A FURTHER GENERALIZATION OF THE ARC-SINE LAW

C. C. HEYDE ${ }^{1}$
(Received 15 December 1966)

1. Introduction

Let $X_{i}, i=1,2,3, \cdots$ be a sequence of independent and identically distributed random variables and write $S_{0}=0, S_{n}=\sum_{i=1}^{n} X_{i}, n \geqq 1$. Let $I_{n}(0), I_{n}(1), \cdots, I_{n}(n)$ be that unique permutation of $1,2, \cdots, n$ such that $S_{I_{n}(0)} \leqq S_{I_{n}(1)} \leqq \cdots \leqq S_{I_{n}(n)}$ and such that if $S_{j}=S_{k}$ with $j<k$ then $I_{n}(k)<I_{n}(j)$. Thus, $I_{n}(j)$ is an index of the j-th largest partial sum.

In this note, we shall obtain the distribution of the order index $I_{n}(j)$ in terms of the distribution of the number of positive partial sums in the sequence $0=S_{0}, S_{1}, \cdots, S_{n}$. Then, under the condition

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\operatorname{Pr}\left(S_{1}>0\right)+\cdots+\operatorname{Pr}\left(S_{n}>0\right)}{n}=\alpha, \quad 0 \leqq \alpha \leqq 1, \tag{1}
\end{equation*}
$$

we shall go on to obtain the limit distribution $\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{I_{n}([n a]) \leqq n x\right\}$, $0 \leqq a \leqq 1$. This will be seen to constitute a generalization of the limit result of Spitzer [3], Theorem 7.1, on the number of positive partial sums $S_{k}, 0 \leqq k \leqq n$, and proceeds along the lines of an extension of the work of Darling [1]. As with the result of Spitzer, no limit distribution will exist if the condition (1) is not satisfied.

2. Distribution of the order indices

For $n \geqq 0$, take N_{n} as the number of positive $S_{k}, 0 \leqq k \leqq n$. In addition to the sequence $\left\{S_{k}, k=0,1, \cdots, n\right\}$, we introduce for each fixed j the two further sequences

$$
\begin{array}{ll}
\qquad \begin{array}{ll}
S_{0}^{\prime}=0, & S_{0}^{\prime \prime}=0, \\
S_{1}^{\prime}=X_{j}, & S_{1}^{\prime \prime}=X_{j+1} \\
S_{2}^{\prime}=X_{j}+X_{j-1}, & S_{2}^{\prime \prime}=X_{j+1}+X_{j+2} \\
\cdots, & \cdots \\
S_{j}^{\prime}=X_{j}+X_{j-1}+\cdots+X_{1}, & S_{n-j}^{\prime \prime}=X_{j+1}+X_{j+2}+\cdots+X_{n}, \\
& \\
&
\end{array} \text { Research carried out at Aarhus University. }
\end{array}
$$

and define random variables N_{j}^{\prime} and $N_{n-j}^{\prime \prime}$ with respect to the S_{i}^{\prime} and $S_{i}^{\prime \prime}$, respectively, in the same way as with N_{n} for the S_{i}.

Let us look at the event $\left\{I_{n}(k)=j\right\}$. That is, k is one plus the number out of $S_{0}, S_{1}, \cdots, S_{j-1}$ that are less than S_{j} plus the number out of S_{j+1}, S_{j+2}, \cdots, S_{n} that are less than or equal to S_{j}. Clearly, the number of $S_{0}, S_{1}, \cdots, S_{j-1}$ that are less than S_{j} is precisely the number of $S_{1}^{\prime}, S_{2}^{\prime}, \cdots, S_{j}^{\prime}$ that are positive or, in other words, N_{j}^{\prime}. Furthermore, the number of $S_{j+1}, S_{j+2}, \cdots, S_{n}$ that are less than or equal to S_{j} is just the number of $S_{1}^{\prime \prime}, S_{2}^{\prime \prime}, \cdots, S_{n-j}^{\prime \prime}$ that are non-positive which is $n-j-1-N_{n-j}^{\prime \prime}$. We therefore see that the events $\left\{I_{n}(k)=j\right\}$ and $\left\{N_{j}^{\prime}+n-j-N_{n-j}^{\prime \prime}=k\right\}$ are the same. Now the primed and double primed random variables are independent as they depend on disjoint subsets of the X_{i}. Thus,

$$
\operatorname{Pr}\left\{I_{n}(k)=j\right\}=\sum_{\nu=\max (0, j+k-n)}^{\min (j, k)} \operatorname{Pr}\left(N_{j}^{\prime}=v\right) \operatorname{Pr}\left(N_{n-j}^{\prime \prime}=n-j-k+v\right) .
$$

Also, the X_{i} are identically distributed so the prime and double prime can conveniently be dropped at this stage and we obtain the distribution,
(2) $\operatorname{Pr}\left\{I_{n}(k)=j\right\}=\sum_{\nu=\max (0, j+k-n)}^{\min (j, k)} \operatorname{Pr}\left(N_{j}=v\right) \operatorname{Pr}\left(N_{n-j}=n-j-k+v\right)$.

