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Abstract
A sandwich semigroup of continuous functions consists of continuous
functions with domains all in some space X and ranges all in some space Y
with multiplication defined by fg = foaog where a is a fixed continuous
function from a subspace of Y into X. These semigroups include, as special
cases, a number of semigroups previously studied by various people. In this
paper, we characterize the regular elements of such semigroups and we
completely determine Green's relations for the regular elements. We also
determine the maximal subgroups and, finally, we apply some of these results
to semigroups of Boolean ring homomorphisms.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 20M20,
54H15, 20M10; secondary 06A40.

1. Introduction

This paper is a continuation of Magill and Subbiah (1975) and we assume a certain
familiarity with the notation, terminology and results of that paper. Let X and Y
be topological spaces, let a be any continuous function with Doma<= Y and
Rana<=x and let & be any nonempty collection of subsets of X. Denote the
collection of all continuous functions / with Dom/e^ and Ran/<= Y by
S(X,Y, <*,<?).

DEFINITION (1.1) The family £ is said to be a-admissible iffo<xogeS(X, Y, <
whenever both f,ge S(X, Y, a, £).

To say that «? is a-admissible is to say that S(X, Y, a, S) is a semigroup with the
product ,/g of two functions defined by fg=fo<xog. When $ is a-admissible,
S(X, Y,OL,€) is, in the terminology of Magill and Subbiah (1975), a sandwich
semigroup with sandwich function a. We do not exclude the possibility of a
topological space being empty in this paper but we assume throughout the paper
that the spaces X and Y of any sandwich semigroup S(X, Y, a, S) are both non-
empty. Such semigroups (for particular to) have been discussed in Magill (1967).
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In Section 2, we discuss a-admissible families and we obtain there various
elementary results about such families. From Section 3 on, we assume that $ is
a-admissible and hence that S(X, Y, <x, <f) is a semigroup. In Section 3 the regular
elements of S(X, Y, a, <f) are characterized and, in various instances, it is determined
when the semigroups are regular. Green's relations for the regular elements of
S(X, Y, a, <f) are characterized in Section 4 and the maximal subgroups of
S(X, Y, a, «f) are determined in Section 5. In Section 6, sandwich semigroups of
Boolean ring homomorphisms are treated. The main result characterizes, within
a certain subclass, those semigroups which are regular. The proof relies on a
result in Section 3 on sandwich semigroups of continuous functions.

2. a-Admissible families

Throughout this section, X and Y are arbitrary topological spaces and a is any
(nonempty) continuous function with Domac Y and R a n a c J . As before, § is
a nonempty collection of subsets of X and S(X, Y, a, g) is the family of all
continuous functions/with Dom/e^1 and Ran/c Y.

PROPOSITION (2.1) The family S is oc-admissible if and only if (ocoh)-1(H)e&1

for each He<? andheS(X, Y,a,S).

PROOF. Suppose that f,g eS(X, Y,ct,$). Then Dom/e«f and since

it is immediate tha.tfotxogeS(X, Y,OL,S).

On the other hand, suppose that h belongs to S(X, Y,<x,£) and He$. Choose
any point pe Y and define a function/with Dom/= H by

/(*)=/> forxeH.
Then feS(X, Y,<x,£) so that, by hypothesis, fo<xoh<=S(X, Y,a,£). But

Dom/o ocoh = (txoh)-1 (Dom/) = (a o h)'1 (H)

and the proof is complete.
If one takes S to be the collection of all subsets of X, then & is a-admissible

regardless of the function a so that for each a, there is always at least one
a-admissible family. The following result characterizes those a for which {X} is
a-admissible.

PROPOSITION (2.2) {X} is a-admissible if and only if Dom a. = Y.

PROOF. Suppose that {X} is a-admissible. We prove, by contradiction, that
Dom a = Y. If Dom a ^ Y then there is a point p e Y— Dom a. Define/by f(x) = p
for xsX. Then/2 = / o a o / = e (the empty function) which means Dom/2 = 0.
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But then D o m / ^ f X } which is a contradiction so we conclude that Doma = Y.
It is immediate, from Proposition (2.1), that {X} is a-admissible whenever
D o m « = Y.

The next result follows immediately from Proposition (2.1).

PROPOSITION (2.3) If {<^}jsA is any collection of a-admissible families and
» then

 D K * } « S A " also '"••admissible.

We denote the collection of all a-admissible families by j / ( a ) and we partially
order it by inclusion.

PROPOSITION (2.4) For any a, s/(a) is a complete upper semilattice and a condi-
tionally complete lower semilattice. It is a complete lattice if and only if Dom a is
a proper subset of Y.

PROOF. It is immediate from Proposition (2.3) that stf(a) is a complete upper
semilattice and a conditionally complete lower semilattice. Now it is known
(Birkhoff, 1964, p. 49, Theorem 2), that a complete upper semilattice is a complete
lattice if and only if it has a least element. We need only show that j / ( a ) has a
least element if and only if Dom a is properly contained in Y. Suppose that Dom a
is a proper subset of Y and let S be a-admissible. Choose any HeS and
pe Y— Doma and define/(jt) =/? for each xeH. Then / 2 = / o a o / = e (the empty
function) so that 0 = Domee«?. Thus, when D o m a / 7 , every a-admissible
family contains the empty set and since {0} is a-admissible, it follows that {0} is
the least element of j / ( a ) . On the other hand, if Dom a = Y, then {X} is
a-admissible by Proposition (2.2). Since {0} is also a-admissible, we see that in
this case, s/(a) can have no smallest element since no family of subsets of X can
be contained in both {X} and {0}.

The next two results are easy consequences of Proposition (2.1).

PROPOSITION (2.5) Suppose that Doma is a closed subset of Y. Then the family
S' of all closed subsets of X is a-admissible.

PROPOSITION (2.6) Suppose that Dom a is an open subset of Y. Then the family <<§
of all open subsets of X is ac-admissible.

We recall that a set is said to be clopen if it is both closed and open. The next
result follows quickly from Proposition (2.1) or from Propositions (2.3), (2.5)
and (2.6).

