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Abstract

In this paper we demonstrate that a broad class of higher-order functional programs can be

transformed into semantically equivalent multidimensional intensional programs that contain

only nullary variable definitions. The proposed algorithm systematically eliminates user-

defined functions from the source program, by appropriately introducing context manipulation

(i.e. intensional) operators. The transformation takes place in M steps, where M is the order

of the initial functional program. During each step the order of the program is reduced by

one, and the final outcome of the algorithm is an M-dimensional intensional program of order

zero. As the resulting intensional code can be executed in a purely tagged-dataflow way, the

proposed approach offers a promising new technique for the implementation of higher-order

functional languages.

Capsule Review

This paper is concerned with the problem of translating functional programs into multidimen-

sional intensional programs, and extends previous results (by the same authors) to programs

with certain types of higher-order functions. In particular, functions are allowed to take other

functions as arguments, but not return functions as results. While this does not give the full

power of unrestricted higher-order functions, it does add significant power to a first-order

functional programming language. The authors state that they are currently investigating

techniques for supporting general higher-order functions.

Since intensional programs can be executed on dataflow machines, these results imply a

dataflow implementation for higher-order functions (as restricted above). The authors also

note that the proposed technique can be implemented on conventional machines, giving an

alternative to graph-reduction based implementations. While graph-reduction is likely to be

more efficient at present, perhaps this work will open the door to additional research.

A denotational semantics is given for a simple language, and the correctness of the

transformation and evaluation mechanism is proved to be correct with respect to these

semantics.
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1 Introduction

This paper is the successor to an earlier work (Rondogiannis and Wadge, 1997),

in which we formally established the correctness of a transformation algorithm

from first-order functional programs to intensional programs of nullary variables.

In the present paper, we extend our investigation to a broad class of higher-

order functional programs. In particular, we define an algorithm which gradually

transforms a given higher-order program into a semantically equivalent intensional

program of nullary variables. As discussed in the earlier work (Rondogiannis and

Wadge, 1997), there exists a very close relationship between intensional languages

and the tagged-dataflow model of computation: the notion of context (or tag, or

possible world) plays a crucial role in both cases. In fact, tagged-dataflow machines

provide the ideal hardware platform for executing intensional languages. Therefore,

the immediate practical outcome of the algorithm developed in this paper is a

technique for implementing higher-order functional languages in a purely dataflow

way. It should be noted here that the proposed technique can also be implemented

efficiently on conventional architectures, and is therefore an interesting alternative

to the well-known graph reduction based techniques for implementing functional

languages.

The paper is organized as follows. Section 2 outlines the transformation algorithm

for first-order programs. The material in this section is a brief presentation of the

ideas in Yaghi (1984) to make the present paper self-contained. For a complete

and formal description of the first-order case, the interested reader should consult

Rondogiannis and Wadge (1997). Section 3 presents an intuitive introduction to

the transformation algorithm for higher-order programs. Section 4 introduces the

mathematical notation that will be used throughout the paper. The simple higher-

order functional language FL that will be the focus of our investigation, is presented

in section 5 and its (classical) denotational semantics is given. The higher-order

intensional language IL and the final zero-order intensional language NVIL are

developed in section 6 and their synchronic denotational semantics are presented.

The transformation from FL to NVIL is derived in section 7 and the correctness

of the transformation is demonstrated in section 8. The paper concludes with

discussion of the significance of the proposed technique, implementation issues,

related work and future directions in the area of intensional transformations of

functional programs.

The paper assumes a basic familiarity with intensional programming. The inter-

ested reader can consult the first three sections of Rondogiannis and Wadge (1997)

for a quick introduction to the area.

2 The first-order case

Before considering higher-order programs, we outline the approach we adopt for

the first-order case; this was initially developed by Yaghi (1984) and formalized by

Rondogiannis and Wadge (1997). The algorithm transforms a first-order program

into a set of zero-order definitions that contain context manipulation operations.
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As the semantics of the resulting code is based on Montague’s Intensional Logic

(Thomason, 1974), the resulting definitions are also referred as intensional definitions.

The transformation algorithm can be outlined as follows (see Rondogiannis and

Wadge (1997) for a more detailed and formal exposition). For each function f

defined in the source functional program,

1. Number the textual occurrences of calls to f in the program, starting at 0

(including calls in the body of the definition of f ).

2. Replace the ith call of f in the program by calli(f). Remove the formal

parameters from the definition of f , so that f is defined as an ordinary

individual variable.

3. Introduce a new definition for each formal parameter of f . The right hand

side of the definition is the operator actuals applied to a list of the actual

parameters corresponding to the formal parameter in question, listed in the

order in which the calls are numbered.

To illustrate the algorithm consider the following simple first-order functional pro-

gram:

result
.

= f(4)+f(5)

f(x)
.

= g(x+1)

g(y)
.

= y

The translation algorithm produces the following intensional program:

result
.

= call0(f)+call1(f)

f
.

= call0(g)

g
.

= y

x
.

= actuals(4,5)

y
.

= actuals(x+1)

An execution model is established by defining the calli and actuals in terms

of operations on finite lists of natural numbers (referred from now on as tags or

contexts). Execution of the program starts by demanding the value of the variable

result of the intensional program, under the empty tag [ ]. The operator calli
corresponds to the operation of prefixing a tag w with i. On the other hand, actuals

corresponds to taking the head i of a tag, and using it to select its ith argument.

More formally, given intensions a, a0, . . . , an−1, and letting “:” denote the consing

operation on lists, the semantic equations as introduced by Yaghi (1984) are1:

(calli(a))(w) = a(i : w)

(actuals(a0, . . . , an−1))(i : w) = (ai)(w)

Following the above semantic rules, the intensional program obtained above can be

1 Notice that we use different fonts when representing elements of the metalanguage (e.g. functions,
sets, etc.) and elements of the object language (e.g. programs, expressions, etc.). The exact typographic
conventions we adopt are presented in section 4.
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interpreted as follows:

EVAL(call0(f)+call1(f), [ ])

= EVAL(call0(f), [ ]) + EVAL(call1(f), [ ])

= EVAL(f, [0]) + EVAL(f, [1])

= EVAL(call0(g), [0]) + EVAL(call0(g), [1])

= EVAL(g, [0, 0]) + EVAL(g, [0, 1])

= EVAL(y, [0, 0]) + EVAL(y, [0, 1])

= EVAL(actuals(x+1), [0, 0]) + EVAL(actuals(x+1), [0, 1])

= EVAL(x+1, [0]) + EVAL(x+1, [1])

= EVAL(x, [0]) + EVAL(1, [0]) + EVAL(x, [1]) + EVAL(1, [1])

= EVAL(x, [0]) + 1 + EVAL(x, [1]) + 1

= EVAL(actuals(4,5), [0]) + 1 + EVAL(actuals(4,5), [1]) + 1

= EVAL(4, [ ]) + 1 + EVAL(5, [ ]) + 1

= 4 + 1 + 5 + 1

= 11

The technique just described has been extensively used in the implementations of

the Lucid functional-dataflow language (Wadge and Ashcroft, 1985) as well as in

other functional languages and systems (Du and Wadge, 1990a, 1990b).

In the following we will use a slight modification of the above technique, which

will make easier the treatment of higher-order functions. For example, consider the

definition

x
.

= actuals(4,5)

in the above translated program. We will rewrite the definition as

x
.

= case(actuals0(4),actuals1(5))

The new case operator we have introduced allows the use of a new family of actuals

operators, which correspond more closely to the call operator. The semantics of

the new operators are as follows:

case(a0, . . . , an−1)(i : w) = (ai)(i : w)

(actualsi(a))(i : w) = (a)(w)

The above formalization is equivalent to the previous one, but has an additional

benefit: each actualsi operator is now unary, as is the case with each calli operator.

This will help us formulate in a more elegant way certain of the properties of the

transformation algorithm for higher-order programs.

3 The higher-order case

3.1 Introduction

The basic idea for the generalization of the technique to higher-order programs

was first presented by Wadge (1991), and has since been extended and formalized

by Rondogiannis (1994) and Rondogiannis and Wadge (1994a). Intuitively, the

technique can handle higher-order programs, in which
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1. Function names can be passed as parameters but not returned as results.

2. Operation symbols are first-order.

The above conditions certainly impose some restrictions on the use of higher-

order functions. However, the acceptable class of programs still remains significant.

Useful functional systems that make such use of higher-order functions can easily

be implemented based on the algorithm proposed in this paper.

The first of the conditions imposed above is met by many widely used higher-

order functions such as map and foldr. For example, the following is an acceptable

program that defines and uses map:

result
.

= map(inc,[1,2,3])

map(f,x:xs)
.

= if (x eq []) then [] else f(x):map(f,xs)

inc(y)
.

= y+1

Moreover, many functions that do not obey the first condition can be rewritten,

after a preprocessing stage, in such a way that the condition is satisfied.

Notice that the language we adopt, though higher order, still uses conventional

mathematical notation in which arguments of a function call appear as a comma-

separated parenthesized list directly after the function name/expression. Therefore,

we write map(f,xs) rather than the “Curried” form (map f xs), which is more

usual in functional languages. We use the former notation because the latter is

normally interpreted as denoting ((map f) xs), and this implies that map returns

a function, which our language does not permit.

The second restriction is less important as the most common operation symbols

(such as +, if-then-else, eq, etc.) are usually first-order.

In the rest of this section we give an intuitive introduction to the proposed

transformation technique. The main idea of the generalized transformation is that

an M-order functional program can first be transformed into an (M − 1)-order

intensional program, using a similar technique as the one for the first-order case.

The same procedure can then be repeated for the new program, until we finally get

a zero-order intensional program.

The idea of tags is now more general: for a program of order M, a tag is an

M-sequence (a sequence of length M) of lists, where each list corresponds to a

different order of the program. The operators are also more general as they have to

manipulate the new, more complicated tags. As the transformation for the higher-

order case consists of a number of stages, we use a different set of operators for each

stage. For the first step we use the operators caseM−1, actualsM−1
i and callM−1

i ,

where i ranges as in the first-order case. For the second step we use caseM−2,

actualsM−2
i and callM−2

i , and so on.

The code that results from the transformation can be executed following the same

basic principles as in the first-order case. In the rest of this section we present at

an intuitive level the transformation algorithm and describe the semantics of the

generalized operators.
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3.2 An example transformation

Consider the following simple second-order program:

result
.

= apply(inc,8)+apply(dec,5)

apply(f,x)
.

= f(x)

inc(y)
.

= y+1

dec(a)
.

= a-1

The function apply is second-order because its first argument is first-order. The

generalized transformation in its first stage eliminates the first argument of apply:

result
.

= call1
0(apply)(8)+call

1
1(apply)(5)

apply(x)
.

= f(x)

inc(y)
.

= y+1

dec(a)
.

= a-1

f
.

= case1(actuals1
0(inc),actuals

1
1(dec))

A comment on the notation in the above program: call1
0(apply)(8) is equivalent

to the more usual notation call1
0 apply 8 which stands for ((call1

0 apply) 8).

