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Self-sustained azimuthal aeroacoustic modes.
Part 1. Symmetry breaking of the mean flow by
spinning waves
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In this paper, we study the aeroacoustic instability which occurs in a deep axisymmetric
cavity in a turbulent pipe flow. This phenomenon is the axisymmetric counterpart of the
classical whistling of a rectangular deep cavity subject to a grazing flow. The whistling of
such axisymmetric cavity originates from the interaction of the coherent fluctuations of
the vorticity at the cavity’s opening with one of its trapped azimuthal or radial acoustic
modes. We focus here on the situation involving the first pure azimuthal mode, which is
trapped in the cavity. As a consequence of the rotational symmetry of the configuration,
azimuthal modes are actually pairs of degenerate eigenmodes, or almost degenerate
in the presence of small asymmetries. Therefore, the aeroacoustic instabilities exhibit
more complex mechanisms than in the case of a rectangular deep cavity. In particular,
we show that self-sustained spinning modes induce a symmetry breaking of the mean
flow and we will elucidate the details of this phenomenon. To that end, simultaneous
acoustic and time-resolved stereoscopic particle image velocimetry (PIV) measurements
are performed. They reveal that when large-amplitude aeroacoustic waves spin around
the cavity, a quasi-steady mean flow starts whirling slowly in the opposite direction to
the wave propagation. A linear perturbation analysis around an axisymmetric mean flow
confirms the experimental observations: although the incoming pipe flow is not swirling,
the hydrodynamic component of the aeroacoustic wave induces such whirling motion of
the mean flow because of the forcing from the steady part of the coherent Reynolds stress
tensor.
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1. Introduction

The phenomenon of whistling of deep cavities subject to grazing flow has been studied
for decades (East 1966; Rockwell & Naudascher 1978; Elder, Farabee & Demetz 1982;
Forestier, Jacquin & Geffroy 2003). It results from a feedback loop between one of the
cavity’s acoustic eigenmodes and the unsteady vorticity at its opening (e.g. Bourquard,
Faure-Beaulieu & Noiray 2021; Ho & Kim 2021). This unsteady vorticity is caused by a
Kelvin–Helmholtz instability in the shear layer at the opening of the cavity, resulting from
the velocity difference between the fast grazing air flow and the air at rest in the cavity.
When this feedback loop becomes unstable, it leads to high-amplitude aeroacoustic limit
cycles. While the whistling from rectangular cavities has been investigated in numerous
studies, the more complex whistling of axisymmetric cavities, which is the topic of the
present work, has received less attention. In such configuration, the aeroacoustic feedback
loop frequently involves one of the first azimuthal acoustic modes. There are similarities
between these azimuthal aeroacoustic modes and thermoacoustic azimuthal modes in
annular combustion chambers, which are intensively studied because of the problems they
cause in turbomachines for propulsion and power generation applications. In these annular
combustor configurations, the rotational symmetry of the chamber gives rise to pairs of
degenerate orthogonal azimuthal thermoacoustic modes, sharing the same eigenfrequency.
When the symmetry is imperfect, the degenerate mode pairs transform into pairs of modes
with slightly different frequencies and growth rates (Noiray, Bothien & Schuermans 2011;
Bauerheim et al. 2014). As a side note, this type of problem is not limited to thermoacoustic
or aeroacoustic systems, but exists in various fields of physics such as light scattering
in microspheres (Mazzei et al. 2007) or magnetic waves in micrometric ferromagnetic
disks (Hoffmann et al. 2007). In the case of thermoacoustic instabilities, the instantaneous
state of azimuthal modes can be described with three categories: spinning modes that
propagate at the speed of sound along the annular combustor, standing modes that oscillate
with a fixed or slowly drifting orientation and mixed modes that are a linear combination
of standing and spinning modes. Experimental observations in academic and industrial
configurations have shown that the state of the azimuthal thermoacoustic modes usually
wanders between mixed modes with dominant spinning component and mixed modes that
are closer to standing states (e.g. Noiray & Schuermans 2013; Worth & Dawson 2013;
Indlekofer et al. 2022). The statistical preference for certain states and the transitions
between them are associated to the intensity of the turbulent combustion noise, to the
presence of a azimuthal mean flow, to small asymmetries of the flow or the geometry
and to the nonlinear acoustic response of the flames (e.g. Bauerheim, Cazalens & Poinsot
2015; Ghirardo, Juniper & Moeck 2016; Rouwenhorst, Hermann & Polifke 2017; Aguilar
et al. 2021; Faure-Beaulieu et al. 2021a). In the case of an aeroacoustic instability, the
acoustic source originates from the coherent unsteady vorticity of the flow. We show
that the effects of mean azimuthal flow and system’s rotational asymmetries can be
included into low-order models in a similar way as they are in annular thermoacoustic
systems.

Let us now briefly review key contributions of the last decade to the understanding
of azimuthal aeroacoustic instabilities in cylindrical cavities. Aly & Ziada (2010) studied
experimentally the whistling of a shallow axisymmetric cavity and conducted a parametric
study on the effects of the cavity’s width and depth on the type of mode, the frequency
and the amplitude of the oscillations: depending on the cavity’s dimensions and the
flow velocity, different combinations of shear layer modes and azimuthal acoustic modes
lead to whistling. The authors also showed that, even in an apparently axisymmetric
configuration, the observed aeroacoustic modes are not purely spinning but rather mixed
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Self-sustained azimuthal aeroacoustic modes. Part 1

modes with a constant preferential orientation (Aly & Ziada 2011). In the same study,
they also investigated experimentally the effects of symmetry breaking by adding splitter
plates in the cavity. Furthermore Oshkai & Barannyk (2013) investigated the whistling
of a deep cylindrical cavity and measured the instantaneous velocity fluctuations of the
shear layer with standard particle image velocimetry (PIV). They studied the effect of
chamfered cavity edges on the aeroacoustic behaviour (Barannyk & Oshkai 2014) and
the unsteady vorticity field (Oshkai & Barannyk 2014) in order to provide an insight
into mechanisms of whistling in these axisymmetric geometries. Nakiboğlu, Manders &
Hirschberg (2012) used Howe’s vortex sound theory (Howe 2002) and simulations of
the incompressible unsteady Reynolds-averaged Navier–Stokes (RANS) equations of a
harmonically forced axisymmetric cavity to predict at which forcing frequency the peak
whistling is maximal, depending on the mean flow profile in the pipe and the cavity’s
aspect ratio. Compressible large eddy simulations (LES) by Wang & Liu (2020) and
Abdelmwgoud, Shaaban & Mohany (2020) allowed them to identify the structure of
the hydrodynamic fluctuations associated to standing and spinning aeroacoustic modes
in axisymmetric cavities. The latter study revealed different vorticity patterns associated
with standing and spinning modes. Standing modes give rise to periodic vortex crescents
disconnected from each others, while spinning modes are characterised by a continuous
helical vortex tube spinning along the cylindrical shear layer. Although the initial mean
flow is reflectionally symmetric, this helical mode is not. In the aforementioned LES and
in the experiments shown in the present study, the hydrodynamic velocity fluctuations
of the shear layer are non-negligible compared with the mean axial velocity in the
pipe. Therefore, this symmetry breaking of the hydrodynamic fluctuations is likely to
have repercussions on the reflectional symmetry of the mean flow itself and to entail
a non-zero mean azimuthal velocity field. In the present paper, we show experimental
evidence that a strong azimuthal aeroacoustic instability can indeed induce a whirling
flow in an axisymmetric cavity, a phenomenon that had not been reported before in the
literature.

This paper is the first part of an experimental and theoretical study on azimuthal
aeroacoustic instabilities in deep axisymmetric cavities. It stands at the intersection
between the literature on deep cavity whistling and the studies about degenerate or
close-to-degenerate azimuthal mode pairs in axisymmetric configurations, revealing and
explaining the interplay between the azimuthal acoustic modes, the hydrodynamic helical
modes and the mean swirl. Experiments were conducted with a cavity that is the
axisymmetric counterpart of the rectangular side cavity studied theoretically, numerically
and experimentally by Boujo, Bauerheim & Noiray (2018), Bourquard et al. (2021) and
Pedergnana et al. (2021). This paper, Part 1, focuses on the hydrodynamic aspects of the
aeroacoustic feedback in absence of mean swirl upstream of the cavity, and on the effect
of the aeroacoustic oscillations on the onset of a mean swirl in the cavity. Part 2 deals with
the complementary problem of the effect of a mean swirl imposed upstream of the cavity
onto the modal dynamics of the aeroacoustic instability. In § 2, the set-up is presented
and the results of acoustic and stereoscopic PIV measurements are discussed. Section
3 is dedicated to the analysis of the hydrodynamic modes observed in the experiments.
In § 4.1, we show the experimental evidence that spinning aeroacoustic waves induce a
swirling motion to the flow. In §§ 4.2 and 4.3, an incompressible linearised Navier–Stokes
(LNS) analysis allows us to reproduce numerically the coherent hydrodynamic
structures observed in the experiments and to unravel the mechanism leading to the
development of a mean whirling flow under the action of high-amplitude aeroacoustic
waves.
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Figure 1. (a) Experimental set-up with the stereoscopic PIV system (a laser sheet and two high-speed
cameras). Inset: Longitudinal cut of the cavity. (b) Three components of the instantaneous velocity field u(x, t)
for a bulk axial velocity of Ux = 52.3 m s−1 in the pipe. The vectors correspond to the x and y components of
u(x, t).

Figure 2. Picture of the set-up. The axisymmetric cavity features a lateral cylindrical wall made of glass, which
enables laser sheet illumination and observation of the seeded turbulent flow for stereoscopic PIV. Microphones
and piezosensors are mounted on several of the red ports located on the pipe and planar side walls of the cavity.