PROPOSITION (2.7) Suppose that Dom a is a clopen subset of Y. Then the family
2£ of all clopen subsets of X is a-admissible.
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SOME COMMENTS ON NOTATION. At various times we want to deal with specific
a-admissible families and their corresponding sandwich semigroups. For any
space X, the symbol & always denotes the family of all subsets of X, the symbol &
always denotes the family of all closed subsets of X and the symbol 2£ always
denotes the family of all clopen subsets of X. The corresponding sandwich semi-
groups is denoted by S(X, Y,a,&>), S(X, Y,a,^) and S(X, Y,<x,2T). The first is
a semigroup for any continuous a with Doma<= Y and Ran«cjf, Propositions
(2.5) and (2.7) assure us that the second and third are semigroups if Dom a. is
respectively closed and clopen. When we discuss S(X, Y, a ,^ ) we always assume
that Dom a is closed and when we discuss S(X, Y, a, 2T) we assume that Dom a.
is clopen. When Y = X and a is the identity map on Y, we use the simpler
notation S(X,0>), S(X,^) and S(X,^T) in place of S(X, Y,a,3P), S(X, Y,OL,&)

and S(X, Y, a, -2T) respectively. Thus, S{X,^) is the semigroup, under composition,
of all continuous functions whose domains and ranges are both contained in X.
S(X,lF) is the semigroup, under composition, of all continuous maps whose
domain is a closed subset of X and whose range is contained in X and, similarly,
S{X,2T) is the semigroup, under composition of all continuous maps whose
domain is a clopen subset of X and whose range is contained in X. If X\% connected,
then S(X, 2£) consists of all continuous functions mapping X into X together
with the empty function.

We also want to consider the case where the a-admissible class $ consists solely
of the space X itself. Since we want S(X, Y, a, «f) to be a semigroup, this forces
Dom a. to be all of Y (Proposition (2.2)) and, in this case, S(X, Y, a, S) is just the
sandwich semigroup of all continuous functions from Xinto F(that is, the domains
are all of X). We denote this semigroup more simply by S{X, Y, a). When X
coincides with Y and a. is the identity map we have, of course, the semigroup S(X)
of all continuous selfmaps of X under the binary operation of composition.

Finally, anytime we write S(X, Y, a, S) from now on, we assume that S is
a-admissible and that X and Y are nonempty.

3. The regular elements of S(X, Y, <x, <S)

A retract of a topological space has the usual meaning here. That is, it is any
subspace which is the range of a continuous retraction map of the space. We
find it convenient to allow a topological space to be empty and to regard the empty
function as a retraction map of the empty space. With this convention, a retract
can then be empty. Of course, a retract of a nonempty space is itself nonempty.
We also regard any function as mapping the empty set homeomorphically onto
itself and we take its restriction to the empty set to be the empty function.

We conform to the terminology of Magill and Subbiah (1975) and for any
sandwich semigroup S(X, Y, a, S) we define an 5-retract of Y to be any subspace
of Y which is the range of an idempotent element of the semigroup S(X, Y, a, $).
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In view of Lemma (3.1) of Magill and Subbiah (1975) every nonempty S-retract of
Y is a retract in the usual topological sense but the converse is far from true.
The iS-retracts are at least as dependent upon the behavior of the function a and
the topological structure of X as they are upon the topological structure of Y.
They are characterized in the following

THEOREM (3.1) Let S(X, Y, a, S) be an arbitrary sandwich semigroup of continuous
functions. Then a subspace of Y is an S-retract if and only if a maps it homeo-
morphically onto a retract of some H in S.

PROOF. Suppose first that A<^ Y and that a maps A homeomorphically onto V
which is a retract of some H in S. We first consider the case where A = 0. Then
V = 0 and since the empty set is not a retract of any nonempty set, it follows that
H = 0. That is, 0 belongs to the family S. Thus, the empty function e belongs
to S(X, Y, a, S) and hence A = Rane is an S-retract.

Now consider the case where A ^ 0 . Then V^0 and there exists a continuous
retraction v of H whose range is V. Let aA denote the restriction of a to A and
define w = a.^ov. Since w is continuous and Domwe^ it follows that
weS(X, Y,<x,<o). Moreover, Ranw = A and v is the identity on V so that for
any ye A, we have

(wooc)(y) = oQ1(»(a0'))) = a21(a0')) = 7-

According to Lemma (3.1) of Magill and Subbiah (1975), this verifies that A is an
5-retract of Y.

Conversely, suppose that A is an S'-retract of Y. Then Ran v = A for some
idempotent element v of S(X, Y, <x, $). If A — 0 then, of course, v = e which
implies 0 = Domee<f. Since we have agreed to regard any function as mapping
the empty set homeomorphically onto itself, it follows that a maps A homeo-
morphically onto a retract of some set in S.

In the case A ^ 0 , then Dom» = H=£0. It follows from Lemma (3.1) of Magill
and Subbiah (1975) that a maps A into H so that a o v is a continuous selfmap of H.
Moreover, for any xeRanaop we have x = (aon)(a) for some aeH and we get

(<xov)(x) = (aoi;)((aoi;)(a)) = (aoVoacov)(a) = (aoi;2)(fl) = (aop)(a) = x.

Hence <xov is a retraction and Ranaoj; is a retract of H. Now v maps Ranaoi;
into A and a maps A into Ran a op. In addition, ao» is the identity on Ranaoi;
and i>oa is the identity on A so we conclude that a maps A homeomorphically
onto Ranaop.

In any Hausdorff space, retracts are closed. Of course there are usually many
closed subsets which are not retracts. However, Corollary 2, page 281 of Kuratowski
(1966) assures us that in nonempty O-dimensional (that is, has a basis of clopen sets)
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metric spaces, the nonempty closed subsets coincide with the retracts so that from
Theorem (3.1), we immediately get

COROLLARY (3.2) Let S{X, Y,a, <f) be a sandwich semigroup of continuous
functions and suppose that X is a ^-dimensional metric space. Then a nonempty
subspace of Y is an S-retract if and only if a maps it homeomorphically onto a
closed subset of some H in S.

In the corollary, we cannot dispense with the requirement that the subspace of
Y be nonempty. The problem is that a will certainly map the empty set homeo-
morphically onto a closed subset of some H in § for any sandwich semigroup
S(X, Y, a, <f). But the empty set can be an S-retract of Y only if e belongs to
S(X,Y,at,f).