We see that the resulting program contains only first-order user-defined functions.

The only exception is the definition of f, which is an equation between function

expressions. We can easily change this by introducing an auxiliary variable z:

result
.

= call1
0(apply)(8)+call

1
1(apply)(5)

apply(x)
.

= f(x)

inc(y)
.

= y+1

dec(a)
.

= a-1

f(z)
.

= case1(actuals1
0(inc)(z),actuals

1
1(dec)(z))

Notice now that in the above program the functions are all first-order (they

all have only zero-order arguments). A non-standard aspect of this new program

is the existence of certain function calls of the form q(f)(E0, . . . ,En−1)
2, where q

is an intensional operator (such as the calls call1
0(apply)(8), call1

1(apply)(5),

actuals1
0(inc)(z) and actuals1

1(dec)(z)). Such calls will receive special treatment

in the next step of the transformation.

We can now perform the final step of the transformation that will result in a

zero-order intensional program. We proceed as before, the main difference being

that we use a new dimension and corresponding new operators. Notice also below

the use of the “·” syntactic composition operator, which is introduced for notational

convenience (that will become clearer in later sections of the paper). In particular,

an expression of the form q1 ·q2(f)will be considered equivalent to q1(q2(f)) (notice

2 Again, this is notationally equivalent to (q f)(E0, . . . ,En−1), which corresponds, in the more usual
notation for functional languages, to (q f E0 · · · En−1).

https://doi.org/10.1017/S0956796899003445 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003445


Higher-order functional languages and intensional logic 533

that the composition operator binds stronger than function application).

result
.

= call1
0 · call0

0(apply)+call
1
1 · call0

1(apply)

apply
.

= call0
0(f)

inc
.

= y+1

dec
.

= a-1

f
.

= case1(actuals1
0 · call0

0(inc),actuals
1
1 · call0

0(dec))

z
.

= case0(actuals0
0(x))

y
.

= case0(actuals0
0 · call1

0(z))

a
.

= case0(actuals0
0 · call1

1(z))

x
.

= case0(actuals0
0 · actuals1

0(8),actuals
0
1 · actuals1

1(5))

The transformation is similar to that for the first-order case, the main difference

being the treatment of calls of the form q(f)(E0, . . . ,En−1). Consider for example

the call call1
0(apply)(8), and notice the expression actuals0

0 · actuals1
0(8) that

appears in the final program corresponding to the actual parameter 8. The new aspect

here is the appearance of the operator actuals1
0, which we will call the inverse of

the operator call1
0 that existed in the initial call. In general, the inverse of callmi is

actualsmi and vice versa. As a second example, consider the call actuals1
0(inc)(z).

The expression that results for the actual parameter z is actuals0
0 · call1

0(z),

because call1
0 is the inverse of actuals1

0. The above notions will be formalized

in subsequent sections (and will be generalized for the case of function calls of

the form Q(f)(E0, . . . ,En−1), where Q is the syntactic composition of a number of

intensional operators).

The (informal) algorithm for the higher-order case consists of repeating the

following steps until the program becomes zero-order. For each function f of the

current highest order m:

1. Number the textual occurrences of calls to f in the program, starting at 0.

2. Remove from the ith call to f all the actual parameters of order (m− 1). Prefix

the call to f with callm−1
i .

3. Remove from the definition of f the formal parameters of order (m− 1).

4. For every formal parameter x of f that was eliminated, introduce a casem−1

definition. The casem−1 operator takes as many arguments as are the calls to f

in the program. More specifically, the ith argument of casem−1 corresponds to

the ith call to f in the program, and is an expression starting with actualsm−1
i .

Moreover, if the particular call to f is of the form Q(f)(E0, . . . ,En−1), where Q

is the syntactic composition of a number of intensional operators, the inverse

of Q must be taken into consideration when creating the subexpressions of

casem−1 (more details on this will be given in section 7).

Given a source functional program of order M, the execution model for the

final zero-order program that results from the transformation requires tags to be

M-sequences of lists of natural numbers, where each list corresponds to a different

order of the initial program (or equivalently, a different stage in the transformation).

We will use the notation 〈w0, ..., wM−1〉 to denote a tag. The operators callmi and

actualsmi can now be thought of as operations on these more complicated tags.

https://doi.org/10.1017/S0956796899003445 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003445


534 P. Rondogiannis and W. W. Wadge

The semantics of callmi can be described as follows: given a tag, m is used to select

the corresponding list from the tag. The list is then prefixed with i and returned to

the tag. On the other hand, actualsmi takes from the tag the list corresponding to

m, checks whether the head of the list is equal to i and returns the tail of the list

to the tag. The new semantic equations regarding the operators that appear in the

final (zero-order) programs that result from the transformation, are3:

(callmi (a))〈w0, . . . , wm, . . . , wM−1〉 = a〈w0, . . . , (i : wm), . . . , wM−1〉
(actualsmi (a))〈w0, . . . , (i : wm), . . . , wM−1〉 = a〈w0, . . . , wm, . . . , wM−1〉
(casem(a0, . . . , an−1))〈w0, . . . , (i : wm), . . . , wM−1〉 = ai〈w0, . . . , (i : wm), . . . , wM−1〉

Notice that in the case of the actualsmi operator, the semantic equation does not

specify what happens if the check made by the operator fails. The result in this

case is undefined. However, the test performed by actualsmi never fails in the case of

programs generated by the transformation.

The evaluation of a program starts with an M-sequence of empty lists, one for

each order. Execution proceeds as in the first-order case, the only difference being

that the appropriate list within the sequence is accessed every time.

The final zero-order programs that result from the transformation can be easily

executed using an EVAL function (as this was done in the first order case). The EVAL

function is not defined formally in the paper because it is used in order to introduce

and illustrate ideas that will be formalized in other parts of the paper. One can think

of EVAL as a simple interpreter that works by following the semantic equations of

the intensional operators given above. Moreover, EVAL also performs a simple form

of substitution: every time it needs to evaluate a nullary variable of the program

under a specific context, it simply replaces the variable with its defining expression,

and continues the evaluation. It is important to note again that EVAL cannot be

used to compute the value of a program that results in an intermediate step of the

transformation, because such programs still contain user-defined functions. The final

programs are much simpler, and the semantics of the operators described earlier in

this section suffice to compute the program output.

Execution starts by demanding the value of result at the empty tag:

EVAL(result, 〈[ ], [ ]〉)
EVAL(call1

0 · call0
0(apply)+call

1
1 · call0

1(apply), 〈[ ], [ ]〉)
= EVAL(call1

0(call
0
0(apply))+call

1
1(call

0
1(apply)), 〈[ ], [ ]〉)

This can be calculated by computing independently (and then adding) the following

two results:

EVAL(call1
0(call

0
0(apply)), 〈[ ], [ ]〉)

EVAL(call1
1(call

0
1(apply)), 〈[ ], [ ]〉)

The two calculations are very similar in nature. We show the full procedure only for

3 The intensional operators that appear in intermediate steps of the transformation are generally higher-
order. The semantics of such operators is described in section 6.
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the second one (the first one can be easily shown to yield the value 9):

EVAL(call1
1(call

0
1(apply)), 〈[ ], [ ]〉)

= EVAL(call0
1(apply), 〈[ ], [1]〉)

= EVAL(apply, 〈[1], [1]〉)
= EVAL(call0

0(f), 〈[1], [1]〉)
= EVAL(f, 〈[0, 1], [1]〉)
= EVAL(case1(actuals1

0 · call0
0(inc),actuals

1
1 · call0

0(dec)), 〈[0, 1], [1]〉)
= EVAL(actuals1

1 · call0
0(dec), 〈[0, 1], [1]〉)

= EVAL(actuals1
1(call

0
0(dec)), 〈[0, 1], [1]〉)

= EVAL(call0
0(dec), 〈[0, 1], [ ]〉)

= EVAL(dec, 〈[0, 0, 1], [ ]〉)
= EVAL(a-1, 〈[0, 0, 1], [ ]〉)
= EVAL(a, 〈[0, 0, 1], [ ]〉)− EVAL(1, 〈[0, 0, 1], [ ]〉)
= EVAL(a, 〈[0, 0, 1], [ ]〉)− 1

= EVAL(case0(actuals0
0 · call1

1(z)), 〈[0, 0, 1], [ ]〉)− 1

= EVAL(actuals0
0 · call1

1(z), 〈[0, 0, 1], [ ]〉)− 1

= EVAL(actuals0
0(call

1
1(z)), 〈[0, 0, 1], [ ]〉)− 1

= EVAL(call1
1(z), 〈[0, 1], [ ]〉)− 1

= EVAL(z, 〈[0, 1], [1]〉)− 1

= EVAL(case0(actuals0
0(x)), 〈[0, 1], [1]〉)− 1

= EVAL(actuals0
0(x), 〈[0, 1], [1]〉)− 1

= EVAL(x, 〈[1], [1]〉)− 1

= EVAL(case0(actuals0
0 · actuals1

0(8),actuals
0
1 · actuals1

1(5)), 〈[1], [1]〉)− 1

= EVAL(actuals0
1 · actuals1

1(5), 〈[1], [1]〉)− 1

= EVAL(actuals0
1(actuals

1
1(5)), 〈[1], [1]〉)− 1

= EVAL(actuals1
1(5), 〈[ ], [1]〉)− 1

= EVAL(5, 〈[ ], [ ]〉)− 1

= 5− 1

= 4

Therefore, the final result of the calculation will be the sum of the results of the two

subcomputations, which is 9 + 4 = 13. Notice that, although the above calculation

seems relatively lengthy, each operation that takes place at each step is primitive and

can be performed very efficiently. Moreover, it should be noted that one could easily

devise certain simple intensional transformations-optimizations that would enhance

the performance of the produced code.

3.3 An example involving recursion

Consider the following recursive second-order program which calculates a function

factorial:

result
.

= ffac(sq,2)

ffac(h,n)
.

= if (n<=1) then 1 else h(n)*ffac(h,n-1)

sq(a)
.

= a ∗ a
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We perform the first step of the algorithm as before, getting

result
.

= call1
0(ffac)(2)

ffac(n)
.

= if (n<=1) then 1 else h(n)*call1
1(ffac)(n-1)

h
.

= case1(actuals1
0(sq),actuals

1
1(h))

sq(a)
.

= a ∗ a
Adding a variable z to both sides of the definition of h, we get the following

first-order intensional program:

result
.

= call1
0(ffac)(2)

ffac(n)
.

= if (n<=1) then 1 else h(n)*call1
1(ffac)(n-1)

h(z)
.

= case1(actuals1
0(sq)(z),actuals

1
1(h)(z))

sq(a)
.

= a ∗ a
We can now continue the transformation, getting the following zero-order intensional

program:

result
.

= call1
0 · call0

0(ffac)

ffac
.

= if (n<=1) then 1 else call0
0(h)*call

1
1 · call0

1(ffac)

h
.

= case1(actuals1
0 · call0

0(sq),actuals
1
1 · call0

1(h))

sq
.