2. Experiments
2.1. Deep axisymmetric cavity

The set-up is sketched in figure 1(a) and shown in figure 2. It is composed of a cylindrical
cavity of rectangular cross section, of radius R = 128 mm and width W = 30 mm placed
in the middle of a cylindrical straight pipe of radius Rp = 20 mm, extending 769 mm
upstream and downstream of the cavity. Given that W/(R − Rp) = 0.27, the present cavity
clearly belongs to the category of deep cavities, which satisfy W/(R − Rp) < 1 according
to Rockwell & Naudascher (1978). At the two extremities of the pipe (upstream and
downstream of the cavity), the cross-section area increases in the form of catenoidal horns
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connected to resting chambers lined with melamine foam to absorb outgoing waves and
suppress resonances of longitudinal pipe modes with frequency above 200 Hz. Air flows
through the upstream horn which, in addition to providing anechoic condition, reduces the
thickness of the shear layer at the inlet of the pipe and consequently at the cavity opening,
which makes it more prone to whistling (Gloerfelt, Bogey & Bailly 2003; Boujo et al.
2018). The air mass flow ṁ is measured with a mass flow meter and manually controlled
with a valve. The revolution axis corresponds to the x coordinate. A cylindrical coordinate
system (x, r, Θ) is used in this paper, except for the planar PIV fields that are presented in
Cartesian (x, y, z) coordinates. The acoustic pressure is measured with several G.R.A.S.
46BD 1/4′′ CCP microphones. Six are located on one of the planar side walls of the
cavity at r = 90 mm, at different azimuthal positions Θ = 0◦, 28◦, 90◦, 152◦, 208◦, 270◦
and 332◦. Although two microphones would, in theory, be sufficient to reconstruct the
acoustic field of a pure azimuthal mode, using six microphones with a least-squares
approach improves the reconstruction quality by reducing the effects of pseudo-noise
from turbulence or the uncertainty in the acoustic measurement chain. Two additional
microphones are placed at two different radial positions r = 67.5 mm and r = 121.5 mm,
and Θ = 135◦ to identify acoustic eigenmodes exhibiting a radial component. For strong
aeroacoustic limit cycles, the acoustic amplitude is too high for the microphones, leading
to signal clipping. For these cases, piezosensors (Kistler 211B) were used to measure
higher acoustic levels, but with a lower signal-to-noise ratio. In the remainder of the
paper, the word ‘microphone’ refers indistinctly to the piezosensors or the microphones.
The lateral cylindrical wall of the cavity was transparent for optical access. For the first
time in this type of configuration, time-resolved stereoscopic PIV was used to measure
the three components of the velocity field in a plane cutting the cavity through its axis.
To that end, particles of DEHS oil (SMD 2 μm) were injected in the plenum upstream
from the convergent. The particles were illuminated by a fast pulsed laser sheet (Photonics
DM60Nd:YAG, 532 nm) and the images were taken by two high-speed cameras oriented
towards Θ = 90◦ and Θ = 270◦. The laser sheet goes through the cavity’s axis with an
angle Θ = 45◦. Because of spurious laser reflections on the upstream and downstream
cavity’s walls, masking of the Mie scattering images was applied before performing the
cross-correlation processing. Therefore, the PIV field of view covers only 24.3 mm over
the 30 mm of the axial width of the cavity and its height is limited to 40 mm above and
below the axis because beyond this distance, image distortion due to the curvature of
the lateral window cannot be neglected in the PIV postprocessing. Thus, velocity fields
presented in this work do not span across the full cavity’s depth. Figure 1(b) shows
an instantaneous snapshot of the three velocity components (in Cartesian coordinates)
for Ux = 52.3 m s−1. On these plots, x corresponds to the main flow direction, y
is oriented towards the top and z is the out-of-plane direction oriented towards the
reader.

2.2. The PIV and acoustic measurements
The experimental set-up was operated with different mass flows ṁ between 0 and
110 g s−1, at ambient temperature (20 ◦C) and pressure (between 950 and 956 hPa). For
ṁ = 110 g s−1, the bulk velocity in the pipe is Ux = 77.1 m s−1, corresponding to a Mach
number of 0.22 and a Reynolds number of 1.9 × 105. For certain ranges of velocity Ux, the
flow through the cavity leads to whistling due to aeroacoustic instabilities. The whistling
of this deep cavity is not governed by the Rossiter mechanism, which is relevant for both
shallow and deep cavities at transonic and supersonic conditions (e.g. Handa et al. 2015).
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Figure 3. (a) Measured RMS acoustic pressure at Θ = 0◦, r = 90 mm, as function of the bulk velocity in
the duct. The coloured vertical lines correspond to conditions for which PIV data are available. (b) Detail of
acoustic oscillations at six different locations for Ux = 60.3 m s−1. (c) Spectrogram of the signal measured
in Θ = 0◦, r = 90 mm for Ux from 0 to 75 m s−1. The white line corresponds to the power spectral density
shown in panel (d). (d) Power spectral density for Ux = 58.8 m s−1 at three azimuthal locations (same colour
code as in panel b).

Figure 3(a) shows the root-mean-square (RMS) acoustic pressure for the microphone
located at r = 90 mm and Θ = 0◦ as function of the bulk velocity in the pipe. A first
zone of instability occurs in the interval (23 m s−1 < Ux < 33m s−1), where the acoustic
amplitudes reach a few hundred pascals. The spectrogram of figure 3(c) indicates that the
fundamental frequency of this instability is around 790 Hz. The flow is aeroacoustically
stable between Ux = 33 m s−1 and Ux = 42 m s−1. From this point, another instability
occurs at the same frequency. The acoustic level increases strongly with the bulk velocity,
reaches a maximum for Ux = 60.3 m s−1 before decreasing again. At the maximum, the
acoustic pressure oscillations exceed 8000 Pa. Figure 3(b) shows the detail of the acoustic
oscillations for Ux = 60.3 m s−1 at several different radial and azimuthal positions in
the cavity. This figure reveals that the unstable mode exhibits an azimuthal component,
because the signals at different azimuthal positions have different phases. An examination
of the six azimuthal microphones’ timetraces, not all shown here, allows us to conclude
that the azimuthal order of the mode is 1, which means that there is only one maximum and
one minimum of acoustic pressure along the circle r = 90 mm. In addition, the two dashed
lines correspond to two microphones at different radial positions and equal azimuthal
position. They oscillate in phase, which excludes the possibility of a pressure node in
the radial direction at such low frequency. Moreover, for deep axisymmetric cavities,
the eigenfrequencies of the modes which do not exhibit a longitudinal component can
be estimated from the cutoff frequencies of high order modes in cylindrical waveguides:
fm,n = am,nc/2R. In this formula, m and n respectively denote the order of the azimuthal
and radial components of the mode, c is the speed of sound, R is the cavity radius and
am,n are the roots of the equation J′

m(πam,n) = 0, where J′
m is derivative of the Bessel

functions of the first kind Jm (Morse & Ingard 1968, p.511). In the present configuration,
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the eigenfrequencies of the first pure azimuthal mode, of the first pure radial mode and
of the mode featuring first-order components in both radial and azimuthal directions
will thus be close to f1,0 = 778 Hz, f0,1 = 1619 Hz and f1,1 = 2253 Hz, respectively
(with c = 340 m s−1, R = 0.128 m, a1,0 = 0.5861, a0,1 = 1.2197 and a1,0 = 1.6970). The
estimated frequency of the first pure azimuthal mode is therefore in excellent agreement
with the spectrogram and the power spectral densities (PSD) in figure 3(c) and 3(d),
which show that the frequency of the dominant mode is around 790 Hz. It is interesting
to note that when the bulk velocity is fixed in the range 23 m s−1 < Ux < 33 m s−1,
the aeroacoustic limit cycle also involves the same azimuthal acoustic mode of order 1.
Besides, when the bulk velocity is around Ux = 68 m s−1, one can observe in figure 3(c)
that a peak associated with another eigenmode emerges in the PSD at around 2300 Hz.
This eigenmode exhibits first-order components in both radial and azimuthal directions,
and corresponds to the cylindrical waveguide cutoff frequency of f1,1 = 2253 Hz.
At Ux = 70.1 m s−1, the peak of this mode and the pure azimuthal mode both reach
130 dB at the microphone located at Θ = 0 and r = 90 mm. From Ux = 72 m s−1 on,
only the mode exhibiting first-order components in both radial and azimuthal directions
remains linearly unstable and dominates the spectrum. The structure of this mode is
confirmed by the phase relationship and the amplitude of the acoustic signals recorded
at different azimuthal and radial positions in the cavity. In the remainder of this paper, we
will focus on the aeroacoustic limit cycles governed by the first pure azimuthal eigenmode,
i.e. bulk flow velocities above 68 m s−1 will not be further considered. Furthermore,
acoustic modes with a longitudinal component exhibit eigenfrequencies above 5 kHz (with
a rough estimate of the cutoff frequency of these modes given by c/2W). Such modes may
constructively interact with the shear layer for transonic and supersonic conditions, but
such scenarios are out of the scope of this work. The acoustic field involved in the present
whistling corresponds to a trapped azimuthal mode of the cavity, which is insensitive to the
acoustic impedance distribution at the upstream and downstream extremity of the pipe in
absence of flow. Indeed, the transverse oscillations induced by the aeroacoustic oscillations
at the cavity opening are evanescent in the pipe because their frequency is well below the
cutoff frequency. Their exponential decay was measured with microphones placed along
the pipe immediately upstream and downstream from the cavity. The power spectrum in
figure 3(d) corresponds to Ux = 58.8 m s−1, which is close to the condition of the loudest
limit cycle. The signal is largely dominated by the fundamental frequency, with a PSD
peak that reaches 165 dB. The harmonics are also clearly visible but their peaks are more
than 30 dB lower than the one at the fundamental frequency. This is also confirmed by the
quasi-perfect sinusoidal shape of the oscillations in figure 3(b). Figure 4 shows a portion of
the microphone timetraces over 2.5 s intervals for three different cases of high-amplitude
self-oscillations, Ux = 58.8, 59.5 and 60.3 m s−1. For each case, the signals of three
microphones are located at the same radial position and at almost equispaced azimuthal
positions. To reveal the dynamic behaviour of the acoustic waves in the cavity, we use
the quaternion decomposition for bivariate signals developed by Flamant, Le Bihan &
Chainais (2017) and taken up by Ghirardo & Bothien (2018) for the projection of azimuthal
thermoacoustic modes in combustion chambers. This projection is indeed well suited to
describe an azimuthal instability involving a degenerate or quasi-degenerate mode pair.
It is based on four variables A, χ, θ and ϕ describing the state of the mode at a given
instant, using the notation conventions of Faure-Beaulieu & Noiray (2020). These state
variables vary slowly with respect to the acoustic period. The variable A corresponds to
the amplitude of the azimuthal acoustic mode: for a standing wave, A is the amplitude of
the acoustic pressure oscillations at the pressure antinode, and for a pure spinning wave,
the amplitude of the oscillation at any azimuthal location is A/

√
2. The angle χ describes
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Figure 4. First row: acoustic pressure time traces from three microphones placed at almost equispaced angles.
Each column corresponds to a different bulk velocity. Second row: amplitude A of the azimuthal acoustic mode.
Third row: Nature angle χ . The sketch on the right indicates the position of the microphones, with the same
colour code as in figure 3(b).

the nature of the mode. When χ = 0, the mode is purely standing, when χ = π/4 there is a
pure counterclockwise (CCW) spinning mode, when χ = −π/4 there is a pure clockwise
(CW) spinning mode. When 0 < χ < π/4 (respectively, 0 > χ > −π/4) the mode is
mixed: it can be interpreted as the superposition of a pure standing mode and a pure
CCW spinning mode (respectively, CW spinning). The variable θ corresponds to the
direction towards which the oscillations have the largest magnitude and, finally, ϕ is the
temporal phase of the analytical signal. The second and third rows of figure 4 show the
time evolution of A and χ . For Ux = 58.8 m s−1, during the selected time window, the
wave is mainly mixed with a CCW spinning component, and the amplitude reaches 8 kPa.
For Ux = 59.5 m s−1 and 60.3 m s−1, χ varies strongly and rapidly and A is on average
lower than for Ux = 58.8 m s−1. For the case Ux = 59.5 m s−1, the fluctuations of χ are
triangular at the beginning of the selected time interval, which corresponds to the beating
phenomenon that was investigated experimentally and theoretically by Faure-Beaulieu
et al. (2021b) for the case of thermoacoustic modes in annular combustion chambers.
They showed that this beating of the acoustic amplitude at any point in the cavity is a
manifestation of periodic transitions between pure CW and pure CCW spinning waves.
These transitions between the pure states are heteroclinic orbits in the phase space, which
can be explained by the presence of small asymmetries in the flow or in the system
geometry (Faure-Beaulieu et al. 2021b).

