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Abstract. In this paper, using the asymptotic a priori estimate method, we prove
the existence of pullback attractors for a non-autonomous semi-linear degenerate
parabolic equation in an arbitrary domain, without restriction on the growth order
of the polynomial type non-linearity and with a suitable exponential growth of the
external force. The obtained results improve some recent ones for the non-autonomous
reaction–diffusion equations.
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1. Introduction. In this paper, we study the following non-autonomous semi-
linear degenerate parabolic equation with variable, non-negative coefficients, defined
on an arbitrary domain (bounded or unbounded) � ⊂ �N, N ≥ 2,

∂u
∂t

− div(σ (x)∇u) + f (u) = g(t), x ∈ �, t > τ,

u|t=τ = uτ (x), x ∈ �,

u|∂� = 0,

(1.1)

where uτ ∈ L2(�) is given, f ∈ C(�) satisfies

C1|u|p − k1 ≤ f (u)u ≤ C2|u|p + k2, p ≥ 2, (1.2)

(f (u) − f (v))(u − v) ≥ −l|u − v|2, (1.3)

and the external force g satisfies

g ∈ L2
loc(�; L2(�)), and ‖g(t)‖2

L2(�) ≤ Meγ |t|, (1.4)

where C1, C2, k1, k2, l, M are positive constants, γ < λ1, where λ1 > 0 is the first
eigenvalue of the operator A := −div(σ (x)∇) in � with the homogeneous Dirichlet
condition (see Section 2.1).

Problem (1.1) can be derived as a simple model for neutron diffusion (feedback
control of nuclear reactor) (see [13]). In this case u and σ stand for the neutron flux
and neutron diffusion respectively.

The degeneracy of problem (1.1) is considered in the sense that the measurable,
non-negative diffusion coefficient σ (x), is allowed to have at most a finite number
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of (essential) zeroes at some points. Motivated by [8], where a degenerate elliptic
problem is studied, we assume that the function σ : � → � satisfies the following
assumptions:

(Hα) σ ∈ L1
loc(�) and for some α ∈ (0, 2), lim infx→z |x − z|−ασ (x) > 0 for every z ∈

�, when the domain � is bounded.
(H∞

α,β) σ satisfies condition (Hα) and lim inf |x|→∞ |x|−βσ (x) > 0 for some β > 2, when
the domain � is unbounded.

For the physical motivation of the assumptions (Hα) and (H∞
α,β), we refer the reader to

[2, 8, 14, 15].
In order to study problem (1.1) we use the natural energy space D1

0(�, σ ) defined
as the closure of C∞

0 (�) in the norm

‖u‖D1
0(�,σ ) :=

(∫
�

σ (x)|∇u|2dx
)1/2

.

This space is a Hilbert space with respect to the scalar product

(u, v)σ :=
∫

�

σ (x)∇u∇v dx.

The existence and long-time behaviour of solutions of the problem (1.1) in the
autonomous case have been studied in [14, 15] and improved recently in [2]. In [2],
the authors considered the problem (1.1) with u0 ∈ D1

0(�, σ ), g ∈ L2(�) given, and
f : � → � satisfies

|f (u) − f (v)| ≤ C0|u − v|(1 + |u|γ + |v|γ ) , 0 ≤ γ <
4 − 2α

N − 2 + α
,

F(u) ≥ −μ

2
u2 − C1,

f (u)u ≥ −μu2 − C2,

where C0, C1, C2 ≥ 0, F is the primitive F(y) = ∫ y
0 f (s)ds of f , μ < λ1, λ1 is the first

eigenvalue of the operator Au := −div(σ (x)∇u) in � with homogeneous Dirichlet
boundary conditions. Under the above assumptions of f , the authors proved that
problem (1.1) defines a semi-group S(t) : D1

0(�, σ ) → D1
0(�, σ ), which possesses a

compact connected global attractor A = W u(E) in the space D1
0(�, σ ). Furthermore,

for each u0 ∈ D1
0(�, σ ), the corresponding solution u(t) tends to the set E of equilibrium

points in D1
0(�, σ ) as t → +∞. The basic tool for the approach in this case is the

following Lyapunov function


(u) = 1
2
‖u‖2

D1
0(�,σ ) +

∫
�

(F(u) + gu) dx.

Noting that the critical exponent of the embeddingD1
0(�, σ ) ↪→ Lp(�) is 2∗

α = 2N
N − 2 + α

,
so the condition 0 ≤ γ < 4−2α

N − 2 + α
is necessary to prove the existence of a mild solution

by the fixed point method and to ensure the existence of the Lyapunov function 
.
In this paper, we continue studying the long-time behaviour of solutions to problem

(1.1) by removing the restrictions on the growth of the non-linearity f and allowing
the external force g depending on time t. Non-autonomous equations appear in many
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applications in the natural sciences, so they are also of great importance and interest.
The long-time behaviour of solutions of such equations have been studied extensively
in the last years. The first attempt was to extend the notion of global attractor to the
non-autonomous case leading to the concept of the so-called uniform attractor (see
[12]). It is remarkable that the conditions ensuring the existence of the uniform attractor
parallel those for autonomous equations. To this end, non-autonomous systems are
lifted in [23] to autonomous ones by expanding the phase space. Then, the existence
of uniform attractor relies on some compactness properties of the solution operator
associated to the system. However, one disadvantage of the uniform attractor is that
it need not to be ‘invariant’ unlike the global attractor for autonomous systems. In
order to overcome this drawback, a new concept, called pullback attractor, has been
introduced for the non-autonomous case. The theory of pullback attractors has been
developed for both the non-autonomous and random dynamical systems and has
shown to be very useful in the understanding of the dynamics of non-autonomous
dynamical systems (see [9] and references therein).