= a ∗ a
n

.
= case0(actuals0

0 · actuals1
0(2),actuals

0
1 · actuals1

1(n-1))

z
.

= case0(actuals0
0(n),actuals

0
1 · call1

1(z))

a
.

= case0(actuals0
0 · call1

0(z))

The output value of the above program can be easily computed as before (using the

semantic rules of the intensional operators).

4 Mathematical notation

The set of natural numbers is denoted by N. The set of functions from A to B

is denoted by A → B. The result of applying function f to argument a will be

written f(a) or, in special cases fa. Our metalanguage is therefore consistent with

our object language in that it uses conventional mathematical notation for function

application; even in the metalanguage we will strictly avoid “currying”.

We will use a metalinguistics composition operator “·” analogous to that found

in the object language.

For notational simplicity, we usually denote a tuple 〈z0, z1, . . . , zn−1〉 by ~z. The

following generalization of set products is adopted: if I is any set and Ai is a set for

every i ∈ I , then ∏
i∈I
Ai =

{
f : I →⋃

i∈I
Ai | ∀i ∈ I, f(i) ∈ Ai

}
The perturbation of a function with respect to another function is defined as follows.

Definition 4.1

Let f : A→ B and g : S → B, where S ⊆ A. Then, the perturbation f ⊕ g of f with
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respect to g is defined as:

(f ⊕ g)(x) =

{
g(x) if x ∈ S
f(x) otherwise.

Given a function g = {〈x0, b0〉, . . . , 〈xn−1, bn−1〉}, we will often use the alternative

notation f[x0/b0, . . . , xn−1/bn−1] instead of f ⊕ g.

Let L be a given set. We write List(L) for the set of lists of elements of L. The

usual list operations head, tail and cons are adopted. The infix notation “:” will

often be used instead of cons.

In the rest of this paper we assume familiarity with the basic notions of domain

theory and denotational semantics (Stoy, 1977; Tennent, 1991; Gunter, 1992). Given

a domain D, the partial order and the least element of D are represented by vD and

⊥D , respectively. The subscript D will often be omitted when it is obvious. If A, B

are domains, [A→ B] is the set of all continuous functions from A to B.

Finally, we adopt certain typographic conventions which are outlined below.

Elements of the object language, such as for example the code of programs or

function names in such programs, are represented using typewriter font (e.g., f, x, . . .).

Elements of the meta-language are divided in two classes: those that are used to

represent usual mathematical objects such as functions, sets, and so on, and for

which we adopt the italics and the calligraphic fonts (e.g. f, x,E,A, . . .), and those

that are used in order to talk about the syntax of the object language, for which we

adopt the boldface font (e.g., f , x,P,E, . . .).

In recent years, a significant progress has been made in enriching programming

languages with a wide range of data types. Types impose a priori syntactic con-

straints on what constructs of a language can be combined, helping in this way

the programmer to avoid writing meaningless or erroneous code. In this section, we

define the syntax and semantics of the types that are adopted for the purposes of

this paper.

Definition 4.2

The set STyp of simple types and the set Typ of types, are ranged over by σ and τ

respectively and are recursively defined as follows:

σ ::= ι

| (σ0, . . . , σn−1)→ ι

τ ::= σ

| σ → σ

The type ι is a single ground type. Notice that the result component of a member

of STyp is always ground, that is ι. As it will be described shortly, the languages

considered in this paper are subject to this restriction, in the sense that all functions

defined in them should have a type that belongs to STyp. On the other hand, the

languages we are considering will have intensional operators (the operators call

and actuals) with types of the form σ → σ.
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Definition 4.3

The order of a simple type is recursively defined as follows:

order(ι) = 0

order((σ0, . . . , σn−1)→ ι) = 1 + max({order(σi) | 0 6 i 6 n− 1})
Definition 4.4

The denotation of a type with respect to a given domain D is recursively defined by

the function [[ · ]]D (where the subscript D will often be omitted) as follows:

• [[ι]]D = D

• [[(σ0, . . . , σn−1)→ ι]]D = [([[σ0]]D, . . . , [[σn−1]]D)→ [[ι]]D]

• [[σ1 → σ2]]D = [[[σ1]]D → [[σ2]]D]

We assume the existence of a set Σ of constant symbols of various types over

STyp. Elements of Σ are assigned types by a type assignment function θ : Σ→ STyp.

Constants are denoted by c. We also assume the existence of a set Var of variable

symbols of various types over STyp. Elements of Var are assigned types by a

type assignment function π : Var → STyp. Variables are denoted by f , g, x,. . . . In

particular, we use Var0 to denote the variable symbols of type ι. Variable (constant)

symbols of type ι are also called nullary or individual variables (constants). Non-

nullary variables are also termed function variables.

5 The higher-order functional language FL

In this section, we define the syntax and denotational semantics of the typed,

higher-order functional language FL.

Definition 5.1

The syntax of the functional language FL over Σ is recursively defined by the

following rules, in which E,Ei denote expressions, F,Fi denote definitions and P

denotes a program:

E ::= f ∈ Var

| c(E0, . . . ,En−1), c ∈ Σ, n > 0

| f(E0, . . . ,En−1), f ∈ Var , n > 0

F ::= f(x0, . . . , xn−1)
.

= E, f , xi ∈ Var , n > 0

P ::= {F0, . . . ,Fn−1}
Notice that the syntax allows for nullary constants (when n = 0), which in this

case will be written as c() or just c. The syntax also allows for nullary variables

as well as for nullary variable definitions. In both of these cases, the empty pair of

parentheses that follow the variable symbol will often be omitted. Notice also that

the syntax of FL presented above will be further restricted by the well-typing rules

that are introduced later on in this section.

Given a definition f(x0, . . . , xn−1)
.

= E, the variables xi are the formal parameters

or formals of f, and E is the defining expression or the body of f.

https://doi.org/10.1017/S0956796899003445 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003445


Higher-order functional languages and intensional logic 539

Definition 5.2

Let P = {F0, . . . ,Fn−1} be a program. Then the following assumptions are adopted:

1. Exactly one of the F0, . . . ,Fn−1 defines the individual variable result, which

does not appear in the body of any of the definitions in P.

2. Every variable symbol in P is defined or appears as a formal parameter in a

function definition, exactly once in the whole program.

3. The formal parameters of a function definition in P can only appear in the

body of that definition.

4. The only variables that can appear in P are the ones defined in P and their

formal parameters.

The set of variables defined in a program P is denoted by func(P). The type-

checking rules for the language are given as natural deduction rules with sequents of

the form E : σ. The sequent E : σ asserts that E is a well-formed expression of type

σ and that the identifiers and constants that are used in E have the types assigned

to them by π and θ respectively. Notice that the following definition reflects the two

restrictions mentioned in the beginning of subsection 3.1 (i.e. that function names

can be passed as parameters but not returned as results, and that operation symbols

are first-order).

Definition 5.3

The set of well-typed expressions is recursively defined as follows:

π(f ) = σ

f : σ

(θ(c) = (ι, . . . , ι)→ ι) ∧ (∀i ∈ {0, . . . , n− 1} (Ei : ι))

c(E0, . . . ,En−1) : ι

(f : (σ0, . . . , σn−1)→ ι) ∧ (∀i ∈ {0, . . . , n− 1} (Ei : σi))

f(E0, . . . ,En−1) : ι

Definition 5.4

A definition f(x0, . . . , xn−1)
.

= E with f : (σ0, . . . , σn−1)→ ι is well-typed if E : ι and

for all i ∈ {0, . . . , n− 1}, xi : σi.

Definition 5.5

A program {F0, . . . ,Fn−1} is well-typed if F0, . . . ,Fn−1 are well-typed definitions.

In the following, we will often talk about zero-order programs, first-order pro-

grams, and so on. The following definition formalizes the above notions:

Definition 5.6

Let P be an FL program. The order of P is defined as:

Order(P) = max({order(π(f )) | f ∈ func(P)})
Let D be a given domain. The semantics of constant symbols of FL with respect

to D are specified by a given interpretation function C, which assigns to every

constant of type σ, a value in [[σ]]D . Let Expσ be the set of all expressions E
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of FL such that E : σ. Let Envπ be the set of π-compatible environments, i.e.

those environments which for all f ∈ Var , u(f ) ∈ [[π(f )]]D . This set is defined by

Envπ =
∏

f∈Var [[π(f )]]D . Then, the semantics of FL are defined using valuation

functions [[ · ]]σD : Expσ → [Envπ → [[σ]]D], (where the subscripts and superscripts D,

σ and π will be omitted when they are obvious from context).

Definition 5.7

The semantics of expressions of FL with respect to u ∈ Env, are recursively defined

as follows:

[[f ]](u) = u(f )

[[c(E0, . . . ,En−1)]](u) = C(c)([[E0]](u), . . . , [[En−1]](u))

[[f(E0, . . . ,En−1)]](u) = u(f )([[E0]](u), . . . , [[En−1]](u))

It should be noted that [[ · ]] as defined above is actually overloaded. A more

accurate definition would involve the use of the [[ · ]]σD ’s, used for different expression

types. For clarity reasons we have avoided making the notation more complicated.

Theorem 5.1

(Tennent, 1991, p. 97) For all expressions E, [[E]] is continuous and therefore

monotonic.

Definition 5.8

The semantics of the program P = {F0, . . . ,Fn−1} of FL is defined as ũ(result),

where ũ is the least environment such that for every f(x0, . . . , xn−1)
.

= E in P with

f : (σ0, . . . , σn−1)→ ι, and for all d0 ∈ [[σ0]]D, . . . , dn−1 ∈ [[σn−1]]D ,

ũ(f )(d0, . . . , dn−1) = [[E]](ũ[x0/d0, . . . , xn−1/dn−1]).

The above definition does not specify how the least environment ũ can be con-

structed. The following theorem states that ũ is the least upper bound of a chain of

environments, which can be thought of as successive approximations to ũ.

Theorem 5.2

(Tennent, 1991, p. 96) Let P and ũ be as in Definition 5.8. Then, ũ is the least upper

bound of the environments ũk which are defined as follows:

1. For every f ∈ Var with f 6∈ func(P), ũk(f ) = ⊥, for all k ∈ N.

2. For every f(x0, . . . , xn−1)
.

= E in P, with f : (σ0, . . . , σn−1) → ι, and for all

d0 ∈ [[σ0]]D, . . . , dn−1 ∈ [[σn−1]]D ,

ũ0(f )(d0, . . . , dn−1) = ⊥
ũk+1(f )(d0, . . . , dn−1) = [[E]](ũk[x0/d0, . . . , xn−1/dn−1])

Moreover, for every k ∈ N, ũk(f ) v ũk+1(f ).

The following lemma is a direct consequence of the above theorem:

Lemma 5.1

Let P and ũ be as in Definition 5.8. Then, for every f(x0, . . . , xn−1)
.

