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Abstract

We first study the bounded mean oscillation of planar harmonic mappings. Then we establish a
relationship between Lipschitz-type spaces and equivalent modulus of real harmonic mappings. Finally,
we obtain sharp estimates on the Lipschitz number of planar harmonic mappings in terms of the bounded
mean oscillation norm, which shows that the harmonic Bloch space is isomorphic to BMO2 as a Banach
space.
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1. Introduction and main results

Let C denote the complex plane. For a ∈ C, let D(a, r) = {z : |z − a| < r}. In particular,
we useDr to denote the discD(0, r) andD the unit discD1. A complex-valued function
f defined on D is called harmonic in D if and only if both the real and imaginary parts
of f are real harmonic in D. It is known that every harmonic mapping f defined
in D admits a decomposition f = h + g, where h and g are analytic in D. We refer
to [10, 12, 13, 19, 34] for the theory of planar harmonic mappings. For harmonic
mappings f defined on D, we use the following standard notation:

Λ f (z) = max
0≤θ≤2π

| fz(z) + e−2iθ fz(z)| = | fz(z)| + | fz(z)|

and
λ f (z) = min

0≤θ≤2π
| fz(z) + e−2iθ fz(z)| = || fz(z)| − | fz(z)||.

A continuous increasing function ω : [0,∞)→ [0,∞) with ω(0) = 0 is called a
majorant if ω(t)/t is nonincreasing for t > 0 (see [14, 28]). Given a subset Ω of C, a
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144 Sh. Chen et al. [2]

function f : Ω→ C is said to belong to the Lipschitz space Lω(Ω) if there is a positive
constant M such that

| f (z) − f (w)| ≤ Mω(|z − w|) for all z, w ∈Ω. (1.1)

For δ0 > 0 and 0 < δ < δ0, we consider the following conditions on a majorant ω:∫ δ

0

ω(t)
t

dt ≤ Mω(δ) (1.2)

and

δ

∫ +∞

δ

ω(t)
t2

dt ≤ Mω(δ), (1.3)

where M denotes a positive constant. A majorant ω is said to be regular if it satisfies
(1.2) and (1.3) (see [14, 28]).

Dyakonov [14] discussed the relationship between Lipschitz space and bounded
mean oscillation on holomorphic functions in D, and obtained the following result. In
order to state Theorem A, we first introduce some notation. Let G be a domain of C.
We use dG(z) to denote the Euclidean distance from z to the boundary ∂G of G. In
particular, we always use d(z) to denote the Euclidean distance from z to the boundary
of D.

T A [14, Theorem 1]. Suppose that f is a holomorphic function in D which is
continuous up to the boundary of D. If ω and ω2 are regular majorants, then

f ∈ Lω(D)⇐⇒ P| f |2 (z) − | f (z)|2 ≤ Mω2(d(z)),

where

P| f |2 (z) =
1

2π

∫ 2π

0

1 − |z|2

|z − eiθ|2
| f (eiθ)|2 dθ.

The following result is an analogue of Theorem A for planar harmonic mappings.

T 1.1. Suppose that ω is a majorant and that f is a harmonic mapping in D.
Then Λ f (z) ≤ Mω(1/d(z)) in D if and only if, for every r ∈ (0, 1 − |z|],

1
|D(z, r)|

∫
D(z,r)

| f (ζ) − f (z)| dA(ζ) ≤ Mrω
(1

r

)
,

where dA denotes the area measure in D.

D 1.2. Let f be harmonic in D. For p ∈ [1,∞), we say that f ∈ BMOp if

‖ f ‖BMOp = sup
D(z,r)⊆D

( 1
|D(z, r)|

∫
D(z,r)

∣∣∣∣∣ f (ζ) −
1

|D(z, r)|

∫
D(z,r)

f (ξ) dA(ξ)
∣∣∣∣∣p dA(ζ)

)1/p

is bounded, where r ∈ (0, 1 − |z|].
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In particular, by taking ω(t) = t in Theorem 1.1, we get the following result.

C 1.3. Let f be a harmonic mapping in D. Then f ∈ BMO1 if and only if
Λ f (z) ≤ M/d(z) holds in D.