On the other hand, generalised semi-flows are an abstraction of autonomous
dynamical systems for which there may be more than one solution corresponding to
given initial data. As mentioned in [6], the need for a theory of such systems arises
for various reasons. First, there may be genuine non-uniqueness of solutions. Second,
solutions may not be known to be unique (as, for example, for certain semi-linear
wave equations with high power non-linearities, or for the incompressible Navier–
Stokes equations in three space dimension). Third, there may be free parameters or
controls that are not specified and lead to various possible solutions. For the qualitative
analysis of such systems from the point of view of the theory of dynamical systems, it is
necessary to develop a corresponding theory for multi-valued semi-groups. In the last
years, there have been some theories for which one can treat multi-valued semi-flows
and their asymptotic behaviour, such as generalised semi-flows theory of Ball [5–7] and
theory of multi-valued semi-flows of Menlik and Valero [21]. A comparision of these
two theories can be found in [10]. We note also that the theory of trajectory attractors
of Chepyzhov and Vishik has been also fruitfully applied to treat equations without
uniqueness [11, 12]. Thanks to these theories, the asymptotic behaviour of equations
without uniqueness of the Cauchy problems has been studied by several authors in
the last years (see e.g. [3, 4] for the long-time behaviour for quasilinear degenerate
equations with weights of the above type).

The main aim of this paper is to prove the existence of a pullback D-attractor in
the space D1

0(�, σ ) ∩ Lp(�) for the process generated by problem (1.1). Let us describe
the methods used in the paper. First, we use the compactness method [11] to prove the
global existence of a weak solution and use a priori estimates to show the existence
of a family of pullback D-absorbing sets B̂ = {B(t) : t ∈ �} in D1

0(�, σ ) ∩ Lp(�)) for
the process. By the compactness of the embedding D1

0(�, σ ) ↪→ L2(�), the process is
pullbackD-asymptotically compact in L2(�). This immediately implies the existence of
a pullback D-attractor in L2(�). When proving the existence of pullback D-attractors
in Lp(�) and in D1

0(�, σ ) ∩ Lp(�), to overcome the difficulty arising by the lack of
embedding results, we use the asymptotic a priori estimate method initiated in [20]
for autonomous equations and developed in [19] for non-autonomous equations. One
of the main new features in our paper is that the existence of a pullback D-attractor
is proved for a class of semi-linear degenerate parabolic equations in an arbitrary
(bounded or unbounded) domain. It is also worth noticing that, when σ = 1, our
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results improve the recent results in [16, 17, 22] for the non-autonomous Laplacian
equation in bounded domains.

The content of the paper is as follows. In Section 2, for the convenience of the
reader, we recall some concepts and results on function spaces and pullback attractors
which we will use. For clarity, in Sections 3 and 4, we only consider the case of a
bounded domain and the diffusion coefficient σ satisfying condition (Hα). Section 3
is devoted to the proof of the global existence and uniqueness of a weak solution to
problem (1.1) by using the compactness method. In Section 4, we prove the existence of
pullback attractors in various spaces by using the asymptotic a priori estimate method.
In the last section, we give some remarks on similar results for an unbounded domain
and σ satisfying condition (H∞

α,β).

2. Preliminaries.

2.1. Function spaces and operator. We recall some basic results on the function
spaces which we will use. Let N ≥ 2, α ∈ (0, 2), and

2∗
α =

⎧⎪⎪⎨
⎪⎪⎩

4
α

∈ (2,∞) if N = 2,

2N
N − 2 + α

∈
(

2,
2N

N − 2

)
if N ≥ 3.

The exponent 2∗
α has the role of the critical exponent in the classical Sobolev embedding.

We have the following generalised version of the Poincaré inequality ([4, Corollary
2.6]).

LEMMA 2.1. Let � be a bounded (unbounded) domain in �N, N � 2, and assume
that condition (Hα) ((H∞

β )) is satisfied. Then there exists a constant c > 0, such that

∫
�

|u|2 dx � c
∫

�

σ (x)|∇u|2 dx, for every u ∈ C∞
0 (�). (2.1)

We emphasize that condition (Hα) is optimal in the following sense: For α > 2
there exist functions such that (2.1) is not satisfied (see [8]). Note also that in the case
of an unbounded domain, (2.1) does not hold in general, if β � 2 in (H∞

α,β). We refer
also to the examples of [1].

The natural energy space for problem (1.1) involves the space D1
0(�, σ ), defined

as the closure of C∞
0 (�) with respect to the norm

||u||D1
0(�,σ ) :=

(∫
�

σ (x)|∇u|2dx
) 1

2

.

The space D1
0(�, σ ) is a Hilbert space with respect to the scalar product

(u, v)σ :=
∫

�

σ (x)∇u∇vdx.

The following lemmas come from [8, Propositions 3.3–3.5].
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LEMMA 2.2. Assume that � is a bounded domain in �N, N ≥ 2, and σ satisfies (Hα).
Then the following embeddings hold:

(i) D1
0(�, σ ) ↪→ L2∗

α (�) continuously;
(ii) D1

0(�, σ ) ↪→ Lp(�) compactly if p ∈ [1, 2∗
α).