= E in P with

f : (σ0, . . . , σn−1)→ ι,

ũk(f )(d0, . . . , dn−1) v [[E]](ũk[x0/d0, . . . , xn−1/dn−1])
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6 The higher-order intensional languages IL and NVIL

In this section we define the syntax of the intensional languages IL and NVIL that

are used in the transformation algorithm (IL stands for intensional language and

NVIL for nullary variable intensional language). The language IL is a higher-order

intensional one; programs that appear in intermediate steps of the transformation

belong to IL. On the other hand, the final zero-order programs that result from

the transformation belong to the intensional language NVIL, which is simpler in

structure than IL (and is introduced independently).

The difference between IL and FL is the presence of intensional operators. Due

to the nature of the transformation, intensional operators in programs of IL appear

in a specific way. Consider, for example, the following program obtained after the

first step in the transformation algorithm (section 3):

result
.

= call1
0(apply)(8)+call

1
1(apply)(5)

apply(x)
.

= f(x)

inc(y)
.

= y+1

dec(a)
.

= a-1

f(z)
.

= case1(actuals1
0(inc)(z),actuals

1
1(dec)(z))

If we examine the function calls in the program, we realize that some of them are

of the form q(f)(E0, . . . ,En−1). In general, function calls that appear in intermediate

programs of the transformation will have the form Q(f)(E0, . . . ,En−1), where Q is

a (possibly empty) sequence of the syntactic representations of intensional operators

composed with each other.

The final (zero-order) programs that constitute the output of the transformation,

have a simpler syntax than the programs that appear in the intermediate steps of the

algorithm. Moreover, in these output programs, intensional operators can be applied

not only to function variables but also to other expressions, something that does not

happen in the intermediate programs of the transformation (as an example, consider

the expression actuals0
0 · actuals1

0(8) in the final program of the first example in

section 3). For these reasons, we independently define below the syntax of the two

languages IL and NVIL.

The following definition formalizes the syntax of sequences of the syntactic repre-

sentations of intensional operators. Notice that in the following, ε denotes the empty

sequence.

Definition 6.1

The set ISeq of sequences of the syntactic representations of intensional operators

is ranged over by Q and is recursively defined as follows:

Q ::= ε

| callmi , i, m > 0

| actualsmi , i, m > 0

| callmi · Q, i, m > 0,Q 6= ε

| actualsmi · Q, i, m > 0,Q 6= ε

Notice that the elements of the set ISeq are syntactic objects: they are sequences
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of the textual representations of intensional operators (i.e. sequences of elements of

the object language) syntactically composed with each other. To every Q ∈ ISeq
there corresponds a function Q which is the composition of the meanings of the

elements of the sequence (this will be further discussed in section 6.1).

Taking into consideration the above remarks, we have the following definition

concerning the syntax of the intensional language IL:

Definition 6.2

The syntax of the intensional language IL is recursively defined by the following

rules, in which E,Ei denote expressions, B denotes a body expression of a definition,

F,Fi denote definitions and P denotes a program:

E ::= f ∈ Var

| c(E0, . . . ,En−1), c ∈ Σ, n > 0

| Q(f)(E0, . . . ,En−1), f ∈ Var , Q ∈ ISeq, n > 0

B ::= E

| casem(E0, . . . ,Er−1), r, m > 0

F ::= f(x0, . . . , xn−1)
.

= B, f , xi ∈ Var , n > 0

P ::= {F0, . . . ,Fn−1}
Notice that ordinary function calls are allowed by the above syntax when Q is

equal to the empty sequence. In such a case, the parentheses around f will be omitted.

The notions of well-typed definitions, well-typed programs and order of a program,

are identical to the ones introduced in Definitions 5.4, 5.5 and 5.6. Moreover, the

same assumptions as in Definition 5.2 are adopted for IL programs.

The final zero-order programs that result from the transformation, belong to the

language NVIL. The syntax of NVIL is defined below:

Definition 6.3

The syntax of the intensional language NVIL is recursively defined by the following

rules, in which E,Ei denote expressions, B denotes a body expression, F,Fi denote

definitions and P denotes a program:

E ::= f ∈ Var0

| c(E0, . . . ,En−1), c ∈ Σ, n > 0

| Q(E), Q ∈ ISeq
B ::= E

| casem(E0, . . . ,Er−1), r, m > 0

F ::= f
.

= B, f ∈ Var0

P ::= {F0, . . . ,Fn−1}
Notice that the language NVIL is similar to the one defined in Rondogiannis and

Wadge (1997), the only difference being that the operators are now multidimensional.

6.1 The Intensional Languages IL and NVIL: Synchronic Semantics

In this section we define the denotational semantics of the intensional languages

IL and NVIL . The set of possible worlds in both languages is the set of infinite
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sequences of lists of natural numbers, that is N → List(N). Notice that, as we

discussed in section 3, for the transformation of an M-order functional program,

contexts need only be M-sequences of lists of natural numbers. However, we would

like the semantics to be defined in the most general way and be applicable to

all programs no matter what their order is. Moreover, there is nothing to be lost

by assuming that contexts are infinite sequences of lists, because in any particular

translation only a finite number of the lists will be used. Therefore:

Definition 6.4

The set W of possible worlds of IL and NVIL is the set N → List(N).

Given the above set W of possible worlds, we can define the set of possible

denotations of a type σ, as follows:

Definition 6.5

Let D be a domain. The set of possible denotations of σ ∈ STyp with respect to W

and D is defined as

[[σ]]∗D = W → [[σ]]D

In other words, in IL the elements of type σ are W -indexed families of “conven-

tional” type σ functions over D; they are not conventional type σ functions over

W → D (a much more complex domain). In defining the semantics of IL and NVIL,

we follow the approach that has been used by Montague for giving semantics to

higher-order intensional logic (Dowty et al., 1981; Gallin, 1975). As this approach

differs from the standard techniques used for assigning denotational semantics to

functional languages, we will refer to it as the synchronic interpretation for reasons

to be given shortly.

Let D be a given domain. Then, the semantics of constant symbols of IL (and

NVIL) with respect to D, are given by an interpretation function C∗, which assigns

to every constant of type σ a function in [[σ]]∗D . As the languages IL and NVIL will

be used in the transformation process of FL programs, the function C∗ is defined in

terms of the interpretation function C for FL. More specifically:

Definition 6.6

For every c ∈ Σ and for every w ∈W , C∗(c)(w) = C(c).

The semantics of the intensional operators of the languages IL and NVIL are

given by the following definition:

Definition 6.7

Let w ∈ (N → List(N)) and a, a0, . . . , an−1 ∈ [[σ]]∗. The semantics of the intensional

operators call, actuals and case are defined as follows:

callmi (a)(w) = a(w[m/(i : wm)])

actualsmi (a)(w) =

{
a(w[m/tail(wm)]) if head(wm) = i

undefined otherwise

casem(a0, . . . , an−1)(w) = ahead(wm)(w)
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Given a sequence Q ∈ ISeq, we can define the meaning of Q as the composition

of the meanings of the intensional operators that constitute Q. We will denote by

Q the meaning of the sequence Q. Similarly, we will often write q when referring to

the syntactic representation of a single intensional operator, and q for the meaning

of q.

We can now proceed to define the semantics of expressions of IL. Let Expτ
be the set of all expressions B of IL such that B : σ. Let Env∗π be the set of

π-compatible synchronic environments defined by Env∗π =
∏

f∈Var [[π(f )]]∗D . Then,

the synchronic semantics of the language IL is defined using valuation functions

[[ · ]]∗ : Expσ → [Env∗π → [[σ]]∗D], as follows:

Definition 6.8

The synchronic interpretation of expressions of IL with respect to u ∈ Env∗π , is

recursively defined for every w ∈W , as follows:

[[f ]]∗(u)(w) = u(f )(w)

[[c(E0, . . . ,En−1)]]∗(u)(w) = C∗(c)(w)([[E0]]∗(u)(w), . . . , [[En−1]]∗(u)(w))

[[Q(f)(E0, . . . ,En−1)]]∗(u)(w) = Q(u(f ))(w)([[E0]]∗(u)(w), . . . , [[En−1]]∗(u)(w))

[[casem(E0, . . . ,En−1)]]∗(u)(w) = casem([[E0]]∗(u), . . . , [[En−1]]∗(u))(w)

It can be seen from the above definition that the semantic equation for applica-

tion is non-standard; it involves an individual “sampling” of the meanings of the

subexpressions under the current context w.

The basic principle is that the value of (say) f(E) at world w is the value of f at

world w applied to the value of E at the same world w - application is defined in a

pointwise way. If we think of w as some (very) general “timepoint”, we see that the

value of f(E) at “time” w depends upon the value of E at the same time w. Hence

the name “synchronic” adopted for this interpretation.

In the case of NVIL, we also have the following semantic equation:

[[Q(E)]]∗(u)(w) = Q([[E]]∗(u))(w)

Before we introduce the semantics of programs, the following definition is neces-

sary:

Definition 6.9

Let d ∈ [[σ]]D . Then, d∞ is that function on W whose value at every w ∈W is equal

to d.

We can now introduce the semantics of IL. Notice that the following definitions

and theorems also apply to NVIL programs (the difference being that NVIL

programs allow only nullary variable definitions).

Definition 6.10

The synchronic semantics of a program P = {F0, . . . ,Fn−1} of IL (or NVIL) is

defined as ũ(result), where ũ is the least environment such that for every definition

f(x0, . . . , xn−1)
.

= B in P with f : (σ0, . . . , σn−1) → ι, for all d0 ∈ [[σ0]]D, . . . , dn−1 ∈
[[σn−1]]D , and all w ∈W ,

ũ(f )(w)(d0, . . . , dn−1) = [[B]]∗(ũ[x0/d
∞
0 , . . . , xn−1/d

∞
n−1])(w).
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The above definition does not specify how the least environment ũ can be con-

structed. The following theorem states that ũ is the least upper bound of a chain of

environments which can be thought as successive approximations to ũ.

Theorem 6.1

Let P and ũ be as in Definition 6.10. Then, ũ is the least upper bound of the

environments ũk , k ∈ N, which are defined as follows:

1. For every f ∈ Var with f 6∈ func(P), for all w ∈ W , ũk(f )(w) = ⊥, for all

k ∈ N.

2. For every f(x0, . . . , xn−1)
.

= B in P, with f : (σ0, . . . , σn−1) → ι, for all d0 ∈
[[σ0]]D, . . . , dn−1 ∈ [[σn−1]]D , and all w ∈W ,

ũ0(f )(w)(d0, . . . , dn−1) = ⊥
ũk+1(f )(w)(d0, . . . , dn−1) = [[B]]∗(ũk[x0/d

∞
0 , . . . , xn−1/d

∞
n−1])(w)

Moreover, for every k ∈ N, ũk(f ) v ũk+1(f ).

Proof

Analogous to the proof of Theorem 5.2. q

The following lemma is a direct consequence of the above theorem:

Lemma 6.1

Let P and ũ be as in Definition 6.10. Then, for every f(x0, . . . , xn−1)
.