This result is a generalization of the result of Theorem 1 of Darling [1] which relates to random variables which have continuous and symmetric distributions.

Using the well-known result of Sparre-Andersen that

$$
\operatorname{Pr}\left(N_{n}=k\right)=\operatorname{Pr}\left(N_{k}=k\right) \operatorname{Pr}\left(N_{n-k}=0\right), 0 \leqq k \leqq n,
$$

we have

$$
\begin{aligned}
\operatorname{Pr}\left(N_{j}\right. & =v) \operatorname{Pr}\left(N_{n-j}=n-j-k+\nu\right) \\
& =\operatorname{Pr}\left(N_{v}=v\right) \operatorname{Pr}\left(N_{j-v}=0\right) \operatorname{Pr}\left(N_{n-j-k+\nu}=n-j-k+\nu\right) \operatorname{Pr}\left(N_{k-\nu}=0\right) \\
& =\operatorname{Pr}\left(N_{k}=v\right) \operatorname{Pr}\left(N_{n-k}=n-j-k+\nu\right),
\end{aligned}
$$

so that from (2),

$$
\begin{equation*}
\operatorname{Pr}\left\{I_{n}(k)=j\right\}=\operatorname{Pr}\left\{I_{n}(j)=k\right\} . \tag{3}
\end{equation*}
$$

We have therefore established the following theorem.
Theorem 1. The random variable $I_{n}(j)$ has the same distribution as the random variable $N_{j}^{\prime}+n-j-N_{n-j}^{\prime \prime}$, the primed and double primed random variables being independent.

3. Limit theorem

We shall establish the following theorem.
Theorem 2. Suppose the random variables X_{i} are such that the condition (1) is satisfied. Then, for $0 \leqq a \leqq 1$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{n^{-1} I_{n}([n a]) \leqq x\right\}=G_{a, \alpha}(x),
$$

where
(4)

$$
\begin{aligned}
& G_{a, \alpha}(x)=\left(\frac{\sin \pi \alpha}{\pi}\right)^{2} \int_{0}^{x}\left\{\int_{v=\max (0, u+a-1)}^{\min (u, a)} \frac{(0-v)^{\alpha}(1-a-u+v)^{1-\alpha} v^{1-\alpha}(a-v)^{\alpha}}{(u \leqq x \leqq 1,0<a<1,0<\alpha<1),} d u\right. \\
& G_{0, \alpha}(x)=1-F_{\alpha}(1-x), \quad G_{1, \alpha}(x)=F_{\alpha}(x), \\
& G_{a, 0}(x)=\left\{\begin{array}{ll}
0 & (x<1-a), \\
1 & (x \geqq 1-a),
\end{array} \quad G_{a, 1}(x)= \begin{cases}0 & (x<a), \\
1 & (x \geqq a),\end{cases} \right.
\end{aligned}
$$

and $F_{\alpha}(x)$ is given in the relations (5). If the condition (1) is not satisfied then $\operatorname{Pr}\left\{n^{-1} I_{n}([n a]) \leqq x\right\}$ does not tend to a limit as $n \rightarrow \infty$.

Proof. From Theorem 1 we see that $n^{-1} I_{n}([n a])$ has the same distribution as $n^{-1} N_{[n a]}^{\prime}+1-n^{-1}[n a]-n^{-1} N_{n-[n a]}^{\prime \prime}$, the primed and double primed terms being independent. Further, the results of Spitzer [3], Theorem 7.1, tell us that as $n \rightarrow \infty, n^{-1} N_{n}$ converges in law to a random variable with distribution function F_{α} given by

$$
\begin{align*}
& F_{0}(x)= \begin{cases}0 & (x<0), \\
1 & (x \geqq 0),\end{cases} \\
& F_{\alpha}(x)=\frac{\sin \pi \alpha}{\pi} \int_{0}^{x} u^{\alpha-1}(1-u)^{-\alpha} d u \quad(0 \leqq x \leqq 1,0<\alpha<1), \tag{5}\\
& F_{1}(x)= \begin{cases}0 & (x<1), \\
1 & (x \geqq 1) .\end{cases}
\end{align*}
$$

It is therefore clear that as $n \rightarrow \infty, n^{-1} I_{n}([n a])$ will converge in law to a random variable with the same distribution as $a Y_{1}+(1-a)\left(1-Y_{2}\right)$, where Y_{1} and Y_{2} are independent and each has distribution function F_{α}. It remains only to examine the particular cases.