LEMMA 2.3. Assume that � is an unbounded domain in �N, N ≥ 2, and σ satisfies
(H∞

α,β). Then the following embeddings hold:
(i) D1

0(�, σ ) ↪→ Lp(�) continuously for every p ∈ [2∗
β, 2∗

α],
(ii) D1

0(�, σ ) ↪→ Lp(�) compactly if p ∈ (2∗
β, 2∗

α).

We now consider the case where � is a bounded domain (the unbounded case is
considered similarly with (H∞

α,β) instead of (Hα)).
We consider the boundary value problem

−div(σ (x)∇u) = h ∈ L2(�), x ∈ �, u|∂� = 0. (2.2)

In order to apply the Friedrichs extension of symmetric operators, we set

X = L2(�), D(Ã) = C∞
0 (�), Ãu = −div(σ (x)∇u).

The problem (2.2) corresponds to the operator equation

Ãu = h, u ∈ C∞
0 (�), h ∈ X.

For every u, v ∈ C∞
0 (�), we have

(Ãu, v) =
∫

�

σ (x)∇u∇vdx = (u, Ãv).

It follows from Lemma 2.2 that there exists a constant C > 0 such that

(Ãu, u) ≥ C‖u‖2
X , for any u ∈ C∞

0 (�).

Hence, Ã is symmetric and strongly monotone. Applying the Friedrichs extension
theorem [25], we find that the energy space XE equals to D1

0(�, σ ) since XE

is the completion of D(Ã) = C∞
0 (�) with respect to the scalar product (u, v)σ =∫

�
σ (x)∇u∇vdx, and the extensions satisfy

Ã ⊂ A ⊂ AE,

where AE : D1
0(�, σ ) → D−1(�, σ ) is the energetic extension (D−1(�, σ ) is the dual

space of D1
0(�, σ )), and A = −div(σ (x)∇) is the Friedrichs extension of Ã with the

domain of definition

D(A) = {u ∈ D1
0(�, σ ) : Au ∈ X}.

Noticing that 2∗
α > 2, we have an evolution triple

D1
0(�, σ ) ↪→ L2(�) ↪→ D−1(�, σ )

https://doi.org/10.1017/S0017089510000418 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000418


542 CUNG THE ANH AND TANG QUOC BAO

with compact and dense embbedings. Hence, there exists a complete orthonormal
system of eigenvectors (ej, λj) such that

(ej, ek) = δjk and − div(σ (x)∇ej) = λjej, j, k = 1, 2, . . . ,

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . , λj → +∞ as j → ∞.

Noting that

λ1 = inf

{‖u‖2
D1

0(�,σ )

‖u‖2
L2(�)

: u ∈ D1
0(�, σ ), u = 0

}
,

we have

‖u‖2
D1

0(�,σ ) ≥ λ1‖u‖2
L2(�), for all u ∈ D1

0(�, σ ). (2.3)

2.2. Pullback D-attractors. Let X be a metric space with metric d. Denote by
B(X) the set of all bounded subsets of X . For A, B ⊂ X , the Hausdorff semi-distance
between A and B is defined by

dist(A, B) = sup
x∈A

inf
y∈B

d(x, y).

Let {U(t, τ ) : t ≥ τ, τ ∈ �} be a process in X , i.e. U(t, τ ) : X → X such that U(τ, τ ) =
Id and U(t, s)U(s, τ ) = U(t, τ ) for all t ≥ s ≥ τ, τ ∈ �. {U(t, τ )} is said to be norm-
to-weak continuous if U(t, τ )xn ⇀ U(t, τ )x, as xn → x in X , for all t ≥ τ, τ ∈
�. The following result is useful for verifying that a process is norm-to-weak
continuous.

PROPOSITION 2.4. [24] Let X, Y be two Banach spaces, X∗, Y∗ be respectively their
dual spaces. Assume that X is dense in Y, the injection i : X → Y is continuous and its
adjoint i∗ : Y∗ → X∗ is dense, and {U(t, τ )} is a continuous or weak continuous process
on Y. Then {U(t, τ )} is a norm-to-weak continuous on X if and only if for t ≥ τ , τ ∈ �,
U(t, τ ) maps a compact set of X to be a bounded set of X.

Suppose that D is a non-empty class of parameterised sets D̂ = {D(t) : t ∈ �} ⊂
B(X).

DEFINITION 2.1. The process {U(t, τ )} is said to be pullback D-asymptotically
compact if for any t ∈ �, any D̂ ∈ D, and any sequence τn → −∞, any sequence
xn ∈ D(τn), the sequence {U(t, τn)xn} is relatively compact in X .

DEFINITION 2.2. A process {U(t, τ )} is called pullback ω-D-limit compact if for
any ε > 0, any t ∈ �, and D̂ ∈ D, there exists a τ0(D̂, ε, t) ≤ t such that

α

(⋃
τ≤τ0

U(t, τ )D(τ )

)
≤ ε,

where α is the Kuratowski measure of non-compactness of B ∈ B(X),

α(B) = inf{δ > 0|B has a finite open cover of sets of diameter ≤ δ}.
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LEMMA 2.5. [16] A process {U(t, τ )} is pullback D-asymptotically compact if and
only if it is ω-D-limit compact.

DEFINITION 2.3. A family of bounded sets B̂ ∈ D is called pullback D-absorbing
for the process {U(t, τ )} if for any t ∈ �, any D̂ ∈ D, there exists τ0 = τ0(D̂, t) ≤ t such
that ⋃

τ≤τ0

U(t, τ )D(τ ) ⊂ B(t).

DEFINITION 2.4. A family Â = {A(t) : t ∈ �} ⊂ B(X) is said to be a pullback D-
attractor for {U(t, τ )} if

(1) A(t) is compact for all t ∈ �;
(2) Â is invariant, i.e.