= B in P with

f : (σ0, . . . , σn−1)→ ι, for all d0 ∈ [[σ0]]D, . . . , dn−1 ∈ [[σn−1]]D and for all w ∈W ,

ũk(f )(w)(d0, . . . , dn−1) v [[B]]∗(ũk[x0/d
∞
0 , . . . , xn−1/d

∞
n−1])(w)

The following theorem will also be used in subsequent sections:

Theorem 6.2

For all expressions B ∈ Expσ , [[B]]∗ is monotonic and continuous. Moreover, when

σ 6= ι, [[B]]∗(u)(w) is monotonic and continuous, for all u ∈ Env∗π and w ∈W .

6.2 Properties of the synchronic interpretation

In this subsection we investigate certain of the properties of the synchronic interpre-

tation. Initially, we consider those programs of IL that do not contain any of the

operators call, actuals and case. Notice that programs of this subset are actually

FL programs, for which we have already defined a standard denotational interpreta-

tion (see Definition 5.8). The following theorem establishes the relationship between

the standard and the synchronic semantics for programs of the above subset:

Theorem 6.3

Let P be an IL program that does not contain the operators call, actuals and

case, and let u and û be the least environments that satisfy the definitions in P

under the standard and the synchronic interpretations respectively. Then, for every

w ∈W , [[P]]∗(û)(w) = [[P]](u).
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Proof

(Outline) It suffices to show that for every definition f(x0, . . . , xn−1)
.

= Bf in P, with

x0 : σ0, . . . , xn−1 : σn−1,

û(f )(w)(d0, . . . , dn−1) = u(f )(d0, . . . , dn−1)

for all d0 ∈ [[σ0]]D, . . . , dn−1 ∈ [[σn−1]]D , and all w ∈ W . This can be shown by a

double induction: an outer computational induction on the approximations of û

and u, and an inner structural one on the body of f. q

Consider now the programs ofNVIL. For these programs, a standard denotational

interpretation [[ · ]](W→D) can easily be defined, as this was done by Rondogiannis

and Wadge (1997, p. 85). The following theorem shows that the standard and the

synchronic interpretations coincide in the case of NVIL.

Theorem 6.4

Let P be an NVIL program and let u and û be the least environments that satisfy the

definitions in P under the standard and the synchronic interpretations respectively.

Then, [[P]]∗(û) = [[P]](W→D)(u).

Proof

(Outline) It suffices to show that for every (nullary) function symbol f that has a

definition in P, û(f ) = u(f ). This follows directly with a proof procedure similar to

the one outlined for Theorem 6.3. q

The above two theorems suggest that, to show the correctness of the transfor-

mation algorithm, one can simply rely on the synchronic interpretation (see also

Theorem 8.5 later on).

7 Formal definition of the transformation algorithm

The purpose of this section is to formally define the transformation algorithm from

higher-order functional programs to intensional programs of nullary variables. The

algorithm consists of a number of steps; at each step, the order of the input program

is reduced by one. The transformation ends when a zero-order intensional program

is obtained. More specifically, the input to the algorithm is an M-order FL program

(M > 0). After the first step of the algorithm, an (M − 1)-order IL program is

obtained. After M steps of the algorithm have taken place, a zero-order NVIL

program has resulted. This is the output of the transformation.

Therefore, it suffices to just describe a single step of the algorithm, that is, the

procedure required to transform an m-order intensional program (1 6 m 6M) into

an (m− 1)-order one. Notice that this procedure also applies for the first step in the

transformation, because we can consider the source FL program as an IL program

that happens not to contain any intensional operators.

A step of the algorithm can be intuitively described as follows: given an m-order

input program, we start by considering the m-order functions that are defined in it.
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The goal is to lower the order of these functions by eliminating their (m− 1)-order

formal parameters, appropriately processing at the same time all the calls to each

such f in the program.

For each formal removed from the formal parameter list of f, a new definition

is created and added to the program. Each such definition gathers together all the

actual parameters that correspond to the particular formal and that appear in calls

to f in the program. This “gathering” is performed with the use of the operators

case and actuals.

In this way, the input m-order program has been transformed into an (m−1)-order

one. The procedure that we described above can be used repeatedly, until all formals

have been eliminated from all functions in the program. The final result will be a

program that consists of a set of intensional nullary-variable definitions.

7.1 Preliminary definitions

In this subsection we provide certain preliminary definitions that are helpful in

formally defining the transformation algorithm.

Definition 7.1

Let q be the syntactic representation of an intensional operator. The inverse of q is

denoted by q−1 and is defined as follows:

q−1 =

{
callmi if q = actualsmi
actualsmi if q = callmi

Given q, we will often write q for the meaning of q and q−1 for the meaning of q−1.

It can easily be shown that whenever the composition of q and q−1 is defined (in

either order), then it is equal to the identity function.

Definition 7.2

Let Q = q0 · q1 · . . . · qr−1 ∈ ISeq. Then, the inverse sequence of Q is Q−1 =

q−1
r−1 · . . . · q−1

1 · q−1
0 .

Let P be a m-order program. In the following, we assume an ordering of the

definitions in P (for example, a lexicographic one). This will allow us to talk

about “order of textual appearance” of function calls. Let Sub(P) be the set of

subexpressions of P. We adopt the following conventions:

• Let f be an m-order function defined in P. The set of calls to the function f in

P is defined as:

calls(P, f ) = {Q(f)(E0, . . . ,En−1) ∈ Sub(P)}
• Let f be an m-order function defined in P. Let C0, . . . ,Cr−1 be the calls to f

listed in the order of their textual appearance in P. The function label assigns

natural number labels to the calls of f in P in such a way that different calls

receive different labels:

label(P, f ,Ci) = min{j|Ci = Cj}
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In this way, function calls are numbered in their order of textual appearance

in P, except for function calls that have more than one occurrences in P which

receive the label of their first appearance4.

• Let f be a function defined in P. The list of positions in the formal parameter

list of f of those formals that have order less than (m − 1), is denoted by

low(f , m). The list is sorted in ascending order. For example, if only the zeroth

and third argument of f are less than (m− 1)-order, then low(f , m) = [0, 3].

• Let f be a function defined in P. Let x0, . . . , xn−1 be the formal parameters

of f. Then, the set of the formal parameters of f that have order equal to

(m− 1), is represented by high(f , m). For example, if only the first and fourth

arguments of f are (m − 1)-order, then high(f , m) = {x1, x4}. Notice that high

has a different result type than the function low defined before.

• Let x ∈ Vars(P) with x : (σ0, . . . , σk−1) → ι. Then, Form(P, x) is a list of k

variable symbols, which satisfies the following:

— No variable in the list appears in program P.

— Given y 6= x, Form(P, x) and Form(P, y) are disjoint.

Intuitively, these are “fresh” variables that will be attached to both sides of

new definitions that result during the execution of the algorithm.

Based on the above definitions, we can now present the transformation algorithm,

on a step-by-step form.

7.2 Processing expressions

We start by defining the function that processes the expressions of the source

program. More specifically, the elimination of the (m − 1)-order arguments from

function calls in program P, is accomplished by the EP,m function defined below:

E = f

EP,m(E) = f

E = c(E0, . . . ,En−1)

EP,m(E) = c(EP,m(E0), . . . ,EP,m(En−1))

E = Q(f)(E0, . . . ,En−1), order(f ) = m, low(f , m) = [i0, . . . , ik−1], label(P, f ,E) = i

EP,m(E) = Q · callm−1
i (f)(EP,m(Ei0 ), . . . ,EP,m(Eik−1

))

E = Q(f)(E0, . . . ,En−1), order(f ) < m

EP,m(E) = Q(f)(EP,m(E0), . . . ,EP,m(En−1))

The first rule is for the case of (possibly higher-order) variables that are encoun-

tered during the transformation. In this case, the expression is not affected by the

transformation algorithm. The second rule applies in the case of constant symbols;

4 This is a slightly different numbering scheme than the one given in the informal presentation of the
algorithm in section 3. However, both schemes work equally well in practice.
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then, the transformation proceeds with the arguments of the constant. The third

rule is for the case where a function call is encountered, and the corresponding

function is m-order. The arguments that cause the function to be m-order (that is

the (m − 1)-order ones) are removed, and the call is prefixed by the appropriate

intensional operator. The fourth rule applies when the function under consideration

is not m-order. In this case, the translation proceeds with the actual parameters of

the function call without eliminating any of them.

7.3 Eliminating the highest-order formals

The function Dm is used to process the definitions in P, removing their (m−1)-order

formal parameters. Notice that at the same time, the body of each definition is

processed using the function EP,m. The definition of Dm is given below:

Dm(P) =
⋃
F∈P

D∗m(F)

F = f(x0, . . . , xn−1)
.

= E, low(f , m) = [i0, . . . , ik−1]

D∗m(F) = {f(xi0 , . . . , xik−1
)
.

=EP,m(E)}

F = f(x0, . . . , xn−1)
.

= casem(E0, . . . ,Er−1), low(f , m) = [i0, . . . , ik−1]

D∗m(F) = {f(xi0 , . . . , xik−1
)
.

=casem(EP,m(E0), . . . ,EP,m(Er−1))}
Notice that we have supplied two rules, one for the case where the body starts with

a case operator and one for the case where the body is an ordinary expression.

7.4 Creating new definitions

In this part of the transformation algorithm, a new definition is created for each

(m− 1)-order formal parameter that existed in program P. Before formally defining

the function Am that performs exactly this task, we need to define certain auxiliary

functions. Let f be an m-order function defined in P, and let C0, . . . ,Cr−1 be the dif-

ferent function calls to f in P, listed according to their labels (that is, label(P, f ,C0) =

0, . . . , label(P, f ,Cr−1) = r − 1). Let x be the j’th formal parameter of f.

• Let Ci = Q(f)(E0, . . . ,En−1), 0 6 i 6 r − 1, be one of the calls to f. The

expression inv(Ci, x) is defined as follows (recall that x is the j’th formal

parameter of f, 0 6 j 6 n− 1):

inv(Ci, x) = actualsm−1
i ·Q−1(EP,m(Ej))

The above expression will be used by Am for creating the body of the new

definitions.

• The function params(P, f , x) is defined as follows:

params(P, f , x) = [inv(C0, x), . . . , inv(Cr−1, x)]

In other words, the function params gathers together all the inv expressions

that correspond to the formal parameter x of f.
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The functionAm creates a new definition for each (m−1)-order formal parameter

in program P. If the formal parameter x of f is (m−1)-order, then the functionAf ,x,m

returns a set that contains a new definition for this formal. The formal definition of

Am is given below:

Am(P) =
⋃

f∈func(P)

⋃
x∈high(f ,m)

Af ,x,m(P)

params(P, f , x) = [A0, . . . ,Ar−1], Form(P, x) =~z

Af ,x,m(P) = {x(~z) .
= casem−1(A0(~z), . . . ,Ar−1(~z))}

7.5 The overall transformation

The translation of an m-order IL program into an (m− 1)-order one, is performed

by the function Stepm shown below:

Stepm(P) = Dm(P) ∪Am(P)

Finally, given an M-order FL program P, the overall transformation of P into an

intensional program of nullary variables, is described by the function TransM , given

below:

TransM(P) = Step1(· · · (StepM(P)) · · ·)
This completes the formal description of the transformation. It can easily be ver-

ified that the programs that result at each intermediate step of the algorithm are

syntactically valid IL programs, while the final program is a valid NVIL one.