In [14], Dyakonov also investigated the property of equivalent modulus for
holomorphic functions in D and obtained the following theorem.

T B [14, Theorem 2]. Let ω be a regular majorant and f be a holomorphic
function in D and continuous up to the boundary ∂D. Then

f ∈ Lω(D)⇐⇒ | f | ∈ Lω(D)⇐⇒ | f | ∈ Lω(D, ∂D),

where Lω(D, ∂D) denotes the class of continuous functions F on D ∪ ∂D which
satisfy (1.1) with some positive constant C, whenever z ∈ D and w ∈ ∂D.

Later, in [28, Theorems A], Pavlović came up with a relatively simple proof
of the results of Dyakonov. Recently, many authors have considered this topic
and generalised Dyakonov’s results to quasiconformal mappings and real harmonic
functions in several variables for some special majorant ω(t) = tα, where α > 0 (see
[1, 15, 23, 26, 27, 29–31]). For the general majorant ω to holomorphic mappings and
pluriharmonic mappings in the unit ball, see [7, 15, 33].

We will prove the analogue of Theorem B for real harmonic functions in the
following form.

T 1.4. Suppose that ω is a majorant satisfying (1.2), and that G is an Lω-
extension domain. If f is a real harmonic function in G and continuous up to the
boundary ∂G, then

f ∈ Lω(G)⇐⇒ | f | ∈ Lω(G)⇐⇒ | f | ∈ Lω(G, ∂G),

where Lω(G, ∂G) denotes the class of continuous functions F on G ∪ ∂G which satisfy
(1.1) with some positive constant C, whenever z ∈G and w ∈ ∂G.

Here a proper subdomain G of C or R2 is said to be an Lω-extension if Lω(G) =

locLω(G), where locLω(G) denotes the set of all functions f : G→ C satisfying (1.1)
with a fixed positive constant M, whenever z ∈G and w ∈G such that |z − w| < 1

2 dG(z).
Obviously, the unit disc D is an Lω-extension domain.

In [25], the author proved that G is an Lω-extension domain if and only if each pair
of points z, w ∈G can be joined by a rectifiable curve γ ⊂G satisfying∫

γ

ω(dG(z))
dG(z)

ds(z) ≤ Mω(|z − w|) (1.4)

with some fixed positive constant M = M(G, ω), where ds stands for the arc length
measure on γ. See [17, 25] for more details on Lω-extension domains.

We remark that in Theorem 1.4, we replace ‘the unit disc D’ and ‘the regular
majorant’ in Theorem B by ‘an Lω-extension domain’ and ‘a majorant satisfying (1.2),
but not necessarily (1.3)’, respectively. In fact, by using [30, Lemma A, Theorem 4,
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and Corollary 2] and the similar proof method of Theorem 1.4, we can prove that
Theorem 1.4 also holds for real harmonic functions in the unit ball Bn of Rn.

For planar harmonic mappings, we obtain the following result which is a
generalisation of Theorem B.

T 1.5. Let ω be a majorant satisfying (1.2) and G be an Lω-extension domain.
Let f = h + g be a harmonic mapping in G, where g and h are analytic functions in G.
Then

f ∈ Lω(G)⇐⇒ g, h ∈ Lω(G)⇐⇒ |g|, |h| ∈ Lω(G).

D 1.6. A planar harmonic mapping f in D is called a harmonic Bloch
mapping if

β f = sup
z,w∈D,z,w

| f (z) − f (w)|
ρ(z, w)

<∞.

Here β f is called the Lipschitz number of f and

ρ(z, w) =
1
2

log
(1 + | z−w

1−zw |

1 − | z−w
1−zw |

)
= arctanh

∣∣∣∣∣ z − w
1 − zw

∣∣∣∣∣
denotes the hyperbolic distance between z and w in D.

It is known that
β f = sup

z∈D
{(1 − |z|2)Λ f (z)}.

Clearly, a harmonic Bloch mapping f is uniformly continuous as a map between metric
spaces

f : (D, ρ)→ (C, | · |)

and for all z, w ∈ D we have the Lipschitz inequality

| f (z) − f (w)| ≤ β f ρ(z, w).