U(t, τ )A(τ ) = A(t), for all t ≥ τ ;

(3) Â is pullback D-attracting, i.e.

lim
τ→−∞ dist(U(t, τ )D(τ ), A(t)) = 0, for all D̂ ∈ D, and all t ∈ �;

(4) If {C(t) : t ∈ �} is another family of closed attracting sets then A(t) ⊂ C(t),
for all t ∈ �.

THEOREM 2.6. [16] Let {U(t, τ )} be a norm-to-weak continuous process such that
{U(t, τ )} is pullback D-asymptotically compact. If there exists a family of pullback D-
absorbing sets B̂ = {B(t) : t ∈ �} ∈ D, then {U(t, τ )} has a unique pullback D-attractor
Â = {A(t) : t ∈ �} and

A(t) =
⋂
s≤t

⋃
τ≤s

U(t, τ )B(τ ).

3. Existence of global solutions. We consider the spaces

V = L2(τ, T ;D1
0(�, σ )) ∩ Lp(τ, T ; Lp(�)),

V∗ = L2(τ, T ;D−1(�, σ )) + Lp′
(τ, T ; Lp′

(�)),

where p′ is the conjugate of p. Denote by |.|2, (., .), ‖.‖, ((., .)) the norms and scalar
products in L2(�) and D1

0(�, σ ) respectively, and |.|p the norm in Lp(�).

DEFINITION 3.1. A function u is called a weak solution of (1.1) on (τ, T) iff

u ∈ V,
∂u
∂t

∈ V∗,

u|t=τ = uτ a.e. in �

and ∫ T

τ

∫
�

(
∂u
∂t

ϕ + σ∇u∇ϕ + f (u)ϕ
)

=
∫ T

τ

∫
�

gϕ,

for all test functions ϕ ∈ V .

https://doi.org/10.1017/S0017089510000418 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000418


544 CUNG THE ANH AND TANG QUOC BAO

The following proposition makes the initial condition in problem (1.1) meaningful.

PROPOSITION 3.1. If u ∈ V and
∂u
∂t

∈ V∗ then u ∈ C([τ, T ]; L2(�)).

Proof. We select a sequence un ∈ C1([τ, T ];D1
0(�, σ ) ∩ Lp(�)) such that⎧⎨

⎩
un → u in V
∂un

∂t
→ ∂u

∂t
in V∗.

Then, for all t, t0 ∈ [τ, T ], we have

|un(t) − um(t)|22 = |un(t0) − um(t0)|22 + 2
∫ t

t0

〈
u′

n(s) − u′
m(s), un(s) − um(s)

〉
.

We continue, by choosing t0 such that

|un(t0) − um(t0)|22 = 1
T − τ

∫ T

τ

|un(t) − um(t)|22.

We have∫
�

|un(t) − um(t)|2

= 1
T − τ

∫
�

∫ T

τ

|un(t) − um(t)|2 + 2
∫

�

∫ t

t0

(u′
n(s) − u′

m(s))(un(s) − um(s))

≤ 1
T − τ

∫
�

∫ T

τ

|un(t) − um(t)|2 + 2‖u′
n − u′

m‖V∗‖un − um‖V .

Hence, {un} is a Cauchy sequence in C([τ, T ]; L2(�)). Thus the sequence {un} converges
in C([τ, T ]; L2(�)) to a function v ∈ C([τ, T ]; L2(�)). Since un(t) −→ u(t) ∈ L2(�) for
a.e. t ∈ [τ, T ], we deduce that u = v a.e. t ∈ [τ, T ]. After redefining on a subset of zero
measure, we get u ∈ C([τ, T ]; L2(�)). �

THEOREM 3.2. For any τ, T ∈ �, uτ ∈ L2(�) given, the problem (1.1) has a unique
weak solution u on (τ, T). Moreover, the following inequality holds

|u(t)|22 ≤ e−λ1(t−τ )|uτ |22 + 2k1

λ1
|�| + e−λ1t

λ1

∫ t

−∞
eλ1s|g(s)|22. (3.1)

Proof. Consider the approximating solution un(t) in the form

un(t) =
n∑

k=1

unk(t)ek,

where {ej}∞j=1 are eigenvectors of the operator A := −div(σ (x)∇). We get un from solving
the problem 〈

∂un

∂t
, ek

〉
+ 〈Aun, ek〉 + 〈f (un), ek〉 = 〈g, ek〉,

(un(τ ), ek) = (uτ , ek), k = 1, . . . , n.
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Using the Peano theorem, we get the local existence of un. We now establish some a
priori estimates for un. We have

1
2

∂

∂t
|un|22 + ‖un‖2 +

∫
�

f (un)un =
∫

�

g(t)un.

Using hypothesis (1.2) and the Cauchy inequality, we get

1
2

∂

∂t
|un|22 + ‖un‖2 + C1|un|pp − k1|�| ≤ 1

2λ1
|g(t)|22 + λ1

2
|un|22.