8 Correctness proof of the transformation

In this section we present in a rigorous way the correctness proof of the intension-

alization technique for higher-order programs. In the following, we first make an

assumption that helps us simplify the notation in the subsequent presentation. Then,

the correctness proof of the transformation algorithm is presented in detail.

As discussed in the previous sections, let PM , M > 0, be the M-order source

functional program on which the transformation algorithm is applied. The programs

that result at successive stages of the algorithm are PM−1, . . . ,P0.

To simplify the notation, in the following we assume that all the functions defined

in PM , have their highest-order arguments first, i.e., if f(x0, . . . , xn−1)
.

= Bf is a

function defined in PM , then order(x0) > order(x1) > · · · > order(xn−1). This helps

us avoid notational complexities that would arise if we assumed that the placement of

the formals is arbitrary. Notice that this property is preserved by the transformation,

i.e. if it holds for PM it will also hold for all Pm, 0 6 m 6M.

It can easily be checked that the above assumption does not affect the generality

of the proof. Lifting the assumption does not alter the logic of the proof, but simply

adds a level of notational complexity.
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The following definition is used in the following discussion:

Definition 8.1

Let w ∈W . The function ⇓: (W, ISeq)→W is recursively defined as follows:

(w ⇓ ε) = w

(w ⇓ callmi ) = w[m/(i : wm)]

(w ⇓ actualsmi ) =

{
w[m/tail(wm)] if head(wm) = i

undefined otherwise

(w ⇓ (q0 · q1 · . . . · qn−1)) = (w ⇓ q0) ⇓ (q1 · . . . · qn−1)

In other words, ⇓ performs the context switch corresponding to the composition

of the meanings of the operators in the given sequence.

The following lemma can be easily shown:

Lemma 8.1

Let w ∈W , Q ∈ ISeq and a ∈ [[σ]]∗. Then:

(w ⇓ Q) ⇓ Q−1 = w

Q(a)w = a(w ⇓ Q)

whenever (w ⇓ Q) is defined.

Consider now the program Pm (0 < m 6 M). The following theorem establishes

a relationship between the meaning of functions defined in Pm and the meaning of

functions in Pm−1.

Theorem 8.1

Let u and û be the least environments that satisfy under the synchronic interpretation

the definitions in Pm and Pm−1, respectively. Then:

• For every definition (f(x0, . . . , xn−1)
.

= Bf ) in Pm, if x0 : σ0, . . . , xn−1 : σn−1 and

there exists 0 6 l 6 n−1 such that order(σ0) = (m−1), . . . , order(σl−1) = (m−1)

and order(σl) < (m− 1), . . . , order(σn−1) < (m− 1), then for every function call

E = Q(f)(E0, . . . ,En−1) to f in Pm, for all dl ∈ [[σl]], . . . , dn−1 ∈ [[σn−1]] and for

all w ∈W ,

Q · callm−1
i (û(f ))(w)(dl , . . . , dn−1) v

Q(u(f ))(w)([[EP,m(E0)]]∗(û)(w), . . . , [[EP,m(El−1)]]∗(û)(w), dl , . . . , dn−1)

where i = label(P, f ,E).

• For every definition (f(x0, . . . , xn−1)
.

= Bf ) in Pm, if x0 : σ0, . . . , xn−1 : σn−1 and

order(σ0) < (m− 1), . . . , order(σn−1) < (m− 1), then for all d0 ∈ [[σ0]], . . . , dn−1 ∈
[[σn−1]] and for all w ∈W ,

û(f )(w)(d0, . . . , dn−1) v u(f )(w)(d0, . . . , dn−1)

Proof

The proof is by a lengthy but in general straightforward computational induction

over the stages in constructing û (but not u). More specifically, it suffices to show
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that the above statements hold for all approximations ûk , k ∈ N, of the environment

û. In other words, it suffices to show the following two statements:

• For every definition (f(x0, . . . , xn−1)
.

= Bf ) in Pm, if x0 : σ0, . . . , xn−1 : σn−1 and

there exists 0 6 l 6 n−1 such that order(σ0) = (m−1), . . . , order(σl−1) = (m−1)

and order(σl) < (m− 1), . . . , order(σn−1) < (m− 1), then for every function call

E = Q(f)(E0, . . . ,En−1) to f in Pm, for all dl ∈ [[σl]], . . . , dn−1 ∈ [[σn−1]] and for

all w ∈W ,

Q · callm−1
i (ûk(f ))(w)(dl , . . . , dn−1) v

Q(u(f ))(w)([[EP,m(E0)]]∗(ûk)(w), . . . , [[EP,m(El−1)]]∗(ûk)(w), dl , . . . , dn−1)

where i = label(P, f ,E).

• For every definition (f(x0, . . . , xn−1)
.

= Bf ) in Pm, if x0 : σ0, . . . , xn−1 : σn−1 and

order(σ0) < (m− 1), . . . , order(σn−1) < (m− 1), then for all d0 ∈ [[σ0]], . . . , dn−1 ∈
[[σn−1]] and for all w ∈W ,

ûk(f )(w)(d0, . . . , dn−1) v u(f )(w)(d0, . . . , dn−1)

We demonstrate the above using induction on k. For k = 0, that is for û0, the

above trivially hold because the left hand side of each statement is equal to the

bottom value. Assume that the claim holds for k > 0. We show the claim for k + 1.

That is, we show that5:

• For every definition (f(x0, . . . , xn−1)
.

= Bf ) in Pm, if x0 : σ0, . . . , xn−1 : σn−1 and

there exists 0 6 l 6 n−1 such that order(σ0) = (m−1), . . . , order(σl−1) = (m−1)

and order(σl) < (m− 1), . . . , order(σn−1) < (m− 1), then for every function call

E = Q(f)(E0, . . . ,En−1) to f in Pm, for all dl ∈ [[σl]], . . . , dn−1 ∈ [[σn−1]] and for

all w ∈W ,

Q · callm−1
i (ûk+1(f ))(w)(dl , . . . , dn−1) v

Q(u(f ))(w)([[EP,m(E0)]]∗(ûk+1)(w), . . . , [[EP,m(El−1)]]∗(ûk+1)(w), dl , . . . , dn−1)

where i = label(P, f ,E).

• For every definition (f(x0, . . . , xn−1)
.

= Bf ) in Pm, if x0 : σ0, . . . , xn−1 : σn−1 and

order(σ0) < (m− 1), . . . , order(σn−1) < (m− 1), then for all d0 ∈ [[σ0]], . . . , dn−1 ∈
[[σn−1]] and for all w ∈W ,

ûk+1(f )(w)(d0, . . . , dn−1) v u(f )(w)(d0, . . . , dn−1)

Using the semantics of callm−1
i and Q, the above two statements can be written as

follows:

• For every definition (f(x0, . . . , xn−1)
.

= Bf ) in Pm, if x0 : σ0, . . . , xn−1 : σn−1 and

there exists 0 6 l 6 n−1 such that order(σ0) = (m−1), . . . , order(σl−1) = (m−1)

5 As suggested by one of the reviewers, in the following steps of the proof we underline the differences
that appear from one step to the next one. This is intended to save the reader from carefully checking
to see exactly what has been changed.
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and order(σl) < (m− 1), . . . , order(σn−1) < (m− 1), then for every function call

E = Q(f)(E0, . . . ,En−1) to f in Pm, for all dl ∈ [[σl]], . . . , dn−1 ∈ [[σn−1]] and for

all w ∈W ,

ûk+1(f )(w ⇓ (Q · callm−1
i ))(dl , . . . , dn−1) v

u(f )(w ⇓ Q)([[EP,m(E0)]]∗(ûk+1)(w), . . . , [[EP,m(El−1)]]∗(ûk+1)(w), dl , . . . , dn−1)

where i = label(P, f ,E).

• For every definition (f(x0, . . . , xn−1)
.

= Bf ) in Pm, if x0 : σ0, . . . , xn−1 : σn−1 and

order(σ0) < (m− 1), . . . , order(σn−1) < (m− 1), then for all d0 ∈ [[σ0]], . . . , dn−1 ∈
[[σn−1]] and for all w ∈W ,

ûk+1(f )(w)(d0, . . . , dn−1) v u(f )(w)(d0, . . . , dn−1)

Recall now that f(x0, . . . , xn−1)
.

= Bf in Pm and also f(xl , . . . , xn−1)
.

= EP,m(Bf )

in Pm−1. The idea is to get equivalent statements that involve the body of the

function f. More specifically, we use Definition 6.10 to replace the right hand sides

of the statements, and Theorem 6.1 to replace the left hand sides of the statements

(notice that in the statements that we obtain below, for brevity reasons we use the

perturbation notation ⊕ instead of the [· · ·] notation that is used in Definition 6.10

and Theorem 6.1).

Therefore, it suffices to show that:

• For every definition (f(x0, . . . , xn−1)
.

= Bf ) in Pm, if x0 : σ0, . . . , xn−1 : σn−1 and

there exists 0 6 l 6 n−1 such that order(σ0) = (m−1), . . . , order(σl−1) = (m−1)

and order(σl) < (m− 1), . . . , order(σn−1) < (m− 1), then for every function call

E = Q(f)(E0, . . . ,En−1) to f in Pm, for all dl ∈ [[σl]], . . . , dn−1 ∈ [[σn−1]] and for

all w ∈W ,

[[EP,m(Bf )]]
∗(ûk ⊕ σ)(w ⇓ (Q · callm−1

i )) v [[Bf ]]
∗(u⊕ σ ⊕ ρ̂k+1)(w ⇓ Q)

where σ(xj) = d∞j , l 6 j 6 n− 1, and ρ̂k+1(xj) = ([[EP,m(Ej)]]
∗(ûk+1)(w))∞,

0 6 j 6 l − 1.

• For every definition (f(x0, . . . , xn−1)
.

= Bf ) in Pm, if x0 : σ0, . . . , xn−1 : σn−1 and

order(σ0) < (m− 1), . . . , order(σn−1) < (m− 1), then for all d0 ∈ [[σ0]], . . . , dn−1 ∈
[[σn−1]] and for all w ∈W ,

[[EP,m(Bf )]]
∗(ûk ⊕ σ)(w) v [[Bf ]]

∗(u⊕ σ)(w)

where σ(xj) = d∞j , 0 6 j 6 n− 1.

In the following, we give the proof for the first of the above statements. The

proof for the second statement is simpler, and can be given in a similar way. Notice

that the proof of each of the above statements at some point uses the induction

hypothesis of the other statement.

To prove the first of the statements, we consider any function f in the program

that satisfies the requirements set by the statement. We proceed by distinguishing
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two cases, regarding whether the definition of f starts with a case operator or not.

We will only show the proof for the latter case (the proof for the former one is

similar).

