by the administration of S. boulardii through a decrease in the concentrations of inflammatory cytokines (CXCL-8, IL-1β, TNF-α and inducible NO synthase). These studies clearly support our findings of
anti-inflammatory effects of *S. boulardii* on 5-FU-induced intestinal mucositis.

Another hypothesis for the beneficial effects of treatment with *S. boulardii* on intestinal mucositis induced by 5-FU was based on decreased apoptosis. We demonstrated that treatment with *S. boulardii* prevents an increase in apoptosis in intestinal crypt cells in the jejunum and ileum induced by 5-FU. Studies have demonstrated that 5-FU chemotherapy increases the number of apoptotic cells in mouse intestinal crypt

58,39 and the mechanisms involved in chemotherapy-mediated induction of small-intestinal cell apoptosis are associated with the presence of pro-inflammatory cytokines such as TNF-α and IL-1β.40)

Moreover, Soares et al.15 found 5-FU-induced intestinal mucositis to be associated with delayed gastric emptying/intestinal transit of liquids and with hypercontractility of the deep muscle of the stomach and duodenum in both the inflammatory and post-inflammatory phases. Patients receiving anticancer therapy commonly experience gastrointestinal symptoms, especially dyspepsia, dysphagia and diarrhoea41), which are sometimes referred to as cancer-associated dyspepsia syndrome.

In the present study, *S. boulardii* reversed 5-FU-induced changes in gastrointestinal function, enhancing intestinal transit and gastric emptying and decreasing retention in the distal bowel segment, which may in part account for the observed attenuation of diarrhoea and weight loss. In parallel, the permeability of the small intestine of 5-FU-treated mice was significantly reduced by 5-FU treatment. A study has suggested that a reduction in mnnitol excretion rate is related to the reduced surface area of intestinal mucosa and that increased lactulose absorption indicates a leaky gut.42) This finding is interesting because several authors have shown that the loss of integrity of the intestinal epithelial barrier can lead to bacterial translocation with the development of a systemic inflammatory response.29,43,44) Reinforcing our findings, Garcia Vilela et al.45) demonstrated that patients with inflammatory bowel disease present a significant change in mucosal integrity and that treatment with *S. boulardii* improves intestinal permeability in these patients. Thus, treatment with *S. boulardii* may be hypothesised to normalise bowel function by reducing inflammation associated with 5-FU-induced intestinal mucositis.

Few studies have evaluated the effects of probiotic bacteria on intestinal motility. Mediation of the relaxation of colonic motility by *Bifidobacterium*, *Lactobacillus* and *Streptococcus* has been suggested by one study.46) This mechanism could explain the observed attenuation of diarrhoea due to a reduction in stool frequency and restoration of the microbiota. Czerucka & Rampal47) demonstrated that treatment with *S. boulardii* restored luminal electrolyte transport in cholera toxin-induced diarrhoea in the rabbit jejunum and suggested a mechanism involving cAMP-dependent chloride secretion. In addition, Budriesi et al.48) used a mixture containing *Castanea sativa* and *S. boulardii* to induce anti-spasmodic and spasmolytic effects in segments of guinea pig intestinal smooth muscle that were contracted by carbachol, histamine, KCl and BaCl₂, suggesting that the treatment’s effect involved the inhibition of voltage-dependent Ca²⁺ channels.

According to McFarland49), the protective effect of *S. boulardii* may involve different pathways classified as luminal, trophic or anti-inflammatory. These pathways include mechanisms such as maintenance of the integrity of the intestinal mucosa by preserving mucosal cell adhesion50), neutralisation of bacterial virulence factors51) and increased immune response in the intestinal mucosa52).

In conclusion, to our knowledge, this is the first study to evaluate the effect of administration of *S. boulardii* on the inflammatory and functional aspects of intestinal mucositis induced by 5-FU. Our findings will hopefully contribute to the discovery of novel probiotic-based treatments for gastrointestinal toxicity associated with anticancer therapy.

Acknowledgements

All sources of financial and material support were provided by a grant from CNPq and FUNCAP (Brazil). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

The authors thank Maria S. F. França for excellent technical assistance in the experimental protocols.

The authors’ contributions are as follows: P. F. C. J. and P. M. G. S. designed the study, conducted the study and data analysis and wrote the manuscript; A. A. L. conducted the study in vivo and data analysis; L. F. M. M., A. F. N., J. V. G. C., L. M. N. S., C. M. S., W. O. M., M. R. C. and A. X. F. conducted the study and data analysis; R. A. R. wrote the manuscript; M. H. L. P. S. designed the study and wrote the manuscript. All authors discussed, edited and approved the final version.

The authors declare that there are no conflicts of interest.

References