The reader is referred to [12, Theorem 2] (or [2, 3, 8]) for a proof. Then the set of
all harmonic Bloch mappings in D forms a harmonic Bloch space which is denoted
by Bh. Uniform continuity with respect to a hyperbolic metric is a central theme in
[35, 36].

In [9, 20, 32], the authors provided several characterisations of BMO2 on
holomorphic functions. For extensive discussions on BMO2, see [11, 16, 18, 21, 24].
In this paper, we will use the BMO2 norm to obtain a sharp estimate on harmonic
Bloch mappings, which shows that Bh is isomorphic to BMO2 as a Banach space. Our
result is given below.

T 1.7. If f is harmonic in D, then

‖ f ‖BMO2 ≤ β f ≤ 2‖ f ‖BMO2 . (1.5)

Moreover, the estimates of (1.5) are sharp. The extreme harmonic mappings of the first
inequality are constant functions, and the extreme harmonic mappings of the second
inequality are the mappings with the form f (z) = C(z + z), where C denotes a constant.
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The proofs of Theorems 1.1 and 1.4 will be presented in Section 2, and the proof of
Theorem 1.7 will be given in Section 3.

2. Bounded mean oscillation and equivalent modulus

The following lemma easily follows from a simple computation (as in [6]).

L 2.1. Let f be a complex-valued continuously differentiable function defined on
D and f = u + iv, where u and v are real-valued functions. Then for z = x + iy ∈ D,

Λ f (z) ≤ |∇u(x, y)| + |∇v(x, y)|,

where ∇u = (ux, uy) and ∇v = (vx, vy).

Then we have the following lemma.

L 2.2. Suppose that f is a harmonic mapping in D(a, r), where r is a positive
constant. Then

Λ f (a) ≤
2
πr

∫ 2π

0
| f (a) − f (a + reiθ)| dθ.

P. Let f = u + iv be a harmonic mapping in D(a, r), where u and v are real
harmonic functions. Without loss of generality, we may assume that a = 0 and
f (0) = 0. By Poisson’s formula,

u(z) =
1

2π

∫ 2π

0

r2 − |z|2

|z − reiθ|2
u(reiθ) dθ, |z| < r.

By calculations, we get (z = x = iy)

ux(z) =
1

2π

∫ 2π

0

−2x|z − reiθ|2 − 2(r2 − |z|2)(x − r cos θ)
|z − reiθ|4

u(reiθ) dθ

and similarly

uy(z) =
1

2π

∫ 2π

0

−2y|z − reiθ|2 − 2(r2 − |z|2)(y − r sin θ)
|z − reiθ|4

u(reiθ) dθ,

which imply that

|∇u(0)| =
(∣∣∣∣∣ 1

rπ

∫ 2π

0
u(reiθ) cos θ dθ

∣∣∣∣∣2 +

∣∣∣∣∣ 1
rπ

∫ 2π

0
u(reiθ) sin θ dθ

∣∣∣∣∣2)1/2

≤
1
rπ

∫ 2π

0
(| cos θ| + | sin θ|)|u(reiθ)| dθ

≤

√
2

rπ

∫ 2π

0
|u(reiθ)| dθ.

(2.1)

A similar argument shows that

|∇v(0)| ≤

√
2

rπ

∫ 2π

0
|v(reiθ)| dθ. (2.2)
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By (2.1), (2.2) and Lemma 2.1,

Λ f (0) ≤ |∇u(0)| + |∇v(0)|

≤

√
2

rπ

∫ 2π

0
(|u(reiθ)| + |v(reiθ)|) dθ

≤
2
rπ

∫ 2π

0
| f (reiθ)| dθ.