If $0<a<1,0<\alpha<1, a Y_{1}$ has density $\pi^{-1} \sin \pi a x^{\alpha-1}(a-x)^{-\alpha}$, $0 \leqq x \leqq a$, while $(1-a)\left(1-Y_{2}\right)$ has density $\pi^{-1} \sin \pi a x^{-\alpha}(1-a-x)^{\alpha-1}$, $0 \leqq x \leqq 1-a$. The density of the random variable $a Y_{1}+(1-a)\left(1-Y_{2}\right)$ is therefore
$\left(\frac{\sin \pi \alpha}{\pi}\right)^{2} \int_{v=\max (0, x+a-1)}^{\min (x, \alpha)} \frac{d y}{(x-y)^{\alpha}(1-a-x+y)^{1-\alpha} y^{1-\alpha}(a-y)^{\alpha}} \quad(0 \leqq x \leqq 1)$,
as required.
The other cases can be read off immediately using relations (5). If $0 \leqq a \leqq 1, \alpha=0$, then $n^{-1} I_{n}([n a])$ converges in law to $1-a$ as $n \rightarrow \infty$, and hence converges in probability to $1-a$. Similarly, if $0 \leqq a \leqq 1, \alpha=1$, $n^{-1} I_{n}([n a])$ converges in probability to a as $n \rightarrow \infty$. On the other hand, we see that $\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{n^{-1} I_{n}([n a]) \leqq x\right\}$ is $1-F_{\alpha}(1-x)$, if $a=0$ or $F_{\alpha}(x)$ if $a=1$.

Finally, if the condition (1) is not satisfied then the relation

$$
\frac{\operatorname{Pr}\left(S_{1}>0\right)+\cdots+\operatorname{Pr}\left(S_{n}>0\right)}{n}=E \frac{N_{n}}{n}
$$

shows us that $n^{-1} N_{n}$ cannot converge in distribution and so neither can $n^{-1} N_{[n a]}^{\prime}+1-n^{-1}[n a]-n^{-1} N_{n-[n a]}^{\prime \prime}$ or, in other words, $n^{-1} I_{n}([n a])$. This completes the proof of the theorem.

Theorem 2 of Darling [1] is the particular case of our Theorem 2 where the X_{i} are restricted to have a continuous and symmetric distribution. The case $0<\alpha<1$ of our theorem could have been established along parallel lines to the proof of Theorem 2 of [1] by making use of Theorem 2 of Heyde [2] in which it is shown that there must exist a function of slow variation L such that

$$
k^{1-\alpha}(n-k)^{\alpha} \frac{L(n-k)}{L(k)} \operatorname{Pr}\left(N_{n}=k\right)=\frac{\sin \pi \alpha}{\pi}+o(k, n)
$$

where $o(k, n)$ tends to zero uniformly in k and n as $\min (k, n-k) \rightarrow \infty$.
In order to read off the results of Spitzer's generalization [3], Theorem 7.1, of the arc-sine law from our Theorem 2 we note that

$$
\operatorname{Pr}\left(N_{n}=k\right)=\operatorname{Pr}\left\{I_{n}(n-k)=0\right\}=\operatorname{Pr}\left\{I_{n}(0)=n-k\right\},
$$

so that

$$
\begin{aligned}
\operatorname{Pr}\left(N_{n} \leqq n x\right) & =\operatorname{Pr}\left(N_{n} \leqq[n x]\right) \\
& =\operatorname{Pr}\left(n-[n x] \leqq I_{n}(0) \leqq n\right) \\
& \rightarrow 1-G_{0, \alpha}(1-x)=F_{\alpha}(x), \text { as } n \rightarrow \infty .
\end{aligned}
$$

References

[1] D. A. Darling, 'Sums of symmetrical random variables', Proc. Anter. Math. Soc. 2 (1951), 511-517.
[2] C. C. Heyde, 'Some local limit results in fluctuation theory', J. Austral. Math. Soc. 7 (1967), 455-464.
[3] F. L. Spitzer, 'A combinatorial lemma and its application to probability theory', Trans. Amer. Math. Soc. 82 (1956), 232-339.

University of Sheffield