Sequences of 0.1 s of PIV images were acquired for several conditions represented as
vertical lines in figure 3(a). The acquisition frequency is 6 kHz, which is sufficient to
resolve the hydrodynamic motion at the instability frequency 790 Hz, corresponding to a
period of 1.3 ms. The acoustic pressure is measured simultaneously, allowing to investigate
the links between acoustics and hydrodynamics. The duration of the PIV measurements is
short compared with the 100 s of the acoustic time series, but the images were taken on
a representative set of bulk velocities Ux. In figure 4, the dashed black lines materialise
the PIV time windows. For these three cases, different behaviours of the acoustic signal
are observed during this window. As explained above, these acoustic measurements show
that the state of the mode is not constant, but undergoes large temporal fluctuations.
For this reason, there are conditions for which several PIV sequences were taken to
capture different behaviours at the same operating conditions (three PIV acquisitions were
performed for each of the points Ux = 52.3, 53.3 and 59.5 m s−1).
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Figure 5. (a) Amplitude spectra of the velocity UA
y (t), which is obtained by spatially averaging the

time-resolved vertical velocity fluctuations ũy from PIV over the small region A of the shear layer defined
by (x, y) ∈ [3.3; 7.3] × [20; 30] mm2 shown in (b). Bulk velocities Ux = 58.8 m s−1 (strong instability),
Ux = 47.0 m s−1 (moderate instability) and Ux = 41.0 m s−1 (stable) are considered. (b–d) Phase-averaged
vertical component of the coherent velocity fluctuations ũy in m s−1, at the fundamental frequency and at the
first two harmonics, for Ux = 58.8 m s−1.

3. Coherent aerodynamics of the axisymmetric shear layer

3.1. Phase-averaged field in the central plane
In figure 1(b), despite the presence of intense turbulent fluctuations, we can identify
coherent structures corresponding to vortex shedding along the axisymmetric mean shear
layer that forms at the cavity opening, at a radius r = 20 mm. However, for the conditions
exhibiting weaker aeroacoustic oscillations, the coherent flow motion is less obviously
perceptible in instantaneous velocity fields. The classic triple decomposition of the
velocity field (Reynolds & Hussain 1972) is now used:

u(x, t) = ū(x) + ũ(x, t) + u′(x, t), (3.1)

where ū is the time-averaged velocity, ũ embeds the coherent oscillations associated to
the aeroacoustic instability and u′, the turbulent fluctuations. The phase-averaged velocity
〈u〉 = ū + ũ is the velocity field from which turbulent fluctuations have been removed. To
obtain this phase-averaged flow from the PIV data, images are grouped in different bins as
function of their phase in an acoustic period, and then averaged. In the work of Bourquard
et al. (2021), the whistling of a deep cuboid is investigated and the flow can be considered
as two-dimensional (2-D). Their 2-D PIV fields reveal a flapping motion of the shear
layer at the cavity opening and provide already complete information about the coherent
hydrodynamic motion. In the present study, the mean shear layer is cylindrical and a single
2-D cut of the velocity field is not sufficient to describe the velocity fluctuations in the
whole cavity, because the amplitude of the oscillation is not necessarily constant along the
coordinate Θ . However, applying phase-averaging in a given plane is still meaningful if
the state of the mode does not change during the time interval of the PIV data collection.
Therefore, the acoustic data, from which the state variables are extracted, allow for the
selection of a portion of the PIV time window over which the state of the mode does
not significantly vary. During this time interval, phase averaging was performed and the
results are presented in figure 5. The acoustic signal is filtered around the fundamental
peak of the instability, its analytical signal is obtained with a Hilbert transform whose
phase is used to sort the PIV fields in 12 phase bins. The velocity fields of each bin are
averaged to obtain 12 phase-averaged fields. The turbulent fluctuations, not correlated with
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Ux = 47.0 m s–1
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Figure 6. Phase average of the three components of the coherent velocity fluctuations for (a) an
aeroacoustic limit cycle of the first instability range (Ux = 25.9 m s−1, 790 Hz), which involves the second
shear layer mode, and (b) an aeroacoustic limit cycle of the second instability range (Ux = 47.0 m s−1, 784 Hz),
which involves the first shear layer mode.

the coherent motion, are suppressed by the averaging operation. In figures 5(b) to 5(d), the
vertical component of the phase-averaged velocity field for Ux = 58.8 m s−1 is presented
at the fundamental frequency of the self-sustained aeroacoustic oscillations ( f = 790 Hz)
and at the first and second harmonic frequencies ( f = 1580 Hz and f = 2370 Hz). One
can see that the amplitude of the coherent oscillations at the fundamental frequency is
significantly higher than the one at the harmonics. Figure 5(a) shows amplitude spectra
of the instantaneous vertical velocity spatially averaged over a small region of the shear
layer for three different operating points: a high amplitude aeroacoustic limit cycle for
Ux = 58.8 m s−1, a moderate amplitude aeroacoustic limit cycle for Ux = 47 m s−1, and a
linearly stable aeroacoustic condition for Ux = 41 m s−1. The aeroacoustic instability for
Ux = 58.8 m s−1 leads to self-sustained oscillations at 790 Hz which can be seen in the
PSD of the acoustic pressure (see figure 3d) and in the amplitude spectra of the coherent
vertical velocity in the shear layer (see figure 5a). Furthermore, one can see in both figures
that harmonics of this fundamental oscillation frequency at 1580 Hz and 2370 Hz are
present in the spectral signature of the aeroacoustic self-oscillation, but that their relative
magnitude is significantly stronger for the hydrodynamic oscillations of the shear layer
than for the acoustic pressure in the cavity. The case of Ux = 47.0 m s−1 is also linearly
unstable, but with lower acoustic and hydrodynamic oscillation amplitudes. In figure 3(d),
peaks are present at the same frequencies, although the Strouhal number based on the
bulk velocity in the pipe is roughly one third lower than for the previous case. This is a
manifestation of the fact that in the present configuration, the acoustic eigenmode dictates
the frequency of the aeroacoustic limit cycles (see the horizontal bright line in figure 3c),
and thus the frequency of the corresponding aerodynamic oscillation. The third case, Ux =
41 m s−1, is aeroacoustically linearly stable and is located close to the Hopf bifurcation
(Ux ≈ 42 m s−1), which separates aeroacoustic resonance from aeroacoustic limit cycles
(see figure 3d). A piece of striking evidence of the hydrodynamic stability of the shear
layer in this case is that there are no visible peaks in the blue amplitude spectrum presented
in figure 5(a). Figure 6 shows single snapshots of the phase-averaged cycle for the three
components of ũ, at two different flow conditions Ux = 25.9 m s−1 (figure 6a) and Ux =
47.0 m s−1 (figure 6b). These two conditions belong to the two separate instability ranges
that have been shown in figures 3(a) and 3(c) and that involve the same acoustic mode at
f 	 790 Hz. The structure of the coherent fluctuations of the longitudinal and transverse
velocity components is similar to the coherent velocity fields obtained in whistling 2-D
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deep cavities (e.g. Bourquard et al. 2021; Ho & Kim 2021). The phase-averaging reveals
that the hydrodynamic modes involved in the two aeroacoustic instabilities are different. In
the second instability range (42 m s−1 < Ux < 73 m s−1), exhibiting the largest acoustic
amplitude, the size of the vortices is approximately equal to the cavity’s width (figure 6b).
This structure will be referred to as the ‘first shear layer mode’. In the first instability range
(23 m s−1 < Ux < 33 m s−1), the vortices are smaller and two of them fit in the cavity’s
span (figure 6a), we refer to this structure as the ‘second shear layer mode’. For both
modes, ũy is symmetric with respect to the axis y = 0 and ũx is antisymmetric (ũx(−y) ≈
−ux( y)), which indicates that the vortices on the opposite sides of the shear layer rotate
in the same direction (this is also materialised by the vectors in figure 6). Consequently,
these opposite sides move up and down together. This antisymmetric motion indicates that
the vortex shedding pattern is not rotationally symmetric, but rather has an odd azimuthal
order. Since the azimuthal order of the acoustic mode is 1, the hydrodynamic structure
is likely to have the same azimuthal order, although the PIV data does not provide this
information. This coincidence between the azimuthal order of the dominant acoustic and
hydrodynamic modes can be justified as follows. The velocity field ũ is assumed to be
dominated by a single azimuthal wave number m ∈ N∗:

〈u〉(x, r, Θ, t) = ū(x, r) + ũ(m)(x, r, t) eimΘ + ũ(−m)(x, r, t) e−imΘ, (3.2)

where ũ(m) is the amplitude of the mth azimuthal component of the coherent fluctuation
(and ũ(−m) its complex conjugate), and where the mean flow ū is assumed axisymmetric.
The associated vorticity is

〈Ω〉(x, r, Θ, t) = Ω̄(x, r) + Ω̃(m)(x, r, t) eimΘ + Ω̃(−m)(x, r, t) e−imΘ. (3.3)

The acoustic velocity field, dominated by the first azimuthal mode, may be written as

uac(r, x, Θ, t) = u(1)
ac (r, x, t) eiΘ + u(−1)

ac (r, x, t) e−iΘ. (3.4)

The acoustic power produced by vorticity fluctuations in a low-Mach flow of mean density
ρ̄ in a volume V is given by the Howe’s energy corollary (Howe 1979):