The proof can be established by structural induction on the body of the function,

that is by showing that for every subexpression S of Bf :

[[EP,m(S)]]∗(ûk ⊕ σ)(w ⇓ (Q · callm−1
i )) v [[S]]∗(u⊕ σ ⊕ ρ̂k+1)(w ⇓ Q)

In the following, for simplicity we denote the sequence Q · callm−1
i by Q̂.

Structural induction basis

Case 1: S is equal to a variable xj ∈ {x0, . . . , xn−1}, and xj is (m− 1)-order. Then, a

definition of the form:

xj(~z)
.

= casem−1(A0(~z), . . . ,Ar−1(~z))

has been created in Pm−1, where the A0, . . . ,Ar−1 are derived as indicated by the

function params(P, f , xj). We first demonstrate the following:

ûk(xj)(w ⇓ Q̂) v ρ̂k+1(xj)(w ⇓ Q) (1)

Assume that ~z is of the form (z0, . . . , zk−1), and z0 : σ′0, . . . , zk−1 : σ′k−1. Let ~e =

(e0, . . . , ek−1) be a k-tuple such that e0 ∈ [[σ′0]], . . . , ek−1 ∈ [[σ′k−1]]. Moreover, let

φ(zi) = e∞i , 0 6 i 6 k − 1. The proof of (1) is as follows:

ûk(xj)(w ⇓ Q̂)(~e) =

v [[casem−1(A0(~z), . . . ,Ar−1(~z))]]∗(ûk ⊕ φ)(w ⇓ Q̂)

(Definition of xj and Lemma 6.1)

= [[Ai(~z)]]∗(ûk ⊕ φ)(w ⇓ Q̂)

(Semantics of casem−1)

= [[actualsm−1
i ·Q−1(EP,m(Ej))(~z)]]∗(ûk ⊕ φ)(w ⇓ Q̂)

(Definition of Ai from function params(P, f , xj))

= [[Q−1(EP,m(Ej))]]∗(ûk ⊕ φ)(w ⇓ Q)(~e)

(Semantics of actualsm−1
i and application)

= [[EP,m(Ej)]]
∗(ûk ⊕ φ)(w)(~e)

(Lemma 8.1)

= [[EP,m(Ej)]]
∗(ûk)(w)(~e)

(Ej does not contain any of the zi)

v [[EP,m(Ej)]]
∗(ûk+1)(w)(~e)

(Monotonicity of [[EP,m(Ej)]]
∗)

= ρ̂k+1(xj)(w ⇓ Q)(~e)

(Definition of ρ̂k+1)

The above result is used in the proof given below. The left-hand side of the
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statement we want to establish can be written as:

[[EP,m(S)]]∗(ûk ⊕ σ)(w ⇓ Q̂) =

= [[EP,m(xj)]]
∗(ûk ⊕ σ)(w ⇓ Q̂)

(Because S = xj)

= [[xj]]
∗(ûk ⊕ σ)(w ⇓ Q̂)

(Definition of EP,m)

= ûk(xj)(w ⇓ Q̂)

(Variable xj is (m− 1)-order)

v ρ̂k+1(xj)(w ⇓ Q)

(Because of relation (1) above)

= [[xj]]
∗(u⊕ σ ⊕ ρ̂k+1)(w ⇓ Q)

(Variable xj gets a value from ρ̂k+1)

= [[S]]∗(u⊕ σ ⊕ ρ̂k+1)(w ⇓ Q)

(Because S = xj)

Case 2: S is equal to a variable xj ∈ {x0, . . . , xn−1}, and xj is less than (m− 1)-order.

We should remind here that d∞ is a constant intension, and therefore its value does

not vary from context to context. The left-hand side of the statement we want to

establish can be written as follows:

[[EP,m(S)]]∗(ûk ⊕ σ)(w ⇓ Q̂) =

= [[EP,m(xj)]]
∗(ûk ⊕ σ)(w ⇓ Q̂)

(Because S = xj)

= [[xj]]
∗(ûk ⊕ σ)(w ⇓ Q̂)

(Definition of EP,m)

= σ(xj)(w ⇓ Q̂)

(Because xj is less than (m− 1)-order)

= σ(xj)(w ⇓ Q)

(Because σ(xj) = d∞j )

= [[xj]]
∗(u⊕ σ ⊕ ρ̂k+1)(w ⇓ Q)

(Variable xj gets a value from σ)

= [[S]]∗(u⊕ σ ⊕ ρ̂k+1)(w ⇓ Q)

(Because S = xj)

Case 3: S is equal to a nullary constant symbol c. The proof in this case is

straightforward, because the denotation of c is a constant intension, and therefore

its value is independent of context.

Case 4: S is equal to h, where h is not a formal of f. In this case, the order of h is

strictly less than m (because m-order functions only have full applications in Pm).

Recall now that the outer induction hypothesis for functions of order less than m,

specifies that ûk(h) v u(h). Using this, and the fact that u(h) does not depend on the

m-th dimension, we get the desired result.
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Structural induction step

Case 1: S = xj(S0, . . . , Sr−1) where xj ∈ {x0, . . . , xn−1}, and xj is (m− 1)-order. The

proof uses the following fact which was also used in the induction basis:

ûk(xj)(w ⇓ Q̂) v ρ̂k+1(xj)(w ⇓ Q) (2)

In the following, notice that none of the arguments of xj is eliminated during the

transformation because all of them are less than (m − 1)-order. The proof is as

follows:

[[EP,m(S)]]∗(ûk ⊕ σ)(w ⇓ Q̂) =

= [[EP,m(xj(S0, . . . , Sr−1))]]∗(ûk ⊕ σ)(w ⇓ Q̂)

(Because S = xj(S0, . . . , Sr−1))

= [[xj(EP,m(S0), . . . ,EP,m(Sr−1))]]∗(ûk ⊕ σ)(w ⇓ Q̂)

(Definition of EP,m)

= ûk(xj)(w ⇓ Q̂)([[EP,m(S0)]]∗(ûk ⊕ σ)(w ⇓ Q̂), . . . ,

[[EP,m(Sr−1)]]∗(ûk ⊕ σ)(w ⇓ Q̂))

(Variable xj is (m− 1)-order)

v ρ̂k+1(xj)(w ⇓ Q)([[EP,m(S0)]]∗(ûk ⊕ σ)(w ⇓ Q̂), . . . ,

[[EP,m(Sr−1)]]∗(ûk ⊕ σ)(w ⇓ Q̂))

(Because ûk(xj)(w ⇓ Q̂) v ρ̂k+1(xj)(w ⇓ Q))

v ρ̂k+1(xj)(w ⇓ Q)([[S0]]∗(u⊕ σ ⊕ ρ̂k+1)(w ⇓ Q), . . . ,

[[Sr−1]]∗(u⊕ σ ⊕ ρ̂k+1)(w ⇓ Q))

(Using structural induction hypothesis and monotonicity)

= [[xj(S0, . . . , Sr−1)]]∗(u⊕ σ ⊕ ρ̂k+1)(w ⇓ Q)

(Variable xj gets a value from ρ̂k+1)

= [[S]]∗(u⊕ σ ⊕ ρ̂k+1)(w ⇓ Q)

(Because S = xj(S0, . . . , Sr−1))

Case 2: S = xj(S0, . . . , Sr−1) where xj ∈ {x0, . . . , xn−1}, and xj is less than (m − 1)-

order. Then, xj gets its value from σ in both sides of the statement we want to

establish. Notice also that σ(xj) = d∞j , i.e., it is a constant intension, and therefore

its value is independent of context. The proof is then similar in structure to the one

for the above case.

Case 3: S = c(S0, . . . , Sr−1). The proof for this case is simple and uses the fact that

C∗(c) is a constant intension.

Case 4: S = Φ(g)(S0, . . . , Sr−1) where Φ is a sequence of intensional operators and

g is a function defined in Pm. The proof is similar as before (we need to consider

two cases: one for g being m-order and one for less than m-order).

This completes the proof of the theorem. q

Theorem 8.2

Let u and û be the least environments that satisfy under the synchronic interpretation

the definitions in Pm and Pm−1 respectively. Then:
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• For every definition (f(x0, . . . , xn−1)
.

= Bf ) in Pm, if x0 : σ0, . . . , xn−1 : σn−1 and

there exists 0 6 l 6 n−1 such that order(σ0) = (m−1), . . . , order(σl−1) = (m−1)

and order(σl) < (m− 1), . . . , order(σn−1) < (m− 1), then for every function call

E = Q(f)(E0, . . . ,En−1) to f in Pm, for all dl ∈ [[σl]], . . . , dn−1 ∈ [[σn−1]] and for

all w ∈W ,

Q · callm−1
i (û(f ))(w)(dl , . . . , dn−1) w

Q(u(f ))(w)([[EP,m(E0)]]∗(û)(w), . . . , [[EP,m(El−1)]]∗(û)(w), dl , . . . , dn−1)

where i = label(P, f ,E).

• For every definition (f(x0, . . . , xn−1)
.

= Bf ) in Pm, if x0 : σ0, . . . , xn−1 : σn−1 and

order(σ0) < (m− 1), . . . , order(σn−1) < (m− 1), then for all d0 ∈ [[σ0]], . . . , dn−1 ∈
[[σn−1]] and for all w ∈W ,

û(f )(w)(d0, . . . , dn−1) w u(f )(w)(d0, . . . , dn−1)

Proof

Following the same ideas as the proof for Theorem 8.1 (but now using computational

induction on the approximations of u). q

Theorem 8.3

Let u and û be the least environments that satisfy under the synchronic interpretation

the definitions in Pm and Pm−1, respectively. Then:

• For every definition (f(x0, . . . , xn−1)
.

= Bf ) in Pm, if x0 : σ0, . . . , xn−1 : σn−1 and

there exists 0 6 l 6 n−1 such that order(σ0) = (m−1), . . . , order(σl−1) = (m−1)

and order(σl) < (m− 1), . . . , order(σn−1) < (m− 1), then for every function call

E = Q(f)(E0, . . . ,En−1) to f in Pm, for all dl ∈ [[σl]], . . . , dn−1 ∈ [[σn−1]] and for

all w ∈W ,

Q · callm−1
i (û(f ))(w)(dl , . . . , dn−1) =

Q(u(f ))(w)([[EP,m(E0)]]∗(û)(w), . . . , [[EP,m(El−1)]]∗(û)(w), dl , . . . , dn−1)

where i = label(P, f ,E).

• For every definition (f(x0, . . . , xn−1)
.

= Bf ) in Pm, if x0 : σ0, . . . , xn−1 : σn−1 and

order(σ0) < (m− 1), . . . , order(σn−1) < (m− 1), then for all d0 ∈ [[σ0]], . . . , dn−1 ∈
[[σn−1]] and for all w ∈W ,

û(f )(w)(d0, . . . , dn−1) = u(f )(w)(d0, . . . , dn−1)

Proof

A direct consequence of Theorems 8.1 and 8.2. q

Notice that, although in the following we will only use the second of the statements

of the above theorem, the first one is also essential (the proof of the induction step

of the second statement uses at some point the induction hypothesis of the first

one).