Noting that ‖u‖2 ≥ λ1|u|22, we have

∂

∂t
|un|22 + ‖un‖2 + 2C1|un|pp ≤ 1

λ1
|g(t)|22 + 2k1|�|. (3.2)

Integrating (3.2) on [τ, t], 0 < t ≤ T, we have

|un(t)|22 +
∫ t

τ

‖un‖2 + 2C1

∫ t

τ

|un|pp ≤ |un(τ )|22 + 1
λ1

∫ t

τ

|g(s)|22 + 2k1|�|(t − τ ). (3.3)

The last inequality implies that

{un} is bounded in L∞(τ, T ; L2(�)), (3.4)

{un} is bounded in L2(τ, T ;D1
0(�, σ )), (3.5)

{un} is bounded in Lp(τ, T ; Lp(�)). (3.6)

Using hypothesis (1.2), we get the estimates∫ T

τ

‖f (un)‖p′

Lp′ (�)
≤

∫ T

τ

∫
�

C(1 + |un|p−1)p′ ≤
∫ T

τ

∫
�

C(1 + |un|p).

Hence {f (un)} is bounded in Lp′
(τ, T ; Lp′

(�)) and thus

f (un) ⇀ η in Lp′
(τ, T ; Lp′

(�)). (3.7)

Therefore we have

un ⇀ u in L2(τ, T ;D1
0(�, σ )),

f (un) ⇀ η in Lp′
(τ, T ; Lp′

(�)),

Aun ⇀ Au in L2(τ, T ;D−1(�, σ )),

up to a subsequence. By rewriting the equation as

∂un

∂t
= −Aun − f (un) + g, (3.8)

we see that { ∂un
∂t } is bounded in V∗, and therefore in Lp′

(τ, T ;D−1(�, σ ) + Lp′
(�)).

Noting that

D1
0(�, σ ) ⊂⊂ L2(�) ⊂ D−1(�, σ ) + Lp′

(�)

is an evolution triplet, applying the Compactness Lemma [18] we can assume that un →
u strongly in L2(τ, T ; L2(�)). Hence un → u a.e. in � × [τ, T ]. Since f is continuous,
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it follows that f (un) → f (u) a.e. in � × [τ, T ]. Thanks to (3.7) and Lemma 1.3 in [18,
Chapter 1], one has

f (un) ⇀ f (u) in Lp′
(τ, T ; Lp′

(�)).

Thus, from (3.8) we have

u′ = −Au − f (u) + g in V∗.

By Proposition 3.1, we have u ∈ C([τ, T ]; L2(�)). It remains to show that u(τ ) = uτ .
Choosing some test function ϕ ∈ C1([τ, T ];D1

0(�, σ ) ∩ Lp(�)) with ϕ(T) = 0, observe
that ϕ ∈ V , so in the ‘limiting equation’ one can integrate by parts in the t variable to
give

∫ T

τ

− (u, ϕ′) +
∫ T

τ

∫
�

σ (x)∇u∇ϕ +
∫ T

τ

∫
�

(f (u) − g)ϕ = (u(τ ), ϕ(τ )).

By applying the same procedure to the Galerkin approximations, we get that

∫ T

τ

− (un, ϕ
′) +

∫ T

τ

∫
�

σ (x)∇un∇ϕ +
∫ T

τ

∫
�

(f (un) − g)ϕ = (un(τ ), ϕ(τ )).

Taking limits as n → ∞ we conclude that

∫ T

τ

− (u, ϕ′) +
∫ T

τ

∫
�

σ (x)∇u∇ϕ +
∫ T

τ

∫
�

(f (u) − g)ϕ = (uτ , ϕ(τ ))

since un(τ ) → uτ . Thus, u(τ ) = uτ .
We now prove the uniqueness and the continuous dependence of the solution. Let

u1, u2 be two solutions of problem (1.1) with the initial data u1(τ ), u2(τ ), respectively.
From (1.1), we have

∂

∂t
(u1 − u2) + (Au1 − Au2) + f (u1) − f (u2) = 0.

Since 〈Au1 − Au2, u1 − u2〉 ≥ λ1|u1 − u2|22 and using (1.3) we deduce that

1
2

∂

∂t
|u1 − u2|22 ≤ 1

2
∂

∂t
|u1 − u2|22 + 〈Au1 − Au2, u1 − u2〉

= −〈f (u1) − f (u2), u1 − u2〉 ≤ l|u1 − u2|22. (3.9)

Applying the Gronwall lemma, we obtain

|u1(t) − u2(t)|22 ≤ e2l(t−τ )|u1(τ ) − u2(τ )|22.

This implies the uniqueness (if u1(τ ) = u2(τ )) and the continuous dependence of the
solution.

Finally, we prove (3.1). Multiplying (1.1) by u and integrating over �, we have

1
2

∂

∂t
|u|22 + ‖u‖2 +

∫
�

f (u)u =
∫

�

g(t)u.
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Using (1.2) and the Cauchy inequality, we obtain

∂

∂t
|u|22 + 2‖u‖2 + 2C1|u|pp ≤ 2k1|�| + 1

λ1
|g(t)|22 + λ1|u|22. (3.10)

Noting that ‖u‖2 ≥ λ1|u|22, we have

∂

∂t
|u|22 + λ1|u|22 ≤ 2k1|�| + 1

λ1
|g(t)|22. (3.11)

Applying the Gronwall lemma, we get

|u(t)|22 ≤ e−λ1(t−τ )|uτ |22 + 2k1

λ1
|�| + e−λ1t

λ1

∫ t

−∞
eλ1s|g(s)|22. (3.12)

Hence it follows that the solution u can be extended to [0,+∞). �

4. Existence of pullback D-attractors. Due to the results of Theorem 3.2, we can
define a process

U(t, τ ) : L2(�) → D1
0(�, σ ) ∩ Lp(�),

where U(t, τ )uτ is the unique solution of (1.1) with the initial data uτ at time τ .