P = −
∫

V
ρ̄(Ω × u) · uac dV. (3.5)

It results from the projection of the unsteady component of the Lamb vector Ω × u
onto the acoustic field. In the present case, considering only the contributions of the
phase-averaged quantities to the sound production, the expressions (3.2), (3.3) and (3.4)
are inserted into (3.5). The integrand contains terms of order ±2m ± 1, ±m ± 1 and
±1. All these terms vanish at the integration over the cavity volume along the azimuthal
coordinate Θ , except the terms ±(m − 1) if m = 1. This simplified reasoning demonstrates
that only azimuthal hydrodynamic modes of order 1 can provide acoustic energy to the first
azimuthal acoustic mode. This conclusion is however valid only for negligible azimuthal
harmonics of ũ, because interactions between components of different orders can also
lead to effective forcing of the first acoustic mode. Formula (3.5) also explains why
the first shear layer mode is associated with larger acoustic amplitudes than the second.
In the former, each side of the shear layer contains a single vortex, while in the latter,
each side contains two counter-rotating vortices whose effects partially cancel out in the
integral.
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Figure 7. Phase average of centreplane velocity fields from stereoscopic PIV and 3-D reconstructed field
for the condition Ux = 60.3 m s−1 when the aeroacoustic limit cycle corresponds to a quasi-pure spinning
mode. (a) Phase average sequence. (b) Isosurfaces of the 3-D reconstruction of the flow oscillations and the
Q criterion. The red arrow indicates the direction of the self-induced azimuthal mean flow direction during
the PIV time window. The blue arrow shows the spinning direction of the acoustic wave. (c) Axial, radial and
azimuthal components of the 3-D reconstructed field of the coherent velocity fluctuations in the central y–z
plane. An animated 3-D reconstruction of the 3-D coherent field is provided as supplementary material (see
supplementary movies 1–4 available at https://doi.org/10.1017/jfm.2023.352) for the different conditions.

It is interesting to note that the first harmonic of ũy when the aeroacoustic limit cycle
involves the first shear layer mode (see figure 5c) looks similar to the second shear layer
mode of figure 6(a), but the former is antisymmetric with respect to the axis, while the
latter mode is symmetric. This antisymmetry characterises a hydrodynamic structure of
even azimuthal order, most probably of order 0 or 2. The second harmonic of the first
shear layer mode (figure 5d) is symmetric, indicating an odd azimuthal order.

3.2. Volumetric coherent aerodynamics during spinning states
Figure 7(a) shows the cycle of 〈ux〉 at Ux = 60.3 m s−1, showing vortical structures
convected along the shear layer from left to right across the cavity aperture. Although it is,
in general, impossible to reconstruct the whole three-dimensional (3-D) phase-averaged
velocity field from the 2-D PIV slices, it can be achieved for pure spinning modes,
because they are characterised by a velocity and pressure field that rotates around the
axis with constant amplitude, which means that identical sequences would be obtained by
considering the temporal evolution of a 2-D slice of 〈u〉 at constant Θ , or by freezing the
time and moving the angle Θ of the 2-D slice against the wave’s direction of propagation.
Since PIV gives access to the temporal evolution of 〈u〉 at constant Θ , the whole 3-D
phase-averaged velocity field can be reconstructed for a spinning mode, as done by
Oberleithner et al. (2011) for a swirling jet. The reconstruction is applied for the case
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Self-sustained azimuthal aeroacoustic modes. Part 1

of Ux = 60.3 m s−1, which is very close to a pure spinning CW aeroacoustic wave, and
whose state does not significantly change during the PIV time interval. Figure 7(b) shows
several representations of the 3-D reconstructed coherent velocity field. The first (left) is an
isosurface of the whole phase-averaged axial velocity field 〈ux〉. Although ūx is large, the
coherent perturbations ũx are not negligible compared with the mean and make a visible
spiral wave on the isosurface. The third image from the left shows one positive and one
negative isosurface of the coherent radial velocity fluctuations, that take the shape of two
spiralling crescents. The rightmost image shows a positive isosurface of the Q-criterion
(Jeong & Hussain 1995), highlighting the spiralling vortex tube detaching from the edge
of the cavity opening. One can now elaborate on the physics of the helical structure of
the mode shown in figure 7(b), which is especially visible in the Q-criterion isosurface
representation. The blue arrow indicates the direction of the acoustic wave, spinning in the
opposite direction to the winding of the spiral, which can be explained by the following
mechanism: when the acoustic wave spins around the cavity, the radial component of the
travelling acoustic velocity perturbation governs a continuous vortex shedding along at
the upstream edge of the cavity opening. The combination of this spinning perturbation
and the advection of the resulting vortex tube causes naturally a spiral winding against
the direction of the perturbation. Reciprocally, looking from a fixed axial position at the
advection of the helical vortex tube, we observe vorticity perturbations spinning against
the winding of the spiral. This is simply a geometrical property of an infinite constant
pitch spiral: a translation along the axis is equivalent to a rotation in the opposite direction
with respect to the winding. These spinning vorticity fluctuations are sound sources that
govern the aeroacoustic limit cycle. In summary, in our configuration, negative helical
modes are associated with CW spinning waves, and positive helical modes with CCW
waves, following the terminology used by Gallaire & Chomaz (2003). In the next section
we discuss the emergence of a non-zero azimuthal mean flow, although the incoming
pipe flow is purely axial, i.e. without swirl. The red arrow on figure 7(b) represents the
direction of this self-induced swirl. The helical mode is co-winding and counter-spinning
with respect to the self-induced swirl, with the definition of ‘co-winding’ usually used in
the literature on swirled flows (e.g. Oberleithner, Paschereit & Wygnanski 2014). The link
between the swirl, the winding direction and the spinning direction of the helix will be
discussed in Part 2 of the present study.

4. Symmetry breaking of the mean flow by spinning waves

4.1. Evidence of the emergence of a mean azimuthal flow
In the PIV fields corresponding to the largest aeroacoustic oscillations, a non-zero mean
flow is present in the out-of-plane direction z. Figure 8(a,b) shows examples of this mean
flow for Ux = 47.0 m s−1, corresponding to a CW spinning mode of moderate amplitude
(p ∼ 0.8 kPa) and Ux = 60.3 m s−1, corresponding to a CW spinning mode of large
amplitude (A ∼ 5 kPa). The averaging was performed over the 0.1 s of the PIV acquisition
(600 images), but averaging over shorter time intervals of 8.3 ms (50 images) give a similar
velocity field. The fields are antisymmetric with respect to the axis, indicating a swirling
motion. For Ux = 60.3 m s−1, uΘ reaches 10 m s−1 at the position of the shear layer
(r = 20 mm), corresponding to 8 revolutions during the 0.1 s of measurement, which
is 10 times slower than the aeroacoustic wave, spinning 79 times around the cavity in
the same duration. The two mean flows whirl CCW in the shear layer and have a weak
core rotating in the opposite direction in the centre. The experimental results indicate
that this quasi-steady self-induced swirling flow is linked to the presence of an intense
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Figure 8. Out-of-plane component ūz of the experimental mean flow for (a) Ux = 47.0 m s−1 and
(b) Ux = 60.3 m s−1. The domain S1 is defined by 0 ≤ y ≤ 38 mm, S2 is defined by −38 mm ≤ y ≤ 0.
(c) Fluctuations of the spatially averaged azimuthal mean flow, for Ux = 60.3 m s−1. Black line: Instantaneous
fluctuations. Red line: Moving average over 8.3 ms (50 time steps of the PIV).

aeroacoustic wave spinning in the cavity because it is no longer observed when the system
is aeroacoustically stable (33 m s−1 < Ux < 42 m s−1). Moreover, the whirling direction
is correlated with the spinning direction of the aeroacoustic wave, as shown in the next
paragraph.

To study the behaviour of the azimuthal flow, we define UΘ(t) as a spatial average
of uz(x, y, t) over the PIV window for 0 ≤ r ≤ 38 mm. This is done by computing the
averages of uz weighted by y over the domains S1 (above the axis) and S2 (below the
axis) represented in figure 8(b), and subtracting the latter from the former, to account for
the change of orientation of the unit vector eΘ below the axis. The temporal evolution of
UΘ(t) for the case of Ux = 60.3 m s−1 is represented in figure 8(c) (black line), showing
oscillations around a positive value corresponding to a predominantly CCW whirling
direction. Despite the spatial averaging, irregular oscillations are clearly visible, due to the
turbulent and coherent velocity fluctuations. These fluctuations are eliminated by applying
a moving average of 8.3 ms (red line), giving a smooth evolution of UΘ on slow time
scales with respect to the acoustic oscillations. Figure 9(d) shows the smoothed temporal
evolution of UΘ for all the operating conditions in the second azimuthal instability range
and for which PIV images are available (the colour codes are the same as in figure 3a).
Figure 9(a) shows the trajectory of the nature angle χ as function of UΘ for the same
set of operating conditions. Although these individual trajectories look rather erratic at
first glance, they are all located in the regions (χ > 0, UΘ < 0) and (χ < 0, UΘ > 0);
the two other quadrants are quasi-empty: the acoustic wave and the quasi-steady swirl
mostly spin in opposite directions. Figure 9(c) shows the evolution of χ over a PIV
time window. Since χ can have significant variations over an interval of 0.1 s, the time
window is split into five time intervals �t during which the variations remain limited.
Figure 9(b) shows the mean value of |UΘ | as a function of the rate of change of χ over
each of these short time slots �t. This scatter plot has the shape of a triangle whose base
lies on the axis |UΘ | = 0 and whose top is on the axis �χ/�t = 0. This reveals that
stronger swirl is associated with cases where χ varies little. In addition, the size of the
circles in figure 9(b) is proportional to the acoustic pressure. One sees that the points
with the largest bulk azimuthal velocity UΘ , i.e. the strongest swirl, correspond also to
the largest acoustic levels. These observations could be explained as follows: when an
azimuthal aeroacoustic wave of sufficiently large amplitude spins in a certain direction
during a sufficient amount of time, the large hydrodynamic velocity fluctuations lead to the
development of a mean flow spinning in the opposite direction. On the other hand, when
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Figure 9. (a) Trajectories of the slowly evolving azimuthal flow as a function of the nature angle χ , showing
evidence that the mean flow tends to spin in the opposite direction compared with the acoustic wave. (b) Scatter
plot of the azimuthal flow in function of the variation rate of χ , showing that the highest azimuthal mean flows
are obtained when χ does not vary much. The radii of the circles corresponds to the amplitude of the acoustic
pressure oscillations. (c,d) Temporal evolution of χ and UΘ over the PIV time window. The colour code
corresponds to the axial bulk velocity. The line with a dashed border corresponds to the case Ux = 60.3 m s−1

shown in figure 7.

the aeroacoustic wave constantly changes its spinning direction, the mean swirl does not
have sufficient time to establish in a given direction. A second possible explanation could
be that the swirl appears first, as a spontaneous symmetry breaking of the mean flow,
and then influences the spinning direction of the wave and its amplitude. However, this
alternative interpretation does not explain how a swirling motion spontaneously appears
only for a small range of bulk axial flow velocity Ux. A third possible explanation could
involve acoustic streaming: a large-amplitude acoustic travelling wave can indeed induce
a net mean flow in a closed loop system (Gedeon 1997; Boluriaan & Morris 2003). The
Mach Min of the induced mean flow is of the order of the square of the acoustic mach
number Mac = ua/c, where c is the speed of sound and ua, the typical amplitude of
the acoustic velocity oscillations: Min ∼ u2

a/c2 ∼ p2
a/(ρ

2c4) = 0.0014 in the case of an
acoustic pressure wave of amplitude 5 kPa, corresponding to an azimuthal velocity of
0.5 m s−1 approximately, which cannot explain the higher values observed in figures 8 and
9d). In the following sections, the validity of the first explanation is confirmed with a linear
perturbation analysis, showing that the hydrodynamic component of the aeroacoustic limit
cycle can indeed induce symmetry breaking of the mean flow.