Now we need to know something of S-isomorphic subspaces of Y. Let/be any
element of S(X, Y, a, S) and suppose that /o a maps A into B. Recall (Magill
and Subbiah, 1975, Definition (2.2)) that/o a is said to map A S-isomorphically
onto B if there exists a g in S(X, Y, a, dT) such that goa maps B into A, goaofoa
is the identity on A andfoocogoa. is the identity on B. The restriction of/oa to A
is referred to as an S-isomorphism from A onto B and A and B are said to be
S-isomorphic. Although we did not specifically call attention to it in Magill and
Subbiah (1975) we did not exclude the possibility of A and B being empty. The
definition is such that/o a will map the empty set 5-isomorphically onto itself for
any / in S(X, Y, a., $). However, the restriction of each /o a to 0 is the empty
function e so that there is only one S-isomorphism from 0 onto 0.

In view of the fact that we regard the empty function as mapping the empty set
homeomorphically onto itself, it follows easily that 5-isomorphic subspaces are
homeomorphic but the converse is far from being true. For 5-retracts, however,
it is true. We gather these and some additional facts together in the next two
theorems.

THEOREM (3.3) Let S{X, Y, a, $) be an arbitrary sandwich semigroup of continuous
functions, let A and B be any two subsets of Y and suppose that fo a maps A
S-isomorphically onto B. Then a maps A homeomorphically onto <x(A) and B homeo-
morphically onto <x(B) and foot maps A homeomorphically onto B.

PROOF. Either A and B are both empty or they are both nonempty. In the former
case the conclusion follows immediately and so suppose that they are nonempty.
Since fo a maps A S'-isomorphically onto B, there exists a g in S(X, Y, a, $) such
that goo. maps B into A, goa ofo a. is the identity on A and/o a o£ o a is the identity
on B. It is immediate that fo a maps A homeomorphically onto B. To see that
a maps A homeomorphically onto OL(A), note that goa.of maps <x(A) into A.
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Since <xo(goaof) is the identity on <x(A) and ( £ o a o / ) o a is the identity on A, it
follows that a. does indeed map A homeomorphically onto a(A). The same sort of
argument suffices to show that a also maps B homeomorphically onto <x(E).

THEOREM (3.4) Let S{X, Y, a, S) be an arbitrary sandwich semigroup of continuous
functions, let A be any subset of Y and let B be an S-retract of Y. Thenfoa. maps
A S-isomorphically onto B if and only if it maps A homeomorphically onto B.
Furthermore, two S-retracts of Y are S-isomorphic if and only if they are homeo-
morphic.

PROOF. Let B be an S-retract of Y. It follows from the previous theorem that
if/o a. maps A S-isomorphically onto B, then it maps A homeomorphically onto B.
Conversely, suppose that / o a maps A homeomorphically onto B and denote the
restriction of/o a. to A by t. Since B is an S-retract, there is an idempotent element
w in S(X, Y, a, S) such that Ran w = B. Then t~x o w belongs to S(X, Y, a, <f) and
since woa. is the identity on B (Magill and Subbiah, 1975, Lemma (3.1)) it readily
follows that ( r ' owjo i s maps B into A, (t~1ow)oaofoa. is the identity on A and
/oao( /~ 1 ow)oa is the identity on B. Consequently,/©a maps A S-isomorphically
onto B.

Now suppose that both A and B are S-retracts of Y. Theorem (3.3) assures us
that if they are S-isomorphic, then they must be homeomorphic. Suppose, con-
versely, that they are homeomorphic and let / be any homeomorphism from A onto
B. Since they are both S-retracts, there exist idempotents v and w in S(X, Y, a, <f)
such that Ranr = A and Ranw = J5. Then tov and t~xow both belong to
S(X, Y,<x,$), tov maps A into B and r ' o i i i maps B into A. Moreover, t>oa is
the identity on A and woa is the identity on B and so it readily follows that
(r'oiv)o(«o((ii!))oa is the identity on A and {tov)ooLoit'1 ow)oa is the identity
on B. Hence, A and B are S-isomorphic.

Now we are in a position to characterize the regular elements of S(X, Y, a, <f).

THEOREM (3.5) The following statements about an element f in the sandwich semi-
group S(X, Y, oc, $) are equivalent.
(3.5.1) f is regular.
(3.5.2) Ran/ is an S-retract of Y and there exists an S-retract A of Y such that

/ o a. maps A homeomorphically onto Ran/
(3.5.3) Ran/w an S-retract of Yandfo a maps some subspace of Yhomeomorphically

onto Ran/

PROOF. This follows from Theorem (3.2) of Magill and Subbiah (1975) and
Theorem (3.4) of this paper.

The next result shows that a large number of sandwich semigroups of continuous
functions fail to be regular.
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THEOREM (3.6) Let Xbe a completely regular Hausdorff space and suppose that Y
contains an arc A such that a{A)^ H for some He$ which has more than one point.
Then S(X, Y, a, £) is not regular.

PROOF. First consider the case where <x(A) consists of a single point. Since H
is completely regular and Hausdorff, there exists a continuous function/mapping
H into A such that Ran/ contains more than one point. Then / belongs to
S(X, Y, a, SJ but according to Theorem (3.1) Ran/cannot possibly be an 5-retract
of Y so that / is not regular by Theorem (3.5).

Now we consider the case where a(A) consists of more than one point. Since H
is completely regular and Hausdorff and a(A) is connected, there exists a continuous
map g from H onto the closed unit interval /. Let/be any continuous map from /
onto I which is not injective on any nondegenerate subinterval. For example, any
continuous nowhere differentiable function which maps / onto / has this property.
Finally, let h be any continuous map from / onto A. Then ho fog belongs to
S(X, Y,a,<£) but it is not regular since hofogoa does not map any subspace of
Y homeomorphically onto RanAo/o^ and this, of course, violates condition
(3.5.3). To see that hofogoa maps no subspace of Y homeomorphically onto
Ran h ofog, note first that Ran h ofog = A which is an arc and let B be any arc in Y.
If g(oc(B)) is a point, then so is hofogoa(B) and hence hofogoa. does not map B
homeomorphically onto A. If g(a{B)) is not a point, it is a nondegenerate sub-
interval of / since it is connected. But then / is not injective on g(a(B)) so that
hofogoa is not injective on B and in this case as well, hofogoa does not map B
homeomorphically onto A.

COROLLARY (3.7) Let X be completely regular and Hausdorff and suppose that Y
contains an arc. Then S{X, Y, a) is regular if and only if X consists of a single point.

PROOF. If X consists of a single point, then S(X, Y, a) is a left zero semigroup
and is certainly regular. On the other hand, if X does not consist of a single point,
it follows immediately from Theorem (3.6) that S(X, Y, a) is not regular.