The following theorem demonstrates that the programs Pm and Pm−1 are seman-

tically equivalent under the synchronic interpretation.
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Theorem 8.4
Let u and û be the least environments that satisfy under the synchronic interpretation

the definitions in Pm and Pm−1 respectively. Then, [[Pm]]∗(u) = [[Pm−1]]∗(û).
Proof
Straightforward, by applying the second statement of Theorem 8.3 on the variable

result of the programs Pm and Pm−1. q

It remains to show that the initial functional program PM , has the same standard

denotational semantics as the final zero-order intensional program P0. This is

demonstrated by the following theorem:

Theorem 8.5
Let PM be an M-order FL program and let PM−1, . . . ,P0 be the intensional programs

that result at the successive stages of the transformation algorithm. Let uM and u0 be

the least environments that satisfy the definitions of PM and P0 under the standard

interpretations. Then, for every w ∈W ,

[[PM]]D(uM) = [[P0]](W→D)(u0)(w)

Proof
Let ûM, . . . , û0 be the least environments that satisfy the definitions in the programs

PM, . . . ,P0 under the synchronic interpretation. Then, for every w ∈W :

[[PM]]D(uM) =

= [[PM]]∗D(ûM)(w)

(Theorem 6.3)

= [[PM−1]]∗D(ûM−1)(w)

(Theorem 8.4)

· · ·
= [[P0]]∗D(û0)(w)

(Theorem 8.4)

= [[P0]]∗(W→D)(u0)(w)

(Theorem 6.4)

q

The correctness proof given above concludes the formal presentation of the

transformation algorithm from higher-order functional programs to intensional

programs of nullary variables. It should be mentioned here that the proof did

not just serve the purpose of validating the correctness of the algorithm; it also

suggested changes that had to be performed to the initially proposed algorithm

(Wadge, 1991). Notice that the transformation for higher-order programs is much

more sophisticated than the one for the first-order case (Rondogiannis and Wadge,

1997), and it is imperative that any informal intuitions one might have, be supported

by formal reasoning.

9 Significance of the results

The results presented here are first of all of real practical significance because they

provide a genuine alternative to the conventional techniques for implementing a
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significant class of higher-order functional languages. The technique has proven

to be practical both on conventional single processor architectures (see the next

section) as well as on a networked coarse-grain dataflow system (see Ashcroft et

al. (1995), which describes the eduction-based implementation of the multidimen-

sional language GLU). Furthermore, the technique could conceivably be used to

enhance Web-based (and therefore tagged and demand-driven) applications like

Intensional HTML (Wadge et al., 1998). Finally, the proposed approach could be

used to implement (some) higher-order programs on fine-grain dataflow machines,

should these ever become practical (these issues are discussed in detail in the next

section).

The results are also of theoretical significance, in that they shed new light on the

relationship between (extensional) functional programming and intensional logic.

Intensional logics of various types have already proven useful in different areas

of computer science, but mainly in artificial intelligence and verification (temporal

logics). We have now shown that a relatively simple intensional logic can give

us a new and different perspective on the computations involved in evaluating

higher-order expressions.

We can also view the results of this paper and its predecessor as shedding further

light on the relationship between iteration and recursion, the yin and yang of

computation. Indeed, we can view our results as generalizations of the well-known

technique for implementing tail recursion as (conventional) iteration. In the first-

order case, we can understand the translation as a technique for reducing general

first-order recursion to branching-time iteration. The generalization presented in

this paper can then be understood as a technique for reducing restricted typed

higher-order recursion to multidimensional branching-time iteration.

Finally, the results point to a closer connection between the notions of higher-order

and multidimensional than on the surface would appear to be the case. Multidimen-

sionality is playing an increasingly important role in many branches of computing

(for example, OLAP/multidimensional technologies in databases) and yet is appar-

ently absent from functional languages. We have shown that, in effect, a higher-order

language already has a form of multidimensionality built into its computation model.

This also suggests that explicit mutlidimensionality can be added to functional lan-

guages (and vice versa) without creating enormous interaction problems.

10 Implementation issues

The transformation algorithm developed in this paper generalizes the one for first-

order programs that was formalized by Rondogiannis and Wadge (1997). As we

have seen in the previous sections, the algorithm transforms a significant class of

higher-order programs into multidimensional zero-order intensional programs. The

resulting intensional code can be executed on conventional architectures using the

same basic principles as described by Rondogiannis and Wadge (1997, section 12),

the only difference being that the contexts are now multidimensional.

In Rondogiannis and Wadge (1997), we saw that the lists of natural numbers that

are created during execution can be coded as small natural numbers, using the well-
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known hash-consing technique. The same technique applies here as well: given an

M-order functional program, the contexts required for its execution are M-sequences

of lists of natural numbers; using hash-consing, contexts become M-sequences of

natural numbers, which are much more convenient to handle. The structure of the

warehouse is similar to the one before, the only difference being that tags are now

multidimensional.

In other words, the structure of an implementation of the proposed technique

consists of three interacting components:

• The execution engine which implements the EVAL function used in section 3.

• The List Store which is a hashing-based table for encoding lists by small

natural numbers.

• The Warehouse which is used for keeping already computed results (identifiers

together with their values under particular contexts).

The transformation algorithm proposed in this paper has been implemented and

given promising efficiency results (Rondogiannis and Wadge, 1993, 1994b; Rondo-

giannis, 1994).

In Rondogiannis and Wadge (1993), the technique is used to build a compiler

for an ISWIM-like functional language (that uses higher-order functions in the way

presented in this paper). The compiler has been implemented in C and produces

C code as its output. In this implementation, the List Store is a closed hash table

and collisions are resolved using linear probing (Knuth, 1975, Algorithm L). In

other words, whenever a collision occurs, the next position of the table is examined.

The Warehouse implementation uses an open scheme (Knuth, 1975, pp. 513–514), in

which collisions are resolved using chaining. Although the compiler does not use any

special optimizations, it is shown to have a performance comparable to well-known

implementations based on graph-reduction.

A different implementation of the technique is undertaken by Rondogiannis (1994)

and Rondogiannis and Wadge (1994b). The main idea is that the List Store and the

Warehouse can be appropriately merged into a single structure. This is achieved by

incorporating context-related information into traditional activation records. This

new technique appears to be more promising compared to the previous technique

as it avoids certain of the overheads associated with hashing.

In the present paper, we do not pursue implementation issues any further. As a

final comment on these issues, it should also be noted that the intensional approach

for implementing functional languages poses a new set of interesting problems that in

our opinion deserve further investigation. One such problem is the characterization

of the dimensionality of variables that appear in the target intensional code. More

specifically, it is possible that a variable in the zero-order program that results

from the transformation does not depend on all the dimensions but only on just

a few of them. The knowledge of the dimensionality of particular variables is

crucial. For example, if a variable does not depend on any dimension (i.e. it is

constant in every context) we simply need to have one entry for it in the warehouse

together with an indication that the variable does not depend on any dimension.

In this way, both space and time savings are ensured, which in turn result in
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more efficient implementations. A promising approach for dimensionality analysis

is outlined elsewhere (Dodd, 1996) (which, however, applies to a different class of

multidimensional languages).

11 Related work

Our work is connected to the recent research on higher-order removal (Chin and

Darlington, 1996) and firstification (Nelan, 1991), whose purpose is to reduce a

given higher-order functional program into a first-order one. The practical outcome

of both techniques is that the resulting first-order programs can be executed in

a more efficient way than the source higher-order ones. Chin and Darlington’s

transformation is formulated using unfold/fold rules while Nelan takes a more

direct approach in his firstification algorithm.

Our work differs from both approaches in that the result of our transformation

is a multidimensional intensional program of nullary variables. Moreover, our goal

is to transform the source program into a form which can be educed (executed in

a dataflow style using context manipulation), while the goal of both firstification

and higher-order removal is to serve as a forms of optimization for the source

higher-order programs.

Despite their differences, a further comparison between firstification, higher-order

removal and the intensional technique would be beneficial as it would reveal the

potential and the shortcomings of each approach. We believe that such a comparison

should be based an two main criteria:

1. Code size. For such a comparison to take place one must identify the param-

eters that play an important role in each of the techniques. For example, the

order of a source program seems to be an important factor that affects the

final code size in the case of the intensional approach. We believe that the

intensional approach may have an advantage in terms of code size as it gathers

together in a single definition all the actual parameters that correspond to a

formal parameter of a function.

2. Execution speed and memory requirements. This is a much harder to establish

comparison due to the different philosophy behind the techniques: firstification

and higher-order removal result in conventional functional programs while the

intensional approach results in multidimensional zero-order programs which

can be executed with eduction-based techniques. Therefore, such a comparison

would require the availability of robust implementations of the above three

techniques.

As a limitation of all three approaches, we should mention the fact that none of them

has been extended to apply to a fully higher-order functional language. This suggests

that higher-order functions are of a fundamental nature and their elimination from

functional programs may require more sophisticated extensions of the above three

techniques.

Reducing the order of the source program is also the goal of a technique originally

proposed by Reynolds (1972). However, for this to be achieved, data-structures have
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to be introduced in the program. Moreover, the resulting code actually simulates

the runtime behavior of the source program. Therefore, although elegant, Reynolds’

technique does not serve the same goals as the technique we propose in this paper.

12 Conclusions and future work

In this paper, we have presented and formalized a technique for transforming a sig-

nificant class of higher-order functional programs into zero-order multidimensional

intensional programs. The transformation we propose is of practical interest, since

it can be used in order to implement functional languages in a tagged dataflow way.

The syntax of the functional languages considered in this paper imposes some

restrictions on the use of higher-order functions. More specifically, the only partially

applied objects that can appear in a program, are function names. Consider for

example the following program:

result
.

= g(8)

g(x)
.

= twice(add(x),x)

twice(f,y)
.

= f(f(y))

add(a)(b)
.

= a+b

This is clearly not a valid program of the language FL: the call to the function

twice has as an actual parameter the partially applied call add(x). In the following,

we demonstrate the problems that we face when we attempt to apply the technique

developed in this paper on programs such as the above. The highest order formal

parameter in this program, is the formal f of the twice function. If we attempt to

eliminate this parameter as usual, we get the following result:

result
.

= g(8)

g(x)
.

= call1
0(twice)(x)

twice(y)
.

= f(f(y))

add(a)(b)
.

= a+b

f
.

= case1(actuals1
0(add(x)))

Notice now that the variable x appears free in the definition of f, while it is bound

in the definition of g. The resulting program cannot be semantically equivalent to

the initial one. Therefore, the transformation has to be performed in a different way.

We conjecture that the extended transformation will first have to take care of those

variables that cause problems (like the formal parameter x of g above). The authors

are currently investigating techniques for applying the transformation to general

higher-order programs.

Another interesting problem for further research is to consider the target mul-

tidimensional intensional languages as programming languages (and not just as

transformation-related ones) and investigate other potential applications they may

have. An approach in this direction is reported by Rondogiannis et al. (1997) for the

case of intensional logic programming languages. We believe that a similar potential

exists in the area of intensional functional programming.
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