4.2. Linear modal analysis
The experimental measurements are not sufficient to unravel the mechanisms that lead to
the emergence of a mean swirling flow in a symmetric cavity. This is why we supplement
them with a theoretical and numerical study of the hydrodynamic oscillations. To do so,
an approach based on linearised Navier–Stokes equations (LNSE) is adopted. This method
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has been used since decades to study the linear stability of a flow and to identify the main
hydrodynamic structures and their associated growth rates and frequencies (Jackson 1987;
Natarajan & Acrivos 1993; Delbende, Chomaz & Huerre 1998). The LNSE has been also
applied to compute the adjoint sensitivity of these modes to modifications of the flow or the
geometry, allowing the development of passive control strategies (Hill 1992; Marquet, Sipp
& Jacquin 2008). This application of LNSE is promising for engineering applications and
was successfully adapted for compressible flows (Meliga, Sipp & Chomaz 2010), turbulent
flows (Meliga, Pujals & Serre 2012; Tammisola & Juniper 2016) and complex swirling
flows (Qadri, Mistry & Juniper 2013; Tammisola & Juniper 2016). The LNSE analysis is
also valuable to study the phenomenon of non-normal growth observed in a wide range
of stable flows (Farrell & Ioannou 1996; Chomaz 2005) which act as noise amplifiers
and react strongly to harmonic excitation around certain frequencies (Garnaud et al. 2013;
Sipp & Marquet 2013) or stochastic forcing (Boujo & Gallaire 2015), and which show
transient energy growths although they are linearly stable. Moreover, compressible LNSE
approaches also give information on the aeroacoustic noise produced by hydrodynamic
instabilities (Beneddine, Mettot & Sipp 2015; Fani et al. 2018). Yamouni, Sipp & Jacquin
(2013) used this approach to assess the stability of the full aeroacoustic feedback loop of a
2-D cavity flow.

Given the intrinsic nonlinear nature of fluid motion, the following key question
arises: Which steady flow should be considered for investigating linear evolution of
small perturbations? Early studies on the unstable cylinder wake showed that a linear
perturbation analysis on the steady solution of the Navier–Stokes equations, the so-called
base flow, does not provide a reliable estimation of the instability’s frequency and structure
far away from the critical Reynolds number, while a linear perturbation analysis on the
mean flow gives an excellent agreement (Pier 2002; Barkley 2006). Later, Sipp & Lebedev
(2007) and Turton, Tuckerman & Barkley (2015) provided a mathematical ground to this
mean flow approach. These studies also demonstrated that the linear perturbation analysis
on the mean flow is valid only in the absence of strong nonlinear interactions between the
fundamental hydrodynamic mode and its harmonics.

Numerous studies applied LNSE analysis on turbulent mean flows, and give insightful
results about the main hydrodynamic modes of various flows and their response frequency
(e.g. Monkewitz 1988; del Álamo & Jiménez 2006; Meliga, Sipp & Chomaz 2009; Iungo
et al. 2013; Gikadi, Föller & Sattelmayer 2014; Oberleithner, Schimek & Paschereit 2015;
Tammisola & Juniper 2016; Boujo et al. 2018). As stated by Beneddine et al. (2016),
the linearised approach on a turbulent mean flow can be particularly relevant when the
dynamics are dominated by a strong convective instability mechanism, which is the case
in shear layer flows.

While the issue of the choice of mean flow will be further discussed later, let us now
present the LNSE analysis, which will allow us to identify the dominant hydrodynamic
modes and to compare them with the experimental observations. Later, we show that
the main LNSE mode is able to generate a swirling flow. Incompressible Navier–Stokes
equations are here sufficient to describe the hydrodynamic modes at the instability
frequency because the Mach number of the flow is low and the thickness of the shear layer
(∼0.01 m) and its length (0.03 m) are short compared with the acoustic wavelength at
790 Hz, which is about 0.4 m. Therefore, the acoustic phase can be considered as constant
over the shear layer region. The incompressible Navier–Stokes equations are⎧⎨

⎩
∂u
∂t

+ u · ∇u + 1
ρ

∇p − ν∇2u = 0,

∇ · u = 0,

(4.1)
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where ν is the kinematic viscosity. After introducing the triple decomposition (3.1) into
(4.1) and performing time-averaging, the RANS equations are obtained:⎧⎨

⎩ū · ∇ū + ũ · ∇ũ + u′ · ∇u′ + 1
ρ

∇p̄ − ν∇2ū = 0,

∇ · ū = 0.

(4.2)

Then, phase averaging is applied to (4.1), and (4.2) is subtracted to it to obtain the
equations for the coherent fluctuations:⎧⎨

⎩
∂ũ
∂t

+ ū · ∇ũ + ũ · ∇ū + ũ′ · ∇u′ + ˜̃u · ∇ũ + 1
ρ

∇p̃ − ν∇2ũ = 0,

∇ · ũ = 0.

(4.3)

With the incompressibility assumption in the shear layer region (∇ · ū = ∇ · ũ = ∇ ·
u′ = 0), the coherent nonlinear advection terms ũ′ · ∇u′ and ˜̃u · ∇ũ simplify to ∇ũ′u′
and ∇˜̃uũ, respectively. Herewith, the influence of the coherent component of the turbulent
Reynolds stress tensor ũ′u′ upon the coherent dynamics has to be modelled in order to
achieve the linear perturbation analysis. To do so, we use the Boussinesq assumption,
considering that turbulent fluctuations diffuse along the gradient of the mean velocity,
which has shown to give reliable results on various flows in past studies (e.g. Viola et al.
2014; Tammisola & Juniper 2016; Boujo et al. 2018):

− ũ′u′ + 2
3 k̃I = νt(∇ + ∇�)ũ, (4.4)

where k̃ = ũ′ · u′/2 is the coherent component of the turbulent kinetic energy, I is the
identity matrix and νt is the turbulent viscosity for the coherent fluctuations, which can be
extracted from unsteady experimental or LES data by locally linking the mean turbulent
Reynolds stress tensor u′u′ and the mean strain rate tensor S = (∇ + ∇�)ū, as explained
by Rukes, Paschereit & Oberleithner (2016). Alternatively, νt can be directly obtained from
a simulation relying on a turbulent viscosity model, for instance a RANS k − ω model.
Taking the divergence of (4.4) and using the incompressibility of the flow (∇ · ū = 0, ∇ ·
u′ = 0), one finds

∇ · ũ′u′ = −νt∇2ũ − ∇ν�
t · (∇ũ + ∇ũ�) + (2/3)∇k̃I. (4.5)

As in, e.g., Kitsios et al. (2010), Viola et al. (2014) or Tammisola & Juniper (2016), the
coherent oscillations are assumed to affect the distribution of the turbulence but not its
energy, so k̃ = 0. The oscillations of νt are also neglected. The diffusion terms −νt∇2ũ
and −ν∇2ũ sum up in (4.3), giving a total effective viscosity ν + νt. In the turbulent
regime, νt � ν. Indeed, νt extracted from the experiments is of the order of 10−3 m2 s−1

in the shear layer, while ν ∼ 1.5 × 10−5 m2 s−1.
Next, we consider only the coherent oscillations at one single angular frequency ω, the

fundamental aeroacoustic frequency, and neglect the effect of the harmonics at 2ω and
3ω, although they are visible in figure 5. This assumption can only be made in the linear
regime and its validity will be further discussed later. The angular frequency ω is defined as
complex: its real part corresponds to the aeroacoustic angular frequency and its imaginary
part to a growth rate. The Fourier series of ũ and p̃ in the azimuthal direction are written
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as

ũ(x, r, Θ, t) = 1
2

∑
m∈Z

û(m)(x, r) ei(ωt+mΘ) + c.c., (4.6)

p̃(x, r, Θ, t) = 1
2

∑
m∈Z

p̂(m)(x, r) ei(ωt+mΘ) + c.c., (4.7)

where c.c. denotes ‘complex conjugate’, Re(ω) ≥ 0 and the 2-D fields û(m) and p̂(m)

are complex, with substantial variations of the phase along the shear layer, which is
not compact with respect to the hydrodynamic wavelength. The azimuthal orders m > 0
(respectively, m < 0) corresponds to waves spinning in the CW (respectively, CCW)
direction. By truncating (4.6) and (4.7) at order 1, the task of writing (4.3) in the frequency
domain at the fundamental frequency is simplified, because ∇ · ũũ contains only terms
at frequencies 0 and 2ω, so it does not contribute directly to the oscillations at the
fundamental frequency. The steady component of ∇ · ũũ indirectly contributes to the
oscillation at the fundamental frequency through its impact on the mean flow. As it will be
discussed at the end of § 4.3, such an effect can only be considered with a self-consistent
approach, which is not in the scope of the present framework. Once the perturbations
described with (4.6) have been introduced into (4.3), it is multiplied with e−imΘ and
integrated over the circumference to isolate only terms of order m. The mean flow being
axisymmetric, the terms ū · ∇ũ and ũ · ∇ū in (4.3) are also of order m. Consequently, the
LNSE in the frequency domain for the components of azimuthal order m are⎧⎪⎪⎨

⎪⎪⎩
ū · ∇mû(m) + û(m) · ∇0ū + 1

ρ
∇mp̂(m)

−(ν + νt)∇2
mû(m) − ∇ν�

t · (∇mû(m) + ∇mû(m)�) = −iωû(m),

∇m · û(m) = 0,

(4.8)

where every occurrence of the partial derivative ∂/∂Θ was replaced by a multiplication
with im in the spatial differential operator that is now denoted ∇m. If the harmonics at kω
with k ≥ 2 are kept in the expressions (4.6) and (4.7) for ũ and p̃, (4.8) includes additional
terms at order m and angular frequency ω, which originate from nonlinear interactions
between the harmonics. Notably, the term resulting from the interaction between the
fundamental and the first harmonic has a non-negligible forcing amplitude and one may
wonder if it is valid to neglect it. To answer this question, one can refer to the work of Boujo
et al. (2018), who investigated the 2-D counterpart of the present axisymmetric cavity and
who showed that the forcing from this nonlinear term, which is mostly distributed around
the downstream corner of the cavity, barely affects the motion of the shear layer, which is
mostly responsive to perturbations located at the upstream corner of the cavity. Assuming
that the flow studied in the present axisymmetric geometry has the same property, the
effect of the harmonic on the structure of the fundamental is here neglected. Equation
(4.8) is written compactly as

L(ū)(m)q̂(m) = −iωq̂(m), (4.9)

where q̂(m) = (û(m), p̂(m)) and L(ū)(m), the LNS operator, is a linear differential operator
that depends on the mean flow and the selected azimuthal order m.