The next result shows, among other things, that there do exist regular sandwich
semigroups S(X, Y, a) with nontrivial domain spaces X.

THEOREM (3.8) Let X be a compact ^-dimensional Hausdorff space and let Y be
discrete. Then S{X, Y, a) is a regular semigroup if and only if one of the following
conditions is satisfied.
(3.8.1) X consists of one point,
(3.8.2) Y consists of one point,
(3.8.3) a is injective and Ran a is a dense subset of X.
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PROOF. If (3.8.1) holds, then S(X, Y,a) is a left zero semigroup and hence is
regular. If (3.8.2) holds then the semigroup consists of one constant function and
is certainly regular. Now suppose that (3.8.3) holds and le t /be any element of
S(X, Y,<x). Since Zis compact and Y is discrete, Ran/is finite and we denote the
points in it by {jJfLi- Then / - 1(Ji) is a nonempty clopen subset of X which
intersects Ran a. since the latter is dense. Choose any z€ e Y such that a(z )̂ e / " 1 ^ ) -
According to Theorem (3.1), both {z$?=1 and { j j ^ are 5-retracts and it follows
from Theorem (3.4) that /o a. maps the former S-isomorphically onto the latter.
Hence/, and S(X, Y, a) as well, are regular by Theorem (3.5).

Now suppose that S(X, Y,a) is regular. We suppose that neither (3.8.1) nor
(3.8.2) holds and we show by contradiction that (3.8.3) must then hold. Assume
that a(p) = <x(g) for two distinct points p and q of Y. Since X is O-dimensional
and has more than one point, there exists an/in S(X, Y, a) such that Ran/= {p,q}.
It is immediate from Theorem (3.1) that Ran/is not an S-retract and this contra-
dicts Theorem (3.5). Thus, a must be injective. Now assume that Ran a is not
dense in X. Then there exist two nonempty disjoint clopen subsets A and B of X
such that AuB = X and Rana^A. Since Y has more than one point, we may
choose two distinct points a and b in Y and define g(x) = a for x eA and g(x) = b
for xeB. Then go a. cannot possibly map a subset of Y S'-isomorphically onto
Rang since, in fact, Rang-oa = {a}. Again Theorem (3.5) is contradicted and we
conclude that Ran a is dense in X.

EXAMPLE. Let Y be discrete, let jS Y denote the Stone-Cech compactification of
Y and let T(fiY, Y) denote the semigroup, under composition, of all continuous
functions which map ]8 Y into its subspace Y. The semigroup T(fi Y, Y) is regular.
This follows immediately from Theorem (3.8) by taking X = pY and a to be the
identity map on Y.

Now we look at the semigroups S(X), S(X,^), S(X,$T) and S(X,^) in more
detail. From Theorem (3.6) we immediately get the following

COROLLARY (3.9) Suppose that X is a completely regular Hausdorff space which
contains an arc. Then none of the semigroups S(X), S(X,iF), S(X,3T) are regular.

We could have included S(X,^) in the statement of the previous corollary but
we did not since we can say considerably more about it.

THEOREM (3.10) Suppose that X is Hausdorff. Then S(X,^) is regular if and only
if X is discrete.

PROOF. First of all, if A'is discrete, then S{X,^) is simply the semigroup, under
composition, of partial functions on X and it is known that this semigroup is
regular. At any rate, this follows immediately from Theorem (3.5) of this paper.
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Now suppose that X is not discrete. Since X is Hausdorff one can choose a non-
discrete subset A of X and a point p in X such that p$c\xA. Let q be any limit
point of A contained in A and let

B = [A-{q}]u{p).

Define a bijection/from B onto A by /(/>) = 9 and/(x) = x for xeB—{p}. Then
/ i s continuous but it is certainly not a homeomorphism since q is a limit point of
A but/» is not a limit point of B. The result now follows from Theorem (3.5).

Corollary (3.9) certainly indicates that S{X), S(X,^) and S(X,3T) are not often
regular. Although we cannot hope to get a result for these semigroups like the
previous result on S{X,0"), the next theorem still lends support to the fact that
S(X), S(X,^) and S(X,2f) are seldom regular.

THEOREM (3.11) The following statements about a ^-dimensional metric space X
are equivalent.
(3.11.1) S(X) is regular;
(3.11.2) S{X,SF) is regular;
(3.11.3) S(X,£T) is regular;
(3.11.4) X is either discrete or is the one-point compactification of the countably

infinite discrete space.

PROOF. We first show that (3.11.4) implies (3.11.2). Suppose that Zis discrete.
Then S{X,&) is the semigroup of all partial functions on X&nA as we have already
noted, this semigroup is regular. Now suppose that X is the one-point compacti-
fication of the countably infinite discrete space and let/be any function in S(X,&).
Since Dom/is closed, it is compact and hence Ran/ is compact. If Ran/is finite,
simply choose a point from each set of the decomposition of Dom/induced b y /
and denote the resulting finite set by A. Then / maps A homeomorphically onto
Ran/and it follows from Theorem (3.5) that in this case,/is regular. Just a bit
more care must be taken if Ran/is infinite. When this is the case, the unique limit
point 00 must belong to Ran/since it is compact. For each ye Ran/— {00}, choose
any Xy^f^iy) and let A = {xy: ye Ran/— {oo}}u{oo}. Then / maps A homeo-
morphically onto Ran/ and in this case too, it follows from Theorem (3.5) that
/ i s regular. Thus, S{X,!F) is a regular semigroup.

Now we show that (3.11.2) implies (3.11.1). Let/be any element in S(X). Since
the latter is a subsemigroup of S(X,^) which is assumed to be regular, there
exists a g in S(X,SF) such that fog0/=/. Possibly g may not belong to S(X)
which simply means that Domg^X but since Domg is closed one can, in view
of Corollary 3, p. 281, of Kuratowski (1966), continuously extend g to a function
§ in S(X). Then/o£ o /= /and we conclude that S(X) is regular.

https://doi.org/10.1017/S1446788700038933 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038933


[11] Sandwich semigroups of continuous functions 55

Now we show that (3.11.1) implies (3.11.4). We assume that X is not discrete
and we show that this forces it to be the one-point compactification of the countably
infinite discrete space. First of all, Corollary (3.5) of Magill and Subbiah (1974)
assures us that the semigroup of all continuous selfmaps of a noncompact
O-dimensional metric space is regular if and only if the space is discrete. So this,
together with the assumption that X is not discrete implies that X is compact.
We show, by contradiction, that X has only one limit point. Since it is compact
and not discrete it must have at least one. Suppose it has more. We choose any
two and denote them by p and q. Since X is first countable, there exists sequences
{*»Jm=ianc* {yn}n=i converging top andq respectively. There is no loss in generality
in assuming that all the points involved are distinct. Let

A = {p,q} u {xj^ u {j>X=1

and choose mutually disjoint clopen sets {G^^ and {i?J^=1 so that Gn n A = {xn},
HnnA = {yn}, limDiam Gn = 0 and limDiamHn = 0 where Diam means diameter.
Now define a selfmap/of X by

f(x) = y2n_1 forxeHn,

Rx) = y2n for *£(?„,

f(x) = q for x e X- U [Gn u Hn]%=1.