Finally, the desired conclusion follows if we apply the last inequality to the function
F(z) = f (a) − f (z + a). �

2.1. Proof of Theorem 1.1. First, we show the ‘if’ part. By Lemma 2.2,

Λ f (z) ≤
2
πρ

∫ 2π

0
| f (z) − f (z + ρeiθ)| dθ,

where ρ ∈ (0, d(z)], which gives∫ r

0
Λ f (z)ρ2 dρ ≤

2
π

∫ r

0

(
ρ

∫ 2π

0
| f (z) − f (z + ρeiθ)| dθ

)
dρ,

whence

Λ f (z) ≤
6
πr3

∫
D(z,r)

| f (z) − f (ζ)| dA(ζ)

=
6

r|D(z, r)|

∫
D(z,r)

| f (z) − f (ζ)| dA(ζ)

≤
6Mk(r)

r
= 6Mω

( 1
d(z)

)
,

where r = d(z).
Next, we prove the ‘only if’ part. For z, w ∈ D and t ∈ (0, 1),

d(z + t(w − z)) = 1 − |z + t(w − z)| ≥ d(z) − t|w − z|.

If d(z) − t|w − z| > 0, then

| f (z) − f (w)| ≤
∣∣∣∣∣∫ 1

0

d f
dt

(z + t(w − z)) dt
∣∣∣∣∣

≤ |w − z|
∫ 1

0
Λ f (z + t(w − z)) dt

≤ M|w − z|
∫ 1

0
ω
( 1
d(z) − t|w − z|

)
dt

= M
∫ |w−z|

0
ω
( 1
d(z) − t

)
dt.
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Hence

1
|D(z, r)|

∫
D(z,r)

| f (ζ) − f (z)| dA(ζ) ≤
M
|Dr |

∫
Dr

(∫ |ξ|

0
ω
( 1
d(z) − t

)
dt

)
dA(ξ)

=
2M
r2

∫ r

0
ρ
(∫ ρ

0
ω
( 1
d(z) − t

)
dt

)
dρ

≤
2M
r2

∫ r

0

(∫ r

t
ρ dρ

)
ω
( 1
r − t

)
dt

≤
2M

r

∫ r

0
(r − t)ω

( 1
r − t

)
dt

≤
2M

r
rω

(1
r

) ∫ r

0
dt

= 2Mrω
(1

r

)
.

The proof of this theorem is complete. �
The following result from [22] is needed in the proof of Theorem 1.4.

L C [22, Theorem 1]. Let u be a real harmonic function of D into (−1, 1). Then
for z ∈ D, the following sharp inequality holds:

|∇u(z)| ≤
4
π

1 − u2(z)
1 − |z|2

.

2.2. Proof of Theorem 1.4. Without loss of generality, we assume that f is not
constant. The implication f ∈ Lω(G)⇒ | f | ∈ Lω(G)⇒ | f | ∈ Lω(G, ∂G) is obvious, and
so we only need to prove the implication | f | ∈ Lω(G)⇒ f ∈ Lω(G). For a fixed z ∈G,
let

Mz = sup{| f (ζ)| : |ζ − z| < dG(z)}

and for ξ ∈ D,

T f (ξ) =
f (z + dG(z)ξ)

Mz
.

Obviously, |T f (ξ)| < 1 and thus Lemma C implies that

|∇T f (ξ)| ≤
4
π

(1 − T 2
f (ξ)

1 − |ξ|2

)
,

which gives

dG(z)|∇ f (z)|
Mz

= |∇T f (0)| ≤
4
π

(
1 −

f 2(z)
M2

z

)
≤

8
π

(
1 −
| f (z)|
Mz

)
,

that is,

dG(z)|∇ f (z)| ≤
8
π

(Mz − | f (z)|). (2.3)
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For a fixed ε0 > 0, there exists a ζ ∈ ∂G such that |ζ − z| < (1 + ε0)dG(z). Then, for
w ∈ D(z, dG(z)),

| f (w)| − | f (z)| ≤ || f (w)| − | f (ζ)|| + || f (ζ)| − | f (z)||

≤ Mω((2 + ε0)dG(z)) + Mω((1 + ε0)dG(z)).