LEMMA 4.1. Assume that f, g satisfy conditions (1.2)–(1.4), and u(t) is the weak
solution of problem (1.1). Then the following inequality holds for t > τ :

|u|22 + ‖u‖2 + |u|pp ≤ c
((

1 + (t − τ ) + 1
t − τ

)
e−λ1(t−τ )|uτ |22 +

(
1 + 1

t − τ

)

+
(

1 + 1
t − τ

)
e−λ1t

∫ t

−∞
eλ1s|g(s)|22

+
(

1 + 1
t − τ

)
e−λ1t

∫ t

−∞

∫ s

−∞
eλ1r|g(r)|22

)
. (4.1)

This implies that there exists a family of pullback D-absorbing sets in D1
0(�, σ ) ∩ Lp(�)

for the process {U(t, τ )}.
Proof. Multiplying (3.12) by eλ1t and integrating from τ to t, we get∫ t

τ

eλ1s|u|22 ≤ (t − τ )eλ1τ |uτ |22 + 2k1

λ2
1

|�|eλ1t + 1
λ1

∫ t

−∞

∫ s

−∞
eλ1r|g(r)|2. (4.2)

Using (3.10) and the fact that ‖u‖2 ≥ λ1|u|22, we have

∂

∂t
|u|22 + ‖u‖2 + 2C1|u|pp ≤ 2k1|�| + 1

λ1
|g(t)|22, (4.3)

thus

∂

∂t

(
eλ1t|u|22

) + eλ1t(‖u‖2 + 2C1|u|pp
) ≤ λ1eλ1t|u|22 + 2k1|�|eλ1t + eλ1t

λ1
|g(t)|22. (4.4)
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Integrating from τ to t and using (4.2), we have∫ t

τ

eλ1s(‖u‖2 + 2C1|u|pp
) ≤ (1 + λ1(t − τ ))eλ1τ |uτ |22 + 4k1

λ1
|�|eλ1t

+ 1
λ1

∫ t

−∞
eλ1s|g(s)|22 +

∫ t

−∞

∫ s

−∞
eλ1r|g(r)|2. (4.5)

Combining (4.2) and (4.5), we get∫ t

τ

eλ1s(‖u‖2 + 2C1|u|pp + |u|22
) ≤ (1 + (λ1 + 1)(t − τ ))eλ1τ |uτ |22

+2k1(2λ1 + 1)

λ2
1

|�|eλ1t + 1
λ1

∫ t

−∞
eλ1s|g(s)|22

+
(

1 + 1
λ1

)∫ t

−∞

∫ s

−∞
eλ1r|g(r)|22. (4.6)

From (1.2) we deduce that

C̃1|s|p − C̃2 ≤ F(s) ≤ C̃3|s|p + C̃4, (4.7)

where F(s) = ∫ s
0 f (τ )dτ . Combining (4.3) and (4.7), we get

∂

∂t
|u|22 + ‖u‖2 + C5

∫
�

F(u) ≤ 1
λ1

|g(t)|22 + C7. (4.8)

Mutiply (1.1) by ut and integrating over �, we have

|ut|22 + 1
2

∂

∂t

(
‖u‖2 + 2

∫
�

F(u)
)

=
∫

�

g(t)ut ≤ 1
2
|g(t)|22 + 1

2
|ut|22,

thus

∂

∂t

(
‖u‖2 + 2

∫
�

F(u)
)

≤ |g(t)|22. (4.9)

Using (4.8), (4.9) and (2.3), we have

∂

∂t
G(u) + C8G(u) ≤ C9|g(t)|22 + C7,

where G(u) = |u|22 + ‖u‖2 + 2
∫
�

F(u), which implies

∂

∂t
((t − τ )eλ1tG(u)) ≤ (1 + (λ1 − C8)(t − τ ))G(u)eλ1t + (

C7 + C9|g(t)|22
)
(t − τ )eλ1t.

Integrating from τ to t, we get

(t − τ )G(u) ≤ (1 + C11(t − τ ))
∫ t

τ

G(u)eλ1s + C10(t − τ )eλ1t + C9(t − τ )
∫ t

τ

eλ1s|g(s)|22.

Using (4.6) we get the desired inequality (4.1).
Let R be the set of all functions r : � → (0,+∞) such that limt→−∞ teλ1tr2(t) = 0

and denote by D the class of all families D̂ = {D(t) : t ∈ �} ⊂ B(L2(�)) such that
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D(t) ⊂ B(r(t)) for some r(t) ∈ R, where B(r(t)) denotes the closed ball in L2(�) with
radius r(t). Let

r0(t) = 2c
(

1 + e−λ1t
∫ t

−∞
eλ1s|g(s)|22 + e−λ1t

∫ t

−∞

∫ s

−∞
eλ1r|g(r)|22

)
.

Condition (1.4) implies the existence of the following integrals∫ t

−∞
eλ1s|g(s)|22 < ∞ and

∫ t

−∞

∫ s

−∞
eλ1r|g(r)|22 < ∞ for all t ∈ �.

We denote by B0(r0(t)) the closed ball in D1
0(�, σ ) ∩ Lp(�) centred at 0 with radius

r0(t). Obviously for any D̂ ∈ D and any t ∈ �, by (4.1) there exists τ0 = τ0(D̂, t) ≤ t
such that

|u|22 + ‖u‖2 + |u|pp ≤ r0(t) for all τ ≤ τ0,

i.e. B̂ = {B0(r0(t)) : t ∈ �} is a family of bounded pullback D-absorbing sets in
D1

0(�, σ ) ∩ Lp(�). �
From the above lemma we deduce that the process {U(t, τ )} maps a compact set of

D1
0(�, σ ) ∩ Lp(�) to be a bounded set of D1

0(�, σ ) ∩ Lp(�), and thus by Proposition
2.4, the process {U(t, τ )} is norm-to-weak continuous in D1

0(�, σ ) ∩ Lp(�). Since
{U(t, τ )} has a family of pullback D-absorbing sets in D1

0(�, σ ) ∩ Lp(�), in order
to prove the existence of pullback D-attractors, we only need to check that {U(t, τ )} is
pullback D-asymptotically compact.