Equation (4.9) is a linear eigenvalue problem of infinite dimension, which can be
solved numerically as a finite-dimensional problem by discretising it with finite elements,
provided that the mean flow is known. This brings us to the following essential question:
Which mean flow ū should be used for this linearised perturbation analysis?
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Figure 10. The 2-D axisymmetric incompressible RANS mean flow for Ux = 41 m s−1, corresponding to
a linearly stable aeroacoustic condition between the two separate instability ranges of figure 3(a). As there
are no self-sustained coherent oscillations at this condition (see figure 5a) and that the zero-mean fluctuations
originate from turbulence, this incompressible simulation can be validated with the PIV data. (a) Axial velocity;
(b) radial velocity; (c) ūx profiles at axial locations x = −10, −5, 0, 5 and 10 mm from RANS (dashed) and
PIV (solid line); and (d) turbulent viscosity profiles (dashed lines, RANS; solid lines, PIV).

For such an investigation, it is of interest to use the mean flow at the onset of the
aeroacoustic instability – and not the one of the aeroacoustic limit cycles – which exhibits
a shear layer thickened by the stable high-amplitude self-sustained oscillations. This
mean flow could be experimentally observed by suddenly turning off a control system
counteracting the natural feedback between the acoustic modes of the cavity and the
unsteady vorticity of the shear layer. For instance, an active control method based on
microphone sensing and loudspeaker actuation, such as the one employed by Noiray
& Denisov (2017) in the context of thermoacoustic instabilities, could be used for this
purpose. A passive control approach based on sound-absorbing foam placed at the outer
wall of the cavity for suppressing azimuthal and radial acoustic modes could also be
employed, but it would have the major disadvantage of obstructing the optical access
for PIV measurements. Alternatively, this mean flow can be obtained from numerical
simulations of the incompressible RANS equations, which are inherently free from the
compressible acoustic oscillations. The RANS simulations have the additional advantage
of providing the mean flow in the whole cavity–pipe system, while the PIV data are only
available in a limited field of view. This numerical approach is adopted in the present work.

Figures 10(a) and 10(b) show the velocity components of the 2-D axisymmetric mean
flow computed with a steady incompressible k − ω SST RANS simulation using the solver
Ansys Fluent for Ux = 41 m s−1. The computational domain extends 70 cm before the
cavity and 15 cm after it. A mesh of 38 208 quadrilateral elements is used. The cells in
the bulk of the pipe have a typical size of 1 mm. At the walls, inflation layers are used
to ensure a good resolution of the turbulent boundary layer profile. In particular, the
thickness of the first layer is 1.5 × 10−5 in the pipe and 5 × 10−5 in the cavity, giving
values of y+ ∈ [0.02, 1] everywhere except at the cavity’s downstream corner, where it
locally reaches 3. A uniform velocity inlet profile Ux is imposed at the inlet. Second-order
numerical schemes are used for all the transport equations. A mesh convergence study
was performed on a coarser mesh (20 774 elements, typical cell size 1.6 mm) and a finer
mesh (65 138 elements, typical cell size 0.7 mm). The relative error between the velocity
profiles obtained for finer mesh and the normal mesh is smaller than 0.1 % in the shear
layer. Three different bulk flow velocities were considered: Ux = 47, 41 and 26 m s−1. The
case of Ux = 47 m s−1 corresponds to the experimental results presented in figure 6(b),
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which is, in reality, a condition leading to an aeroacoustic limit cycle involving the first
hydrodynamic mode. The case Ux = 41 m s−1 corresponds to the last aeroacoustically
stable point before the second instability range. The case Ux = 26 m s−1 corresponds to an
aeroacoustic limit cycle involving the second shear layer mode, represented in figure 6(a).
Figure 10(c) shows that the experimental and simulated velocity profiles are in very good
agreement for Ux = 41 m s−1. Such validation of the RANS simulations is not possible
for the two other cases because the experimental mean flow is altered by the aeroacoustic
oscillations which cannot develop in the employed incompressible RANS description.
Figure 10(d) compares the turbulent viscosity profiles from the incompressible RANS
and the ones extracted from the PIV data. Significant differences are found between the
shapes of these profiles but the maximum values are well reproduced by the simulation. It
was verified that these discrepancies have little effect on the frequency and the structure
of the dominant LNSE modes, as in the study of Boujo et al. (2018). For the following
stability analysis based on the incompressible LNSE, the νt field used in (4.8) is the
one obtained from the incompressible RANS simulations. In the present work, the steady
solutions of the incompressible RANS equations are referred to as ‘base flows’, although
this terminology is generally used for steady solutions of the Navier–Stokes equations.

Solving the eigenvalue problem (4.9) for this base flow allows us to identify which
hydrodynamic structures are the most prone to efficiently respond to the harmonic forcing
of the acoustic mode. This can be done for each azimuthal order m, but in the present paper,
we will focus on m = ±1, because we investigate aeroacoustic modes of azimuthal order 1.
With the finite-element code FreeFem++, the LNS operator was discretised for each of the
three base flows and for different values of the azimuthal orders, and especially for m = 1
and m = −1. A weak formulation of the LNSE in cylindrical coordinates is provided in
Appendix A. Velocity and pressure fluctuations were respectively discretised with P2 and
P1 Taylor–Hood elements. The discretisation gives a generalised eigenvalue problem Av =
λBv with A the matrix of the LNS operator and B the mass matrix. Here A and B are large
sparse matrices and a subset of their eigenvalues is found with the Schur method applied
on a shift invert of A. Since the problem is non-Hermitian, the eigenvalues can be complex
and are written as λ = −iω = −i(2πf + iσ) with ω the complex angular frequency, f the
real frequency and σ the real growth rate. In the adopted convention, σ < 0 corresponds
to linearly stable eigenmodes, and σ > 0 to linearly unstable eigenmodes. Figure 11 shows
the eigenvalues found for the three different base flows for the azimuthal order m = 1
(CW spinning perturbations). The axisymmetric modes m = 0 and azimuthal modes of
order m = 2 are also represented in light grey. The LNSE eigenspectra shown in figure 11
for m = 1 are comparable to the results of Boujo et al. (2018), which were obtained for
the 2-D geometrical counterpart of the present axisymmetric configuration: most of the
eigenvalues lie on continuous branches of modes with high damping (in blue), and two
isolated modes are located above the branches and are highlighted in red in figure 11.
The eigenmode associated with the isolated eigenvalue having the lowest (respectively,
highest) frequency will be called LNSE mode 1 (respectively, 2). These two eigenmodes
have significantly higher linear growth rates than other modes in the same frequency
range. They are shear layer hydrodynamic modes with different convective wavelengths,
while the latter overdamped modes are mostly cavity modes, an example of which is
given in figure 3.b3 of the paper from Boujo et al. (2018) for the 2-D configuration. It
has to be noted that most studies dealing with laminar 2-D rectangular cavity flows (e.g.
Sipp & Lebedev 2007; Sipp et al. 2010; Yamouni et al. 2013) report globally unstable
shear layer modes of the base flow. In contrast, in the present study, as in Boujo et al.
(2018), the turbulent base flow is hydrodynamically stable, which is in excellent agreement
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Figure 11. The LNSE eigenspectra for non-swirled axisymmetric base flows with (a) Ux = 26 m s−1,
(b) Ux = 41 m s−1 and (c) Ux = 47 m s−1, for the azimuthal orders m = 1 (◦), m = 0 (�) and m = 2 (×).
The eigenvalues in red are the two dominant shear layer modes for m = 1.

with the experimental observation of the case Ux = 41 m s−1 (figure 5a), for which a
comparison between incompressible RANS and LNSE approaches is directly possible,
as previously explained. The flow features only non-coherent motion, embedded in the
turbulent viscosity. The self-sustained oscillations can arise only when one of the two
linearly stable shear layer eigenmodes constructively interact with an acoustic mode, which
is also linearly stable. This coupling-induced instability between two stable modes has
recently been investigated experimentally and theoretically by Bourquard et al. (2021) in
the 2-D counterpart geometry, and the nonlinear acoustic amplification potential of the
2-D shear layer has been modelled by Pedergnana et al. (2021).

Concerning the present axisymmetric configuration, the LNSE spectrum for
perturbations of order m = −1 is exactly the same as for m = 1, which is expected because
the considered base flows are reflectionally symmetric. The spectrum at order m = 0
(axisymmetric modes) is similar to the spectrum at order m = 1, with two dominant modes
close to those obtained for m = 1. However, these axisymmetric shear layer modes are bad
candidates to generate aeroacoustic instabilities of azimuthal order 1 because at each phase
of an oscillation cycle, they would absorb in one half of the cavity the acoustic energy they
provide in the other half. For orders |m| ≥ 2, no isolated shear layer mode can be identified.