Now we take ε0 = 1. It follows that

sup
w∈D(z,dG(z))

(| f (w)| − | f (z)|) ≤ M(ω(3dG(z)) + ω(2dG(z))) ≤ 5Mω(dG(z))

whence
Mz − | f (z)| ≤ 5Mω(dG(z)). (2.4)

By (2.3) and (2.4), we conclude that

|∇ f (z)| ≤
40M
π

ω(dG(z))
dG(z)

. (2.5)

Finally, for z1, z2 ∈G, by [25], there must exist a rectifiable curve γ in G which joins
z1 and z2 and satisfies (1.4). Integrating (2.5) along γ,

| f (z1) − f (z2)| ≤
∫
γ

|∇ f (ζ)| ds(z) ≤
40M
π

∫
γ

ω(dG(z))
dG(z)

ds(z) ≤Cω(|z1 − z2|),

where C is a constant. The proof of this theorem is complete. �

P  T 1.5. The implication g, h ∈ Lω(G)⇐⇒ |g|, |h| ∈ Lω(G) follows from
Theorem B. We only need to prove that f ∈ Lω(G) =⇒ g, h ∈ Lω(G), because the
implication g, h ∈ Lω(G) =⇒ f ∈ Lω(G) is obvious. Let f = h + g in G, where h and
g are holomorphic in G. It is easy to see that f ∈ Lω(G) =⇒ f ∈ Lω(G). This implies
that u = Re f1 ∈ Lω(G) and v = Im f2 ∈ Lω(G), where f1 = h + g and f2 = h − g.

We claim that f1, f2 ∈ Lω(G). We now prove this claim. For a fixed z ∈G, let

Mz = sup{|u(ζ)| : |ζ − z| < d(z)} and Tu(ξ) =
u(z + d(z)ξ)

Mz
, ξ ∈ D.

Then for any ξ ∈ D, |Tu(ξ)| < 1 and by Lemma C,

|∇Tu(ξ)| ≤
4
π

(1 − T 2
u (ξ)

1 − |ξ|2

)
.

This gives
d(z)|∇u(z)|

Mz
= |∇Tu(0)| ≤

4
π

(
1 −

u2(z)
M2

z

)
≤

8
π

(
1 −
|u(z)|
Mz

)
,

which yields

d(z)| f ′1(z)| = d(z)|∇u(z)| ≤
8
π

(Mz − |u(z)|). (2.6)
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For a fixed ε0 > 0, there exists a ζ ∈ ∂G such that |ζ − z| < (1 + ε0)dG(z). Then, for
w ∈ D(z, dG(z)),

|u(w)| − |u(z)| ≤ ||u(w)| − |u(ζ)|| + ||u(ζ)| − |u(z)||

≤ Mω((2 + ε0)dG(z)) + Mω((1 + ε0)dG(z)).

Now we take ε0 = 1. It follows that

sup
w∈D(z,dG(z))

(|u(w)| − |u(z)|) ≤ M(ω(3dG(z)) + ω(2dG(z))) ≤ 5Mω(dG(z))

whence
Mz − |u(z)| ≤ 5Mω(dG(z)). (2.7)

By (2.6) and (2.7), we conclude that

| f ′1(z)| ≤
40M
π

ω(dG(z))
dG(z)

. (2.8)

Finally, for z1, z2 ∈G, by [25], there must exist a rectifiable curve γ in G which joins
z1 and z2, and satisfies (1.4). Integrating (2.8) along γ, we obtain that

| f1(z1) − f1(z2)| ≤
∫
γ

| f ′1(ζ)| ds(z) ≤
40M
π

∫
γ

ω(dG(z))
dG(z)

ds(z) ≤Cω(|z1 − z2|),

where C is a constant. This gives f1 ∈ Lω(G). By similar arguments, we know that
f2 ∈ Lω(G). Hence ( f1 + f2) ∈ Lω(G) and ( f1 − f2) ∈ Lω(G). Therefore,

h =
f1 + f2

2
∈ Lω(G) and g =

f1 − f2
2

∈ Lω(G).

The proof of this theorem is complete. �

3. Estimates on BMO2

Green’s theorem (see [4, 5]) states that if g ∈C2(D), that is, is twice continuously
differentiable in D, then

1
2π

∫ 2π

0
g(reiθ) dθ = g(0) +

1
2

∫
Dr

∆g(z) log
r
|z|

dσ(z) (3.1)

for r ∈ (0, 1), where dσ denotes the normalised area measure in D.