Since all the Gn and Hn are clopen, it is immediate that/is continuous at any point
in Gn or Hn. To see that/is continuous at q, let V be any open set containing q.
Then there exists a positive integer N such that yne V for n^N and one easily
verifies that

is a neighborhood of q which /carries into V. The same sort of argument serves
to verify that / i s also continuous at the point p. Finally, let us consider a point z
different from both p and q and not belonging to any Gn or Hn. First choose a
clopen neighborhood W of z which excludes both p and q. Then W can intersect
only finitely many of the sets {Gn}™=1. Assume the contrary. Then we can choose
wneGnjn Wfor infinitely many riy But limx^ =p and lim Diam Gn = 0 together
imply that p is a limit point of W which is a contradiction since W is clopen and
does not contain p. In a similar manner, W can intersect only finitely many of
the sets {Hn}^v Hence, there is a positive integer N such that Wf\[GnuHn] = 0
for n > N and it follows that

W-lGiUHJZ,!
is a clopen subset of X containing z which / maps entirely into the point q.
Consequently, / is continuous at z and hence on all X. That is, feS(X).

Our next step is to show that/does not map any subspace of Zhomeomorphically
onto Ran/. Suppose that/maps B bijectively onto Ran/. Then Br\Gn consists of
exactly one point which we denote by an and BnHn consists of exactly one point
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which we denote by bn. Now Bnf~\q) also consists of exactly one point and we
denote it by /. Thus,

But limjcn =p and limDiamGn = 0 together imply that liman = p. For similar
reasons, \imbn = q. Hence both p and q are limit points of B. However, each an

and each bn is isolated in B so that the only possibility for a limit point is the
point /. It is now apparent that B cannot contain both p and q and hence is not
compact. Consequently,/does not map any subspace of Zhomeomorpnically onto
Ran/and according to Theorem (3.5) cannot be regular. This is the contradiction
we seek and so we may conclude that X has exactly one limit point which we
denote by oo. Since X is compact it is immediate that it is the one-point compacti-
fication of a discrete space. However, X is also metrizable so that according to
Theorem (8.6), p. 247 of Dugundji (1966), X-{oo) is second countable. Since
.3f—{oo} is also discrete, all this forces it to be countably infinite.

Now, at this point, we have shown that (3.11.1), (3.11.2) and (3.11.4) are all
equivalent. One can verify that (3.11.4) implies (3.11.3) in exactly the same way
that we verify that (3.11.4) implies (3.11.2). Similarly, one verifies that (3.11.3)
implies (3.11.1) in the same manner that we showed that (3.11.2) implies (3.11.1).
In fact, it is even a bit easier to show that (3.11.3) implies (3.11.1) in the sense that
in this case, Dom g will be clopen so that g can be extended to g in S(X) without
appealing to Corollary 3, p. 281 of Kuratowski (1966). With these observations,
we conclude the proof.

4. Green's relations for regular elements

In order to verify the results in this section we essentially have only to piece
together various results from Magill and Subbiah (1975) and the previous section
of this paper. We formally state all the results and then we discuss their proofs.
We recall that for any function / the symbol ir(f) denotes its decomposition.
That is, ir(f) = {/^(y): yeRanf}.

THEOREM (4.1) Let f and g be regular elements of S(X, Y,a.,S) and suppose, in
addition, that Dom/= T>omg. Then/belongs to the left ideal generated by g if and
only if n(g) refines TT(/). Any two regular elements h and k of S(X, Y, a, S) are
^-related if and only if TTQI) — ir(k).

THEOREM (4.2) Let f and g be any two regular elements of S(X, Y, <x, «f). Then
f belongs to the right ideal generated by g if and only z/Ran/c Rang-. Consequently,
fandg are ^-related if and only if Ranf= Rang.

THEOREM (4.3) Two regular elements f and g of S(X, Y, a, i) are 2-related if
and only ifR&nfis homeomorphic to Ran#.
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THEOREM (4.4) Let f andg be any two regular elements of S(X, Y,a.,&). Thenf
belongs to the two-sided ideal generated by g if and only if Ran/ is homeomorphic to
an S-retract of Y which is contained in Rang. Consequently, f and g are £-related
if and only if the range of each contains an S-retract which is homeomorphic to the
range of the other.

We recall that if one element in a ̂ -class is regular then they are all regular and
such classes are called regular ^-classes. The next result tells us how we can get all
of the regular ^-classes of S(X, Y, a, «f).

THEOREM (4.5) Let A be any subspace of Y with the property that a maps it
homeomorphically onto a retract of some H in S. Let DA consist of all those functions
fin S(X, Y, a, <f) such that a maps Ran/homeomorphically onto a retract of some H
in S and foot maps some subset of Y homeomorphically onto Ran/. Then DA is a
regular 9-class of S(X, Y, a, <f) and all regular ̂ -classes of S(X, Y, a, S) are
obtained in exactly this manner.