Figure 12 shows the fields of the coherent velocity fluctuations associated with the
LNSE modes 1 and 2, for m = 1, and for the mean flow from the simulation of the
incompressible RANS equations at Ux = 47 m s−1: figure 12(a–c) are the three velocity
components of mode 1, and figure 12(d) is the radial velocity component of mode 2. In
the 2-D geometry of Boujo et al. (2018), the corresponding mode 1 dominates the linear
response of the flow to harmonic forcing over a wide range of frequencies around its
eigenfrequency. This is also the case in the present study, although the linear response
and the problem formulation are not presented here for the sake of brevity. The LNSE
mode 1 is comparable to the shear layer mode 1 of figure 6(b) with a single vortex across
the span of the cavity opening, and the LNSE mode 2 is comparable to the shear layer
mode 2 of figure 6(a) with two vortices. These results show that the linear perturbation
analysis around the solutions of the incompressible RANS equations provides the shape
of hydrodynamic structures which resembles that involved in the observed aeroacoustic
limit cycle. The modes for m = −1, not shown here, are the mirror images of the modes
of order m = 1 with respect the axis x.

The lower limit of each instability ranges shown in figure 3(a) corresponds to conditions
for which the frequency of the shear layer mode, which scales with the bulk velocity Ux,
becomes close to the frequency of the acoustic mode, which is imposed by the geometry.
Beyond this limit, a stable limit cycle persists over a wide range of velocities, even though
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Figure 12. (a–c) Three components of the dominant first shear layer eigenmode of azimuthal order m = 1
(CW), for the mean flow Ux = 47 m s−1. (d) Radial component of the second shear layer eigenmode of order
m = 1 (CW), for the same mean flow.

the hydrodynamic and acoustic dynamics, taken in isolation, would have very distinct
frequencies.

Indeed, the second instability range shown in figure 3(a) spans between Ux = 42 m s−1

and Ux = 70 m s−1, and the spectrogram (figure 3c) shows that the frequency of the
stable aeroacoustic limit cycle remains almost unchanged over the whole range. This
observation indicates that in the second (resp. first) instability range, the first (resp. second)
low-Mach hydrodynamic modes m = ±1, which exhibits an axial convective wavelength
approximately equal to the cavity width W (resp. half of the cavity width), are slaves
of the pair of first-order purely azimuthal acoustic modes of the cavity. In other words,
the frequency of the aeroacoustic instability is dictated by the acoustic modes. It is
important to stress that the present constant-frequency whistling does not result from a
synchronization phenomenon. Indeed, it does not correspond to the phase locking of two
mutually coupled self-sustained oscillators (Balanov et al. 2009, chap. 4), because acoustic
modes and hydrodynamic modes, taken in isolation, are all linearly stable in the present
system, and the aeroacoustic instability originates from their coupling. Table 1 gives the
frequencies associated with the incompressible LNSE modes 1 and 2 for each of the three
considered flows. For Ux = 26 m s−1, the closest m = ±1 mode to the acoustic frequency
is the LNSE mode 2 (685 Hz), which explains why the first instability range involves this
mode. For a higher velocity Ux = 41 m s−1, the frequency of the hydrodynamic mode 1
(754 Hz) becomes closer to the acoustic frequency: this is just before the Hopf bifurcation
of the second instability range. At Ux = 47 m s−1, the frequency of the incompressible
LNSE mode 1 is 867 Hz, which is already 77 Hz above the acoustic frequency. At this
condition, the aeroacoustic instability thus involves shear layer dynamics having the overall
structure of mode 1. However, it oscillates at a significantly lower frequency than this mode
because of the broadband acoustic energy response of such shear layer, as it was shown
for the 2-D counterpart of the present configuration by Boujo et al. (2018), Bourquard
et al. (2021) and Pedergnana et al. (2021). By using the Strouhal number St = fW/Ux
and the non-dimensional growth rate σW/Ux, the three spectra of figure 11(a–c) overlap,
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Ux (m s−1) ṁ (g s−1) Frequency mode 1 (Hz) (St) Frequency mode 2 (Hz) (St)

26 37 472 (0.54) 685 (0.79)
41 59 754 (0.55) 1111 (0.81)
47 67 867 (0.55) 1278 (0.82)

Table 1. Frequencies and Strouhal numbers of the first and second LNSE modes of azimuthal order m = 1
for the three RANS mean flows.

which shows as expected that the eigenfrequencies of these purely hydrodynamic modes
scale linearly with the speed of the flow. One can also refer to the quasi-constant Strouhal
numbers in table 1: mode 1 remains around 0.55 and mode 2 remains around 0.8.

In the next section, the modal analysis is used to identify the mechanism leading to the
onset of a mean azimuthal flow under the action of the azimuthal aeroacoustic modes.

4.3. Second-order perturbation analysis on the mean flow
In this section, we show how spinning perturbations associated with the shear layer mode
1 can induce a steady swirl motion spinning in the opposite direction, as observed in § 4.1.
For this purpose, we derive an equation for the component of the mean flow which directly
results from the steady part of the forcing induced by the Reynolds stress tensor of the
coherent motion ũũ. In the same spirit as Wu & Zhuang (2016), we define a ‘partial’ flow
qp = (up, pp) as the flow that would be observed in absence of aeroacoustic feedback. The
mean of this flow, q̄p, is the solution of the incompressible RANS equation:

N(q̄p) = −∇ · u′
pu′

p, (4.10)

where N(q) = u · ∇u + (1/ρ)∇p − ν∇2u. We also define q as the turbulent flow obtained
when the shear layer dynamics is dominated by the LNSE mode 1, spinning CW, and with
azimuthal order m = 1. In that case, the equation for the mean flow q̄ is

N(q̄) = −∇ · ũũ − ∇ · u′u′. (4.11)

It is similar to the RANS equation (4.10) except that it is modified by the time-average of
the divergence of the coherent Reynolds stress tensor ũũ: therefore, the presence of the
azimuthal aeroacoustic wave makes q̄ deviate from the partial mean flow q̄p. The relative
magnitude of this deviation is of second order in ũ/ū. To obtain the azimuthal component
of the perturbed mean flow, we subtract (4.11) from (4.10) and project the result onto the
unit vector eΘ :

(N(q̄) − N(q̄p)) · eΘ = S, (4.12)

where

S ≡ (−ũ · ∇ũ − u′ · ∇u′ + u′
p · ∇u′

p) · eΘ. (4.13)
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The flows q̄p and q̄ are assumed to be axisymmetric: ∂ q̄p/∂Θ = 0, ∂ q̄/∂Θ = 0. In
addition, the partial mean flow has no swirl: ūpΘ = 0. Then, the left-hand side of (4.12) is

(N(q̄) − N(q̄p)) · eΘ = ūr
∂ ūΘ

∂r
+ ūx

∂ ūΘ

∂x
+ ūΘ ūr

r

− ν

(
1
r

∂

∂r

(
r
∂ ūΘ

∂r

)
+ ∂2ūΘ

∂x2 − ūΘ

r2

)
(4.14)

and the detailed expression of the right-hand side is

S = −∂ ũrũΘ

∂r
− ∂ ũ2

Θ

r∂Θ
− ∂ ũxũΘ

∂x
− 2ũrũΘ

r
− ∂u′

ru
′
Θ

∂r
− ∂u′2

Θ

r∂Θ
− ∂u′

xu′
Θ

∂x
− 2u′

ru
′
Θ

r

+
∂u′

pru′
pΘ

∂r
+

∂u′2
pΘ

r∂Θ
+

∂u′
pxu′

pΘ

∂x
+ 2

u′
pru′

pΘ

r
. (4.15)

The coherent fluctuations result from a pure spinning mode, so their RMS amplitude does
not vary over the circumference: (∂ ũ2

Θ/∂Θ) = 0. The turbulence field is also assumed

axisymmetric in a statistical sense: (∂u′2
pΘ/∂Θ) = 0 and (∂u′2

Θ/∂Θ) = 0. In the partial
flow, the turbulent velocity fluctuations u′

pr and u′
px are not correlated with u′

pθ . The
displacements (δr, δz, δθ) and (δr, δz, −δθ) are equiprobable, because of the reflectional
symmetry. This leads to u′

pru′
pθ = 0 and u′

pzu
′
pθ = 0. On the basis of these considerations,

one can write ∇ · u′
pu′

p · eΘ = 0. In the turbulent flow q subject to the presence of the
LNSE mode 1, the spinning wave breaks the reflectional symmetry, so that the previous
arguments are not valid anymore for u′u′. To close the problem, the Boussinesq assumption
is used again:

∇ · u′u′ · eΘ = −νt

(
∇2ūΘ − ūΘ

r2 + 2
r2

∂ ūr

∂Θ

)
+ 2

3
∂ k̄

r∂Θ

− ∂νt

∂r

(
∂ ūr

r∂Θ
+ ∂ ūΘ

∂r
− uΘ

r

)
− ∂νt

∂x

(
∂ ūx

r∂Θ
+ ∂ ūΘ

∂x

)
. (4.16)

The mean flow and the turbulent kinetic energy profile are axisymmetric, so this equation
simplifies to

∇ · u′u′ · eΘ = −νt

(
1
r

∂

∂r

(
r
∂ ūΘ

∂r

)
+ ∂2ūΘ

∂x2 − ūΘ

r2

)

− ∂νt

∂r

(
∂ ūΘ

∂r
− uΘ

r

)
− ∂νt

∂x
∂ ūΘ

∂x
. (4.17)

Therefore, (4.12) becomes

ūr
∂ ūΘ

∂r
+ ūx

∂ ūΘ

∂x
+ ūΘ ūr

r
− (ν + νt)

(
1
r

∂

∂r

(
r
∂ ūΘ

∂r

)
+ ∂2ūΘ

∂x2 − ūΘ

r2

)

− ∂νt

∂r

(
∂ ūΘ

∂r
− ūΘ

r

)
− ∂νt

∂x
∂ ūΘ

∂x
= −∂ ũrũΘ

∂r
− ∂ ũxũΘ

∂x
− 2ũrũΘ

r
. (4.18)

The perturbation of the mean flow is of order 2, therefore ūx 	 ūpx and ūr 	 ūpr. However,
this is not true in the Θ direction because the partial mean flow has initially no swirl.
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Figure 13. (a) Source terms of (4.19). (b) Azimuthal mean flow ūz obtained when the first LNSE mode of
azimuthal order m = 1 (CW) represented in figure 12(a–c) is applied as a perturbation to the RANS mean flow
for Ux = 47 m s−1.