4.1. Pullback D-attractor in L2(�). Since D1
0(�, σ ) ↪→ L2(�) compactly, we

immediately get the following result.

THEOREM 4.2. Assume that f, g satisfy conditions (1.2)–(1.4). Then the process
corresponding to problem (1.1) has a pullback D-attractor in L2(�).

4.2. Pullback D-attractor in Lp(�). To prove that the {U(t, τ )} is pullback D-
asymptotically compact in Lp(�), we need the following lemma.

LEMMA 4.3. Let {U(t, τ )} be a norm-to-weak continuous process in L2(�) and Lp(�),
and {U(t, τ )} satisfy the following two conditions:

(i) {U(t, τ )} is pullback D-asymptotically compact in L2(�);
(ii) for any ε > 0, B̂ ∈ D, there exist constants M(ε, B̂) and τ0(ε, B̂) ≤ t such that:

(∫
�(|U(t,τ )uτ |≥M)

|U(t, τ )uτ |p
) 1

p

< ε, for any uτ ∈ B(τ ), and τ ≤ τ0.

Then {U(t, τ )} is pullback D-asymptotically compact in Lp(�).

Proof. For any fixed ε > 0, and B̂ ∈ D, it follows from condition (i) and Lemma
2.5 that there exists τ1 = τ1(B̂, ε) ≤ τ0 such that

α

(⋃
τ≤τ1

U(t, τ )B(τ )

)
≤ (3M)

2−p
2

(ε

2

) p
2

in L2(�),
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i.e.
⋃

τ≤τ1
U(t, τ )B(τ ) has a finite (3M)

2−p
2 ( ε

2 )
p
2 -net in L2(�). By Lemma 5.3 in [24],⋃

τ≤τ1
U(t, τ )B(τ ) has a finite ε-net in Lp(�). By the definition of the measure of

non-compactness, we obtain

α

(⋃
τ≤τ1

U(t, τ )B(τ )

)
≤ ε in Lp(�),

i.e. {U(t, τ )} is pullback ω-D-limit compact in Lp(�). Applying the results of Lemma
2.5 once again, we deduce that {U(t, τ )} is pullback D-asymptotically compact in
Lp(�). �

THEOREM 4.4. Assume that f, g satisfy conditions (1.2)–(1.4). Then the process
corresponding to problem (1.1) has a pullback D-attractor in Lp(�).

Proof. It is sufficient to show that the process {U(t, τ )} satisfies the condition (ii)
in Lemma 4.3. In fact, take M large enough such that C1|u|p−1 ≤ f (u) in

�1 = �(u(t) ≥ M) = {x ∈ � : u(x, t) ≥ M},

and denote

(u − M)+ =
{

u − M, u ≥ M,

0, u < M.

In �1 we see that

g(t)((u − M)+)p−1 ≤ C1

2
((u − M)+)2p−2 + 1

2C1
|g(t)|2

≤ C1

2
((u − M)+)p−1|u|p−1 + 1

2C1
|g(t)|2, (4.10)

and

f (u)((u − M)+)p−1 ≥ C1|u|p−1((u − M)+)p−1

≥ C1

2
((u − M)+)p−1|u|p−1 + C1Mp−2

2
((u − M)+)p. (4.11)

Multiplying (1.1) by |(u − M)+|p−1 and using (4.10), (4.11), we deduce that

1
p

∂

∂t
|(u − M)+|pp + (p − 1)

∫
�1

σ (x)|∇(u − M)+|2|(u − M)+|p−2

+ C1Mp−2
∫

�1

|(u − M)+|p

≤
∫

�1

1
C1

|g(t)|2.

Therefore

∂

∂t
|(u − M)+|pp + CMp−2|(u − M)+|pp ≤ C|g(t)|22,
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which implies that

∂

∂t
(t − τ )eCMp−2t|(u − M)+|pp ≤ eCMp−2t|(u − M)+|pp + C(t − τ )eCMp−2t|g(t)|22. (4.12)

Integrating (4.12) from τ to t, we get

(t − τ )eCMp−2t|(u − M)+|pp ≤
∫ t

τ

eCMp−2t|(u − M)+|pp + C(t − τ )
∫ t

τ

eCMp−2t|g(t)|22

≤ e(CMp−2−λ1)t
∫ t

τ

eλ1s|u|pp + C(t − τ )e(CMp−2−γ )t

CMp−2 − γ
,

and then

|(u − M)+|pp ≤ 1
t − τ

e−λ1t
∫ t

τ

eλ1s|u|pp + Ce−γ t

CMp−2 − γ
. (4.13)

By (4.13) and (4.6), we obtain

|(u − M)+|pp ≤ C
((

1 + 1
t − τ

)
e−λ1(t−τ )|uτ |22 + 1

t − τ
+ e−λ1t

t − τ

∫ t

−∞
eλ1s|g(s)|22

+ e−λ1t

t − τ

∫ t

−∞

∫ s

−∞
eλ1r|g(r)|22

)
+ Ce−γ t

CMp−2 − γ
.