VERIFICATION OF THEOREMS (4.1)-(4.5). Theorem (4.1) follows immediately from
Theorems (3.6) and (3.7) of Magill and Subbiah (1975) and Theorem (4.2) follows
from Theorem (3.9) of that paper. Theorem (4.3) follows from Theorem (3.10)
of that paper and Theorems (3.4) and (3.5) of this paper. Theorem (4.4) follows
from Theorem (3.12) of that paper and Theorem (3.3) of this paper. Finally,
Theorem (4.5) follows from Theorem (3.11) of that paper and Theorems (3.1),
(3.3) and (3.5) of this paper. We elaborate a bit more on the latter. Theorem (3.11)
of Magill and Subbiah (1975) tells us that in order to get a regular i^-class of
S(X, Y,a,dT) we first choose any S-retract of Fand according to Theorem (3.1),
this is simply any subspace of Y which a maps homeomorphically onto a retract
of some H in $. Then we take DA to be all those functions / such that Ran/ is
S-isomorphic to A and /o a. maps some subset of Y S-isomorphically onto Ran/.
Such DA are, according to Theorem (3.11) of Magill and Subbiah (1975) precisely
the regular ^-classes of S(X, Y, a, $). Now the requirement that /o a map some
subset of Y 5-isomorphically onto Ran/is just condition (3.2.3) of Theorem (3.2)
of the latter paper and although it is not formally stated, it follows immediately
from the fact that (3.2.2) and (3.2.3) are equivalent that (3.2.3) is also equivalent
to the requirement that Ran/be an S-retract of Y and that /o a. map some subset
of Y S-isomorphically onto Ran/. But according to Theorems (3.1) and (3.4) of
this paper, this is equivalent to requiring that a map Ran/homeomorphically onto
a retract of some H'vuS and/oa map some subset of Y homeomorphically onto
Ran/. This verifies Theorem (4.5).

Now we interpret what the previous results mean for the semigroups S(X),
S(X,0>) and S(X,2T). The statements concerning the £?, 9t and
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^-relations are identical for the four semigroups and are simply the statements of
Theorems (4.1)-(4.3). However, the statements for the ^/-relation differ for the
four semigroups and the reason for this is that the statement concerning the
^/-relation explicitly involves a reference to 5-retracts and these differ depending
upon the semigroup. For S(X), an S-retract is just a retract of X in the usual
topological sense and so we get

COROLLARY (4.6) Let X be any topological space and let f and g be any two
regular elements of S(X). Then f belongs to the two-sided ideal generated by g if
and only if Ranf is homeomorphic to a retract which is contained in Rang. The two
functions are ^-equivalent if and only if the range of each contains a retract which
is homeomorphic to the range of the other.

Since the retracts of O-dimensional metric spaces are precisely the nonempty
closed subsets of the space (Kuratowski, 1966, p. 281) we also get:

COROLLARY (4.7) Let Xbe a O-dimensional metric space and let f and g be regular
elements ofS(X). Then fbelongs to the left ideal generated by g if and only if Rang
contains a closed subspace which is homeomorphic to Ran/. The two functions are
£ -equivalent if and only if the range of each contains a closed subspace which is
homeomorpuic to the range of the other.

Now we consider the case for the semigroup S(X, IF), The verification of the
next lemma is easy and we omit it.

LEMMA (4.8) For a Hausdorff space X and the semigroup S(X,!F), the S-retracts
of X are precisely the closed subspaces of X.

This lemma and Theorem (4.4) combine to yield:

COROLLARY (4.9) Let Xbe any Hausdorff space and let f and g be any two regular
elements ofS(X,^). Then f belongs to the two-sided ideal generated by g if and only
if Rang contains a closed subspace which is homeomorphic to Ran/. Two regular
elements are ^-equivalent if and only if the range of each contains a closed subspace
which is homeomorphic to the range of the other.

One easily checks that for any space A'whatsoever and the semigroup
the .S-retracts are precisely the subsets of X. This and Theorem (4.4) give:

COROLLARY (4.10) Let X be any topological space and let f and g be any two
regular elements of S(X,£P). Then f belongs to the two-sided ideal generated by g
if and only if Rang contains a homeomorphic copy of Ran f. The two functions are
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f-equivalent if and only if the range of each contains a homeomorphic copy of the
•ange of the other.

For any space X and the semigroup S{X,2£), a subset A of Xis an S-retract if
ind only if A is a retract of a clopen subspace of X. Furthermore, it follows from
Corollary 2, p. 281, of Kuratowski (1966), that if X is a O-dimensional metric space,
•hen A is an S-retract if and only if A is a closed subspace of X. These observations
together with Theorem (4.4) yield:

COROLLARY (4.11) Let X be a O-dimensional metric space and let f and g be
regular elements of S(X, 2T). Then f belongs to the two-sided ideal generated by g
if and only if Rang contains a closed subspace which is homeomorphic to Ran/.
The two functions are £ -equivalent if and only if the range of each contains a closed
subspace which is homeomorphic to the range of the other.

We close this section with several results about the regular ^-classes of these
various semigroups. We omit the result on S(X) since it appears in Magill and
Subbiah (1974) as Theorem (3.3). Nonetheless, this paper does intersect slightly
with the latter paper with respect to a few of the other results on S(X). The results
we do state all follow in a straightforward manner from Theorem (4.5) and some
observations made in this section so we dispense with their proofs.

COROLLARY (4.12) Let X be any topological space and let Abe any closed subspace
of X. Let DA consist of all those functions in S{X,^) such that f maps some subset
of X homeomorphically onto Ran/. Then DA is a regular 3i-class of S{X,^) and all
regular ^-classes are obtained in exactly this manner.

COROLLARY (4.13) Let X be any topological space and let A be any subspace of X.
Let DA consist of all those functions fin S(X,^) such that f maps some subset of X
homeomorphically onto Ran/. Then DA is a regular Si-class of S(X,^) and all
regular ^-classes are obtained in exactly this manner.

COROLLARY (4.14) Let X be a O-dimensional metric space and let A be any closed
subspace ofX. Let DA consist of all those functions fin S(X, 2£) such that f maps some
subset of X homeomorphically onto Ran/. Then DA is a regular Q-class of S{X,2£)
and all regular ^-classes are obtained in exactly this manner.

5. The maximal subgroups of sandwich semigroups of continuous functions

The main result in this section is the following.

THEOREM (5.1) Let S(X,Y,a,&) be any sandwich semigroup of continuous
functions and let A be any subspace of Y which a maps homeomorphically onto a
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retract of some H in <f. Then the group G(A) of all homeomorphisms mapping A
onto A is isomorphic to a maximal subgroup of S{X, Y, a, $). Conversely, each
maximal subgroup of S(X, Y, a, $) is isomorphic to some such G(A).