The spatial derivatives ∂νt/∂x and ∂νt/∂r are neglected compared with the partial mean
flow components ūpx and ūpr of the turbulent velocity field and the associated terms are
therefore not considered further. The simplified equation is

ūpr
∂ ūΘ

∂r
+ ūpx

∂ ūΘ

∂x
+ ūΘ ūpr

r
− (ν + νt)

(
1
r

∂

∂r

(
r
∂ ūΘ

∂r

)
+ ∂2ūΘ

∂x2 − ūΘ

r2

)

= −∂ ũrũΘ

∂r
− ∂ ũxũΘ

∂x
− 2

ũrũΘ

r
. (4.19)

This is a partial differential equation (PDE) for the unknown variable ūΘ . The forcing
terms on the right-hand side arise from the spatial derivatives of the averaged Reynolds
stress tensor of the coherent fluctuations. As mentioned previously, the imposed
perturbation is a CW spinning mode ũ = û eiωt+iΘ , where û is the first shear layer mode
obtained with the incompressible LNSE for m = 1, and scaled to obtain a maximum
amplitude of the axial velocity fluctuations is around 10 m s−1, corresponding to the
measured amplitude for the case Ux = 47.0 m s−1. The forcing terms become

ũrũΘ = 1
2 Re(ûrû∗

Θ), ũxũΘ = 1
2 Re(ûxû∗

Θ). (4.20a,b)

They are shown in figure 13(a). The PDE (4.19) is solved in FreeFem++ with P2 elements,
with the fields ūpx, ūpr and νt taken from the RANS partial mean flow for Ux = 47 m s−1.
The self-induced mean flow ūΘ obtained from this analysis is presented in figure 13(b),
and it is in close agreement with the azimuthal mean flow measured with the stereoscopic
PIV for the case Ux = 47.0 m s−1, shown in figure 8(a). The second-order perturbation
analysis correctly leads to a mean flow whirling predominantly CCW in the cavity, with
a maximum around 10 m s−1 right above the cavity opening, while a weaker layer rotates
in the opposite direction in the downstream duct. One can note that for the case Ux =
60.3 m s−1 (figure 8b), the flow region with self-induced mean swirl broadens, which is
due to the thickening of the mean shear layer for such a high-amplitude limit cycle – the
interested reader can refer to the work of Boujo et al. (2018) for a in-depth analysis of
the nonlinear evolution of the mean flow when the acoustic level increases in the 2-D
counterpart of the present axisymmetric geometry. This broadening of the flow region
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with self-induced mean swirl cannot be reproduced with the present small perturbation
approach. To account for it, a self-consistent method would be a possible option, in the
spirit of Mantič-Lugo, Arratia & Gallaire (2014), with the difficulty that it should account
for the presence of a strong harmonic components (Meliga 2017), turbulence (Yim, Meliga
& Gallaire 2019) and aeroacoustic feedback loop.

5. Conclusion

An experimental and theoretical study has been conducted with a whistling axisymmetric
cavity. For the first time, time-resolved stereoscopic PIV has been applied to such a
configuration, giving access to the three components of the velocity in a plane cutting the
cavity through its axis. For the case of spinning modes, this allowed us to reconstruct the
full 3-D coherent velocity field, revealing that spinning aeroacoustic modes are associated
with the presence of a helical vortex tube spiralling along the axisymmetric mean shear
layer, while the aeroacoustic wave spins in the opposite direction to the winding of the
helix. With a LNSE approach applied to a RANS mean flow, we have identified the
hydrodynamic shear layer modes responsible for the aeroacoustic instability. With the
knowledge of the out-of-plane velocity component and the acoustic measurements, we
have discovered that spinning aeroacoustic wave of large amplitude causes the emergence
of a slow swirl spinning in the opposite direction, although the configuration and the flow
are reflectionally symmetric in absence of instability. We have shown that the spinning
helical hydrodynamic waves were responsible of the occurrence of this swirl. To that end,
a second-order perturbation analysis has been performed with a numerically computed
RANS partial base flow, to which a helical hydrodynamic perturbation was applied. The
Reynolds stresses associated to these fluctuations drove an azimuthal mean flow spinning
against the hydrodynamic wave as in the experiments. Unlike the phenomenon of acoustic
streaming, this flow is not caused by the acoustic wave directly, but is induced by the
hydrodynamic fluctuations associated to the aeroacoustic instability. The predicted spatial
structure of the mean swirl has a wider counter-rotating core compared with that measured
experimentally, which is due to the fact that our perturbation approach did not take into
consideration the nonlinear thickening of the shear layer due to large-amplitude vortex
shedding. However, the symmetry breaking of the mean flow by the spinning aeroacoustic
wave is correctly captured by our modelling strategy.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.352.
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Appendix A. Derivation of the weak formulation of the LNSE for perturbations of
azimuthal order m around an axisymmetric mean flow

We start from the LNSE (4.8) in the frequency domain for perturbations of order m.
They form a four-dimensional linear differential system that can be rewritten compactly
as in (4.9). To obtain the weak form of the problem, we take the scalar product of this
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Self-sustained azimuthal aeroacoustic modes. Part 1

system with a four-component virtual displacement function w = (wx, wr, wΘ, wp) with
an azimuthal modulation −m: w = ŵ(x, r) e−imΘ . We impose ŵ(x, r) = 0 on the walls
and the outlet. Additional boundary conditions are defined later. The scalar product of w
with system (4.9) is integrated on the whole volume to give the variational formulation, or
weak formulation of the problem (Braess 2007):∫

V
w · L(ū)q̂r dΘ dr dx = −iω

∫
V

w · q̂r dΘ dr dx. (A1)

Using integration by parts, we eliminate the second derivatives on the velocity components
and the first derivatives of the pressure, which leads to the following weak form:∫

V

(
wu · (ū · ∇û + û · ∇ū) − 1

ρ
p̂∇ · wu + (ν + νt)∇wu : ∇û

−wu · ∇νt · (∇û + ∇û�) + wp∇ · û
)

r dΘ dr dx

+
∫

∂V
(p̂wu

� − (ν + νt)wu∇û) · n dS = −iω
∫

V
w · q̂r dΘ d r dx, (A2)

where wu ≡ (wx, wr, wΘ). The integral on the domain’s boundary ∂V comes from the
integration by parts. Here dS is an infinitesimal surface element and n is the local outwards
normal unitary vector. On the walls and the inlet, w = 0, cancelling the boundary terms.
On the outlet, a free-stream boundary condition p̂ n = (ν + νt)∇û n is used, although its
physical justification is not entirely clear, it is commonly used in computational fluid
dynamics (CFD) and gives reasonable results. Its impact on the eigenvalue problem is
anyways small: the eigenvalues of the shear layer mode change by less than 5 % when
the outlet condition is replaced by a hard wall (û = 0). In the end, the boundary integral
completely vanishes. The next step is to compute the integral with respect to Θ in
(A2). Since w has a factor e−imΘ , all the terms of order different from m vanish in
the decomposition (4.6) due to the periodicity in Θ direction. We obtain a variational
formulation in two dimensions (but still four components), with surface integrals on the
domain (whose shape is shown in figure 8):∫
D

(
ŵx

(
ūx

∂ ûx

∂x
+ ūr

∂ ûx

∂r
+ im

r
ūΘ ûr + ûx

∂ ūx

∂x
+ ûr

∂ ūx

∂r

)
− ∂ŵx

∂x
p̂

+ (ν + νt)

(
∂ŵx

∂x
∂ ûx

∂x
+ ∂ŵx

∂r
∂ ûx

∂r
+ m2

r2 ŵxûx

)

− ŵx

(
∂νt

∂r

(
∂ ûx

∂r
+ ∂ ûr

∂x

)
+ 2

∂νt

∂x
∂ ûx

∂x

)

+ ŵr

(
ūx

∂ ûr

∂x
+ ūr

∂ ûr

∂r
+ im

r
ūΘ ûr + ûx

∂ ūr

∂x
+ ûr

∂ ūr

∂r
− 2ûΘ ūΘ

r

)
−

(
∂ŵr

∂r
+ ŵr

r

)
p̂

+ (ν + νt)

(
∂ŵr

∂x
∂ ûr

∂x
+ ∂ŵr

∂r
∂ ûr

∂r
+ m2

r2 ŵrûr

)

− ŵr

(
∂νt

∂x

(
∂ ûx

∂r
+ ∂ ûr

∂x

)
+ 2

∂νt

∂r
∂ ûr

∂r

)
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+ ŵΘ

(
ūx

∂ ûΘ

∂x
+ ūr

∂ ûΘ

∂r
+ im

r
ūΘ ûΘ + ūΘ ûr

r
+ ûx

∂ ūΘ

∂x
+ ûr

∂ ūΘ

∂r
+ ûΘ ūr

r

)

+ im
r

ŵΘ p̂ + (ν + νt)

(
∂ŵΘ

∂x
∂ ûΘ

∂x
+ ∂ŵΘ

∂r
∂ ûΘ

∂r
+ m2

r2 ŵΘ ûΘ

)

− ŵΘ

(
∂νt

∂r

(
im
r

ûr − ûΘ

r
+ ∂ ûΘ

∂r

)
+ ∂νt

∂x

(
im
r

ûz + ∂ ûΘ

∂z

))

+ŵp

(
∂ux

∂x
+ ∂ ûr

∂r
+ ûr

r
+ im

r
ûΘ

))
r dr dx

= −iω
∫
D

(ŵxûx + ŵrûr + ŵΘ ûΘ)r dr dx. (A3)

The computation of the double dot product ∇wu : ∇û is simple in Cartesian coordinates: it
is the sum of the element-wise products of the Jacobian matrices

∑
i,j(∂wi/∂xj)(∂wi/∂xj).

However, it requires some attention in cylindrical coordinates, where one cannot simply
take the expression of the Jacobian matrices in cylindrical coordinates and multiply
element-wise. One way to compute this double dot product in cylindrical coordinates is to
start from the expression in Cartesian coordinate

∇wu : ∇û = wx

∂x
ûx

∂x
+ wy

∂x
ûy

∂x
+ wz

∂x
ûz

∂x
+ wx

∂y
ûx

∂y
+ · · · , (A4)

and then use the substitutions ûy = ûr cos Θ − ûΘ sin Θ and ûz = ûr sin Θ + ûΘ cos Θ ,
and the transformations ∂/∂y = cos Θ∂/∂r − sin Θ∂/r∂Θ and ∂/∂z = sin Θ∂/∂r +
cos Θ∂/r∂Θ . In the end, we obtain

∇wu : ∇û = wx

∂x
ûx

∂x
+ wr

∂x
ûr

∂x
+ wΘ

∂x
ûΘ

∂x

+ wx

∂r
ûx

∂r
+ wr

∂r
ûr

∂r
+ wΘ

∂r
ûΘ

∂r

+ wx

r∂Θ

ûx

r∂Θ
+ wr

r∂Θ

ûr

r∂Θ
+ wΘ

r∂Θ

ûΘ

r∂Θ
, (A5)

which is slightly different from what we would obtain by multiplying element-wise and
summing the terms of ∇wu and ∇û written in cylindrical coordinates, where some
additional centripetal and Coriolis terms would appear.
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