Hence, for any ε > 0, there exist M1 > 0 and τ1 < t such that for any τ < τ1 and any
M ≥ M1, we have

∫
�(u(t)≥M)

|(u − M)+|p ≤ ε. (4.14)

Repeating the same step above, by just taking (u + M)− instead of (u − M)+, we deduce
that there exist M2 > 0 and τ2 < t such that for any τ < τ2 and any M ≥ M2,

∫
�(u(t)≤−M)

|(u + M)−|p ≤ ε, (4.15)

where

(u + M)− =
{

u + M, u ≤ −M,

0, u ≥ −M.

Let M0 = max{M1, M2} and τ0 = min{τ1, τ2}, we obtain

∫
�(|u|≥M)

(|u| − M)p ≤ ε for τ ≤ τ0 and M ≥ M0.
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Using (4.14) and (4.15), we have∫
�(|u|≥2M)

|u|p =
∫

�(|u|≥2M)
((|u| − M) + M)p

≤ 2p−1
(∫

�(|u|≥2M)
(|u| − M)p +

∫
�(|u|≥2M)

Mp
)

≤ 2p−1
(∫

�(|u|≥M)
(|u| − M)p +

∫
�(|u|≥M)

(|u| − M)p
)

≤ 2pε. (4.16)

This completes the proof. �

4.3. Pullback D-attractor in D1
0(�, σ ) ∩ Lp(�).

THEOREM 4.5. Assume that f, g satisfy conditions (1.2)-(1.4). Then the process
corresponding to problem (1.1) has a pullback D-attractor in D1

0(�, σ ) ∩ Lp(�).

Proof. By Lemma 4.1, {U(t, τ )} has a family of bounded pullbackD-absorbing sets
in D1

0(�, σ ) ∩ Lp(�). It remains to show that {U(t, τ )} is pullback D-asymptotically
compact in D1

0(�, σ ) ∩ Lp(�), i.e. for any t ∈ �, any B̂ ∈ D, any sequence τn → −∞,
and any sequence uτn ∈ B(τn), the sequence {U(t, τn)uτn} is precompact in D1

0(�, σ ) ∩
Lp(�). Thanks to Theorem 4.4, we need only to show that the sequence {U(t, τn)uτn} is
precompact in D1

0(�, σ ).
We consider the sequence un(t) = U(t, τn)uτn , by Theorems 4.2 and 4.4, we can

assume that {un(t)} is a Cauchy sequence both in L2(�) and Lp(�). We have

‖un(t) − um(t)‖ = 〈Aun(t) − Aum(t), un(t) − um(t)〉
=

〈dun

dt
(t) − dum

dt
(t), un(t) − um(t)〉 + 〈f (un(t)) − f (um(t)), un(t) − um(t)

〉
≤ 1

2
∂

∂t
|un(t) − um(t)|22 + |f (un(t)) − f (um(t))|p′ |un(t) − um(t)|p. (4.17)

From (3.9) and since {un(t)} is a Cauchy sequence in L2(�), we get

∂

∂t
|un(t) − um(t)|22 → 0, as n, m → ∞. (4.18)

Using (1.2), we have

‖f (un(t))‖p′

Lp′ (�)
≤

∫
�

C(1 + |un(t)|p−1)p′ ≤
∫

�

C(1 + |un(t)|p),

thus {f (un(t))} is bounded in Lp′
(�) because {un(t)} is bounded in Lp(�). It follows from

here and (4.17), (4.18) that

‖un(t) − um(t)‖ → 0, as m, n → ∞.

The proof is complete. �

5. Some remarks on the case of an unbounded domain. In this section, we comment
the case of an unbounded domain � ⊂ �N, N ≥ 2. We assume that the weight function
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σ (x) satisfies the condition (H∞
α,β). It is crucial to note that the embedding D1

0(�, σ ) ⊂
L2(�) is compact either condition (Hα) or (H∞

α,β) holds. Observe that β > 2 implies
2∗

β := 2N
N−2+β

< 2, i.e. 2 ∈ (2∗
β, 2∗

α). In the unbounded case we need σ to growth faster
than quadratically at infinity, to ensure the compactness of the above embedding. Note
also that in the case of an unbounded domain, (2.1) does not hold in general, if β ≤ 2.
We refer to the examples of [1].

When (H∞
α,β) is satisfied, the operator A = −div(σ (x)∇) has the same properties

as in the case of a bounded domain. Therefore, we may apply the methods used for a
bounded domain to this case with some small changes in the conditions of f . More
precisely, we assume that f : � × � → � is a Caratheodory function such that

|f (x, u)| ≤ C1|u|p−1 + h1(x), (5.1)

f (x, u)u ≥ C2|u|p − h2(x), (5.2)

(f (x, u) − f (x, v))(u − v) ≥ −l|u − v|2, (5.3)

F(x, u) ≥ C3|u|p + h3(x), (5.4)

where F(x, u) = ∫ u
0 f (x, s)ds; C1, C2, C3, l > 0; h2(x) ∈ L1(�) and h1, h3 ∈ Lp′

(�) are
non-negative real-valued functions, and the external force g satisfies

g ∈ L2
loc(�; L2(�)), and ‖g(t)‖2

L2(�) ≤ Meγ |t|, γ < λ1. (5.5)

We may now repeat the arguments used in Sections 3 and 4 to obtain

THEOREM 5.1. Under conditions (H∞
α,β) and (5.1)–(5.5), problem (1.1) defines a

process having a pullback D-attractor in D1
0(�, σ ) ∩ Lp(�)).
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