PROOF. By Theorem (4.1) of Magill and Subbiah (1975), the maximal subgroups
of S(X, Y, a, S\ are precisely the full S-isomorphism groups on S-retracts of Y.
By Theorem (3.1) of this paper, a subspace A of Y is an 5-retract if and only if
a maps it homeomorphically onto a retract of some H in S. Hence, to complete
the proof, we need only show that for such A, the group J(A) of all S-isomorphisms
mapping A onto A coincides with the group G(A) of all homeomorphisms mapping
A onto A. Recall that an ^-isomorphism from A onto A is the restriction of
foa for some / in S(X, Y,oc,<f) where/oa maps A S-isomorphically onto A.
By Theorem (3.4), the restriction of/o <x to A is a homeomorphism from A onto A
so that J{A) is contained in G(A). Now let / be any element of G(A). Since A is an
S-retract, it is the range of some idempotent v of S(X, Y, ex, <f) and it is immediate
that both tov and t^ov belong to S(X, Y,a,S). By Lemma (3.1) of Magill and
Subbiah (1975), voa is the identity on A and so it readily follows that
(t o v) o a. o (t~x o v) o a is the identity on A and (t~* o v) o a. o (/ o v) o a. is also. This simply
means that (tov)oa maps A 5-isomorphically onto itself and so that its restriction
to A belongs to the group J(A). This restriction is, of course, just the homeo-
morphism /. Hence ,G(A) and J(A) are one and the same and the proof is complete.

It follows as a corollary that the maximal subgroups of S(X) are precisely the
full homeomorphism groups on retracts of X. This fact appeared previously in
Magill (1967) as Theorem (3.1), p. 138.

It has long been known that only symmetric groups can be maximal subgroups
of full transformation semigroups. The situation differs, of course, for S(X) in
general and it is reasonable to wonder just what kinds of groups can be maximal
subgroups of semigroups of continuous selfmaps. This question is answered by
our next result.

THEOREM (5.2) Let IS be any collection of groups. Then there exists a one-
dimensional, connected, locally connected, complete metric space X such that each
group in 'S is isomorphic to a maximal subgroup of the semigroup S(X).

PROOF. Index the groups in ^ by some index set A. By Theorem 7, p. 96 of de
Groot (1959), there exists for each SeA, a one-dimensional, connected, locally
connected, complete metric space Yg such that the group G(YS) of all homeo-
morphisms mapping Ys onto Ys is isomorphic to the group Gt in ^ . Let X be any
bonded union (Magill, 1974, Definition (3.1), p. 151) of the family {Y,: SeA}. One
verifies in a routine manner that since Ys is a one-dimensional, connected, locally
connected, complete metric space, then X is also. Moreover, one also shows easily
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that each Ys is homeomorphic to a retract of X and this implies that G(YS) and
hence Gs is isomorphic to the group of all homeomorphisms on a retract of X.
We now apply either Theorem (3.1), p. 138 of Magill (1967) or Theorem (5.1) of
this paper to conclude that each Gs in ^ is isomorphic to a maximal subgroup
ofS(X).

6. Sandwich semigroups of Boolean ring homomorphisms

By a Boolean ring, we mean any ring with identity with the property that every
element is idempotent. Let A and B be any two Boolean rings and let 6 be a
homomorphism from B into A. We denote by Q(A,B, 6) the sandwich semigroup
of all homomorphisms from A into B where multiplication is defined by means of
the sandwich homomorphism 0. At first glance, it might seem that a discussion of
these semigroups would be out of place in this paper but it is really not. Every
sandwich semigroup can essentially be regarded as a sandwich semigroup of
continuous functions. We use this fact and our previous results on sandwich
semigroups of continuous functions to show that sandwich semigroups of Boolean
ring homomorphisms are not often regular. This is contained in the main result of
this section. Before we state it, some comments are in order. First of all, for any
O-dimensional Hausdorff space X, we denote by £8{X) the Boolean ring of all
clopen subsets of X where, as usual, the sum of two elements is defined to be their
symmetric difference and the product is defined to be their intersection. One
other point, the adjective countable when used here means that the set under
consideration is either finite or in one-to-one correspondence with the natural
numbers. Countably infinite set are those which satisfy the second of the previous
two conditions. We are now in a position to state the main result of this section.

THEOREM (6.1) Let A and B be two Boolean rings each with more than two elements
and suppose that at least one of the rings is countable. Let 6 be any homomorphism
from the ring B into the ring A. Then the following statements about the sandwich
semigroup Q(A, B, 6) are equivalent.

(6.1.1) Q(A,B, 0) is regular.
(6.1.2) 6 is an isomorphism from B onto A and either A is finite or it contains exactly

one maximal ideal M with the property that each element in M also belongs
to a maximal ideal distinct from M.

(6.1.3) 9 is an isomorphism from B onto A and A is isomorphic to &{X) where X
is either finite or is the one-point compactification of the countably infinite
discrete space.

We accomplish the proof through a sequence of lemmas. First of all, we need to
recall the notion of the structure space of a commutative ring R with identity.
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The points of the space which we denote by XR are the maximal ideals of R and
for each reR, the set Hr = {MeXB: reM} is taken as a typical basic closed set.
This space is always Tx and compact (we do not demand here that a space be
Hausdorff in order that it be compact) but it need not be Hausdorff. General
information about structure spaces can be found in both Gillman and Jerison
(1960) and Jacobson (1964). Of course, a Boolean ring is necessarily commutative
and it is well known that the structure space XA of a Boolean ring A is a compact
0-dimensional Hausdorff space.

It will be convenient to reserve the symbol Kr for the set XR—Hr. In other words,
Kr = {M e XB: r $ M}. It is well known that for any aeA,Ha = Kb where b = l-a.
Consequently, each Hr is clopen. In fact, the clopen subsets of XA are precisely
the sets of the form FL (and hence also of the form fQ. Furthermore, it is also
well known that for any Boolean ring A, the mapping p defined by p(a) = Ka is
an isomorphism from A onto 88(XA). The verification of the next result follows
in a straightforward manner from this fact and will be omitted.

LEMMA (6.2) Let Q(A, B, 6) be a sandwich semigroup of Boolean ring homo-
morphisms and define a mapping a from &(XB) into 3§(XA) by o(Kh) = Ke{b). Then
a is a homomorphism from &(XB) into 88(XA). Furthermore, the mapping O from
Q(A,B,6) into g ^ J r j , #(JrB) , o) which is defined by <D(T) (Ka) = KTla) is an
isomorphism from the former onto the latter.