L 3.1. For r ∈ (0, 1), let

Mp
p(r, f ) =

1
2π

∫ 2π

0
| f (reiθ)|p dθ,
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where f is a harmonic mapping in D. Then for p ∈ [2,∞), Mp
p(r, f ) is an increasing

function on r in (0, 1) and

r
d
dr

Mp
p(r, f ) = p

∫
Dr

(( p
2
− 1

)
| f (z)|p−4| fz(z) f (z) + f (z) fz(z)|2

+ | f (z)|p−2|∇̂ f (z)|2
)

dσ(z),

where |∇̂ f | = (| fz|2 + | fz|2)1/2.

P. Since | f |p is subharmonic in D, we see that Mp
p(r, f ) is an increasing function

on r in (0, 1), where p ∈ [2,∞). On the other hand, by (3.1),

r
d
dr

Mp
p(r, f ) =

1
2

∫
Dr

∆(| f (z)|p) dσ(z)

= p
∫
Dr

(( p
2
− 1

)
| f (z)|p−4| fz(z) f (z) + f (z) fz(z)

∣∣∣2
+ | f (z)|p−2|∇̂ f (z)|2

)
dσ(z).

The proof of this lemma is complete. �

L 3.2. For r ∈ (0, 1) and p ∈ [2,∞), let

Ip(r, f ) =

( 1
|Dr |

∫
Dr

| f (z)|p dA(z)
)1/p

,

where f is harmonic in D. Then the function Ip(r, f ) is increasing on r in (0, 1).

P. Since ∫
Dr

| f (z)|pdA(z) = 2π
∫ r

0
ρMp

p(ρ, f ) dρ, (3.2)

we see that
d
dr

∫
Dr

| f (z)|p dA(z) = 2πrMp
p(r, f ). (3.3)

By (3.2), (3.3) and Lemma 3.1,

Mp
p(r, f ) − Ip

p(r, f ) =
1
|Dr |

∫ r

0

d
dt

Mp
p(t, f )|Dt | dt ≥ 0. (3.4)

By (3.2), (3.4) and elementary computations,

d
dr

Ip
p(r, f ) =

|Dr |
d
dr

∫
Dr
| f (z)|p dA(z) −

∫
Dr
| f (z)|p dA(z) d

dr |Dr |

|Dr |
2

=

2πr
[
|Dr |M

p
p(r, f ) −

∫
Dr
| f (z)|p dA(z)

]
|Dr |

2

≥ 0.
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Hence the function Ip(r, f ) is increasing on r in (0, 1). The proof of this lemma is
complete. �

L 3.3. For fixed a ∈ D, let φa(z) = a + (1 − |a|)z in D. Then for p ∈ [2,∞),

‖ f ‖BMOp = sup
a∈D

( 1
|D|

∫
D

| f (φa(z)) − f (φa(0))|p dA(z)
)1/p

, (3.5)

where f is harmonic in D.

P. It is not difficult to see that

sup
a∈D

( 1
|D|

∫
D

| f (φa(z)) − f (φa(0))|p dA(z)
)1/p

≤ ‖ f ‖BMOp . (3.6)

On the other hand, by elementary calculations and Lemma 3.2,( 1
|D(a, r)|

∫
D(a,r)

| f (ζ) − f (a)|pdA(ζ)
)1/p

≤

( 1
|D(a, 1 − |a|)|

∫
D(a,1−|a|)

| f (ζ) − f (a)|pdA(ζ)
)1/p

=

( 1
|D|

∫
D

| f (φa(ζ)) − f (φa(0))|p dA(ζ)
)1/p

,

where r ∈ (0, 1 − |a|]. Then

‖ f ‖BMOp ≤ sup
a∈D

( 1
|D|

∫
D

| f (φa(z)) − f (φa(0))|p dA(z)
)1/p

. (3.7)

Obviously, (3.5) follows from (3.6) and (3.7). �

L 3.4. For each fixed a ∈ D, let φa(z) = a + (1 − |a|)z in D. Then

|φ′a(z)| ≤
1 − |φa(z)|2

1 − |z|2
. (3.8)

P. It is easy to see that f is analytic and, for all z ∈ D, |φa(z)| ≤ 1. Then (3.8)
follows from the Schwarz–Pick lemma. �

3.1. Proof of Theorem 1.7. We first prove that ‖ f ‖BMO2 ≤ β f . For a fixed a ∈ D, let

Fa(ζ) = f (φa(ζ))

in D, where φa(ζ) = a + (1 − |a|)ζ. By Lemma 3.4,

sup
ζ∈D

((1 − |ζ |2)ΛFa (ζ)) = sup
ζ∈D

((1 − |ζ |2)Λ f (φa(ζ))|φ′a(ζ)|)

≤ sup
ζ∈D

((1 − |φa(ζ)|2)Λ f (φa(ζ)))

≤ β f .
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Then Lemma 3.1 leads to

d
dr

M2
2(r, Fa(reiθ) − Fa(0)) =

2
rπ

∫
Dr

|∇̂Fa(ζ)|2 dA(ζ)

≤
2
rπ

∫
Dr

Λ2
Fa

(ζ) dA(ζ)

≤
2β2

f

rπ

∫
Dr

dA(ζ)
(1 − |ζ |2)2

=
4β2

f

r

∫ r

0

ρ

(1 − ρ2)2
dρ

= 2β2
f

∞∑
n=1

r2n−1,

which gives

M2
2(r, Fa(reiθ) − Fa(0)) ≤ β2

f

∞∑
n=1

r2n

n
.

Since ∫ 1

0
2rM2

2(r, Fa(reiθ) − Fa(0)) dr =
1
π

∫ 1

0

∫ 2π

0
r|Fa(reiθ) − Fa(0)|2 dθ dr

=
1
|D|

∫
D

|Fa(ζ) − Fa(0)|2 dA(ζ),

we see that

1
|D|

∫
D

|Fa(ζ) − Fa(0)|2 dA(ζ) ≤
∫ 1

0
2β2

f

∞∑
n=1

r2n+1

n
dr = β2

f

∞∑
n=1

1
n(n + 1)

= β2
f ,

whence
‖ f ‖BMO2 ≤ β f .

Next, we prove that β f ≤ 2‖ f ‖BMO2 . By Lemma 3.1 and the subharmonicity of
|∇̂Fa|

2,

2
r

∫ r

0
ρ|∇̂Fa(0)|2 dρ ≤

2
r

∫ r

0
ρ
( 1
2π

∫ 2π

0
|∇̂Fa(ρeiθ)|2 dθ

)
dρ

=
1
rπ

∫
Dr

|∇̂Fa(ζ)|2 dA(ζ)

=
1
2

d
dr

M2
2(r, Fa(reiθ) − Fa(0)),

which implies that
|∇̂Fa(0)|2r2 ≤ M2

2(r, Fa(reiθ) − Fa(0)).
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It follows that

|∇̂Fa(0)|2

4
=

∫ 1

0
|∇̂Fa(0)|2r3 dr ≤

1
2π

∫
D

|Fa(ζ) − Fa(0)|2 dA(ζ),

whence
Λ2

Fa
(0)

4
≤
|∇̂Fa(0)|2

2
≤

1
|D|

∫
D

|Fa(ζ) − Fa(0)|2 dA(ζ). (3.9)

On the other hand,
β f ≤ sup

a∈D
ΛFa (0). (3.10)

By (3.9) and (3.10),
β f ≤ 2‖ f ‖BMO2 .

It remains to prove the sharpness in the inequalities. Obviously, the equality sign
in the first inequality of (1.5) occurs when f is constant. For the sharpness part of the
second inequality of (1.5), we let

f (z) = C(z + z),

where C is a constant. Then

β f = sup
z∈D
{(1 − |z|2)Λ f (z)} = 2|C|

and

‖ f ‖BMO2 = sup
a∈D

( 1
|D|

∫
D

|Fa(z) − Fa(0)|2 dA(z)
)1/2

= |C| sup
a∈D

( 1
|D|

∫
D

(1 − |a|)2|z + z|2 dA(z)
)1/2

= |C| sup
a∈D

(4(1 − |a|)2

π

∫ 1

0

∫ 2π

0
r3 cos2 θ dθ dr

)1/2

= |C| sup
a∈D

(1 − |a|)

= |C|,

whence
β f = 2‖ f ‖BMO2 .

The proof of this theorem is complete. �
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