LEMMA (6.3) Let X and Y be compact 0-dimensional Hausdorff spaces. For each
homomorphism pfrom S8(X) into 38(Y), there exists a unique continuous function h
mapping a clopen subset of Y into X such that <p(H) = h~1[H]for each He&(X).
Furthermore, if <p is an isomorphism from SS(X) onto S§{ Y), then h is a homeo-
morphism from Y onto X.

The existence of the continuous function h was essentially established in the
proof of Lemma 1, p. 412, of Magill (1970b) and an analysis of that proof will
easily convince one that if <p is an isomorphism, then h must be a homeomorphism.
The uniqueness follows in a straightforward manner from the fact that the spaces
are 0-dimensional and Hausdorff.

DEFINITION (6.4) We will refer to the map h in the previous lemma as the map
which is induced by <p.

LEMMA (6.5) Let 2£B denote the collection of all clopen subsets of XB and let
ta denote the map from some clopen subset of XA into XB which is induced by the
homomorphism a defined in Lemma (6.5). Then the mapping V which sends an element
of Q{3§{XJ),3S(XB\a) into the function mapping XB into XA which it induces is
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an anti-isomorphism from Q(&(XA),&(XB),(j) onto the sandwich semigroup
S(XB, XA, ta, ££B) which consists of all continuous functions whose domains are
clopen subsets of XB and whose ranges belong to XA.

PROOF. Let a and £ be elements of Q(08(XA), 3§(XB\ a) and denote F(a) and
IXjS) by/a and/A respectively. We want to show that F(aj8) = F(fi) F(a). But this
is equivalent to showing that

(6.5.1) IXct.a.0) =/,„*„./„.

Let any He@(XJ) be given. Then by Lemma (6.3)

Since the mapping induced by a homomorphism is unique, condition (6.8.1)
follows and we see that F is an anti-homomorphism. It is immediate that F is
injective and it also follows quite easily that F is onto. Thus F is an anti-
isomorphism.

Since any two anti-isomorphic semigroups must both be regular or both non-
regular we immediately get

LEMMA (6.6) Q(A, B, 6) is regular if and only ifS(XB, XA, ta, ££B) is regular.

LEMMA (6.7) Let the Boolean ring A have at least three elements. If
S(XB, XA, ta,3?B) is regular, then ta is homeomorphism from XA onto XB.

PROOF. Suppose that xeXA — Dom ta and let <x> be the constant function which
sends all points of XB onto x. Then <*>/<*> = e for any/in the semigroup so
that <*> is not regular. Consequently the domain of ta is all of XA. Now suppose
that ta is not injective. Then tv(x) = tjlj) for some x,y eXA where x^y. But since
B has more than two elements, XB must have more than two elements and since
XB is O-dimensional it follows that {x,y} is the range of a continuous function
from XB into XA. But this contradicts Theorems (3.1) and (3.5) and so we conclude
that ta is injective. Now suppose that Ran ta is not all of XB. Since XA is compact
and XB is O-dimensional and Hausdorff, Ran ta is closed and there exists a nonempty
clopen subset H such that H<^XB—Ran?,,.. Since A has more than two elements,
XA must have at least two. Denote them by x and y and let/be the function which
sends all points of H into x and those of X— H into y. Then for any g in the semi-
group we have x £Ranfgf so that fgf cannot possibly be / . Consequently,
Ran ta = XB and since XA is compact and XB is Hausdorff, we conclude that
ta is a homeomorphism from XA onto XB.

LEMMA (6.8) A Boolean ring A is countably infinite and has exactly one maximal
ideal M with the property that each element in M also belongs to a maximal ideal
distinct from M if and only if the structure space of A is the one-point compactification
of the countably infinite discrete space.

https://doi.org/10.1017/S1446788700038933 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038933


64 K. D. Magill, Jr. and S. Subbiah [20]

PROOF (Necessity). Let M be such an ideal and let MeHa. Then a e M and there
exists a maximal ideal N distinct from M so that a e N. This, of course means that
NeHa and since {Ha: aeA) is a basis for the open subsets, this means that M is a
limit point of XA. However, there is only one such M and this means that all other
points of XA are isolated. Thus, since XA is compact, it must be the one-point
compactification of some discrete space. But since A is countable, XA must be
metrizable. In fact, the structure space of a Boolean ring is metrizable if and only
if the ring is countable (Sikorski, 1969, p. 25). Consequently, it follows from
Theorem (8.6), p. 247 of Dugundji (1966) that XA is the one-point compactification
of the countably infinite discrete space.

(Sufficiency). Now suppose that XA is the one-point compactification of the
countably infinite discrete space. Then XA is metrizable and as have just observed,
this means that A is countable. Moreover, since XA has exactly one limit point M
and the sets of the form Ha = {N e XA: a e N} form a basis for the open sets of XA,
it readily follows that M is the unique maximal ideal of A such that each element
of M also belongs to a maximal ideal distinct from M.

Now we are finally in a position to complete the proof of Theorem (6.1). Suppose
Q{A, B, 6) is regular. Then by Lemma (6.6), S(XB, XA, t^, 3?B) is also regular and
by Lemma (6.7), ta is a homeomorphism from XA onto XB. It follows that a
is an isomorphism from S8(XB) onto &(XA) and this, in turn, implies that 0 is an
isomorphism from B onto A. Since ta is a homeomorphism, it also follows that
S(XB,XA,ta,2£B} is isomorphic to S(XA,3T). In particular f-*fota is an iso-
morphism from the former onto the latter. Hence, S{XA,2£) is regular and
Theorem (3.11) tells us that XA is either discrete or is the one-point compactification
of the countably infinite discrete space. But XA is compact under any circumstances
so this means that XA is either finite or the one-point compactification of the
countably infinite discrete space. Since A is isomorphic to ^{XJ), we have
established that (6.1.1) implies (6.1.3).

Now we show that (6.1.3) implies (6.1.1). Since 6 is an isomorphism from B
onto A, it easily follows that Q(A,B,0) is isomorphic to the endomorphism
semigroup of A which we denote by Q(A). Since A is isomorphic to &(X), Q(A) is
isomorphic to Q{S8{X)) but according to either Lemma 1, p. 412 of Magill (1970b)
or Lemma (6.5) of this paper, the latter is isomorphic to S(X, 2T) which, in view of
Theorem (3.12), is regular. Thus, Q(A) is regular and this shows that (6.1.3)
implies (6.1.1). It follows easily from Lemma (6.8) that (6.1.2) is equivalent to
(6.1.3) and the proof of Theorem (6.1) is complete.
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