A FURTHER GENERALIZATION OF THE ARC-SINE LAW

C. C. HEYDE 1

(Received 15 December 1966)

1. Introduction

Let X_i , $i = 1, 2, 3, \cdots$ be a sequence of independent and identically distributed random variables and write $S_0 = 0$, $S_n = \sum_{i=1}^n X_i$, $n \ge 1$. Let $I_n(0)$, $I_n(1), \cdots, I_n(n)$ be that unique permutation of 1, 2, \cdots , n such that $S_{I_n(0)} \le S_{I_n(1)} \le \cdots \le S_{I_n(n)}$ and such that if $S_j = S_k$ with j < kthen $I_n(k) < I_n(j)$. Thus, $I_n(j)$ is an index of the j-th largest partial sum.

In this note, we shall obtain the distribution of the order index $I_n(j)$ in terms of the distribution of the number of positive partial sums in the sequence $0 = S_0, S_1, \dots, S_n$. Then, under the condition

(1)
$$\lim_{n\to\infty}\frac{\Pr(S_1>0)+\cdots+\Pr(S_n>0)}{n}=\alpha, \qquad 0\leq \alpha\leq 1,$$

we shall go on to obtain the limit distribution $\lim_{n\to\infty} \Pr\{I_n([na]) \leq nx\}, 0 \leq a \leq 1$. This will be seen to constitute a generalization of the limit result of Spitzer [3], Theorem 7.1, on the number of positive partial sums S_k , $0 \leq k \leq n$, and proceeds along the lines of an extension of the work of Darling [1]. As with the result of Spitzer, no limit distribution will exist if the condition (1) is not satisfied.

2. Distribution of the order indices

For $n \ge 0$, take N_n as the number of positive S_k , $0 \le k \le n$. In addition to the sequence $\{S_k, k = 0, 1, \dots, n\}$, we introduce for each fixed j the two further sequences

$$S'_{0} = 0, \qquad S''_{0} = 0, \\S'_{1} = X_{j}, \qquad S''_{1} = X_{j+1}, \\S'_{2} = X_{j} + X_{j-1}, \qquad S''_{2} = X_{j+1} + X_{j+2}, \\\dots, \qquad S'_{j} = X_{j} + X_{j-1} + \dots + X_{1}, \qquad S''_{n-j} = X_{j+1} + X_{j+2} + \dots + X_{n},$$

¹ Research carried out at Aarhus University.

369

and define random variables N'_i and N''_{n-i} with respect to the S'_i and S''_i , respectively, in the same way as with N_n for the S_i .

Let us look at the event $\{I_n(k) = j\}$. That is, k is one plus the number out of S_0, S_1, \dots, S_{j-1} that are less than S_j plus the number out of S_{j+1} , S_{j+2}, \dots, S_n that are less than or equal to S_j . Clearly, the number of S_0, S_1, \dots, S_{j-1} that are less than S_j is precisely the number of S'_1, S'_2, \dots, S'_j that are positive or, in other words, N'_j . Furthermore, the number of $S_{j+1}, S_{j+2}, \dots, S_n$ that are less than or equal to S_j is just the number of $S''_1, S''_2, \dots, S'_n$ that are non-positive which is $n-j-1-N''_{n-j}$. We therefore see that the events $\{I_n(k)=j\}$ and $\{N'_j+n-j-N''_{n-j}=k\}$ are the same. Now the primed and double primed random variables are independent as they depend on disjoint subsets of the X_i . Thus,

$$\Pr\{I_n(k) = j\} = \sum_{\nu = \max(0, j+k-n)}^{\min(j, k)} \Pr(N'_j = \nu) \Pr(N''_{n-j} = n-j-k+\nu).$$

Also, the X_i are identically distributed so the prime and double prime can conveniently be dropped at this stage and we obtain the distribution,

(2)
$$\Pr\{I_n(k)=j\} = \sum_{\nu=\max(0,j+k-n)}^{\min(j,k)} \Pr(N_j=\nu) \Pr(N_{n-j}=n-j-k+\nu).$$

This result is a generalization of the result of Theorem 1 of Darling [1] which relates to random variables which have continuous and symmetric distributions.

Using the well-known result of Sparre-Andersen that

$$\Pr(N_n = k) = \Pr(N_k = k) \Pr(N_{n-k} = 0), \ 0 \le k \le n,$$

we have

$$\begin{split} \Pr\left(N_{j} = \nu\right) & \Pr\left(N_{n-j} = n - j - k + \nu\right) \\ &= \Pr\left(N_{\nu} = \nu\right) \Pr\left(N_{j-\nu} = 0\right) \Pr\left(N_{n-j-k+\nu} = n - j - k + \nu\right) \Pr\left(N_{k-\nu} = 0\right) \\ &= \Pr\left(N_{k} = \nu\right) \Pr\left(N_{n-k} = n - j - k + \nu\right), \end{split}$$

so that from (2),

(3)
$$\Pr\{I_n(k) = j\} = \Pr\{I_n(j) = k\}.$$

We have therefore established the following theorem.

THEOREM 1. The random variable $I_n(j)$ has the same distribution as the random variable $N'_j + n - j - N''_{n-j}$, the primed and double primed random variables being independent.

3. Limit theorem

We shall establish the following theorem.

THEOREM 2. Suppose the random variables X_i are such that the condition (1) is satisfied. Then, for $0 \leq a \leq 1$,

$$\lim_{n\to\infty} \Pr\left\{n^{-1}I_n([na]) \leq x\right\} = G_{a,a}(x),$$

where

(4)

$$G_{a,\alpha}(x) = \left(\frac{\sin \pi \alpha}{\pi}\right)^2 \int_0^x \left\{ \int_{v=\max(0,u+a-1)}^{\min(u,a)} \frac{dv}{(u-v)^{\alpha} (1-a-u+v)^{1-\alpha} v^{1-\alpha} (a-v)^{\alpha}} \right\} du$$

$$(0 \le x \le 1, \ 0 < a < 1, \ 0 < \alpha < 1),$$

$$G_{a,\alpha}(x) = 1 - E_{\alpha}(1-x) - G_{\alpha}(x) - E_{\alpha}(x)$$

$$G_{a,a}(x) = 1 - F_{a}(1-x), \qquad G_{1,a}(x) = F_{a}(x),$$

$$G_{a,0}(x) = \begin{cases} 0 & (x < 1-a), \\ 1 & (x \ge 1-a), \end{cases} \qquad G_{a,1}(x) = \begin{cases} 0 & (x < a), \\ 1 & (x \ge a), \end{cases}$$

and $F_{\alpha}(x)$ is given in the relations (5). If the condition (1) is not satisfied then $\Pr\{n^{-1}I_n([na]) \leq x\}$ does not tend to a limit as $n \to \infty$.

PROOF. From Theorem 1 we see that $n^{-1} I_n([na])$ has the same distribution as $n^{-1}N'_{[na]}+1-n^{-1}[na]-n^{-1}N''_{n-[na]}$, the primed and double primed terms being independent. Further, the results of Spitzer [3], Theorem 7.1, tell us that as $n \to \infty$, $n^{-1}N_n$ converges in law to a random variable with distribution function F_a given by

$$F_{0}(x) = \begin{cases} 0 & (x < 0), \\ 1 & (x \ge 0), \end{cases}$$
(5)
$$F_{\alpha}(x) = \frac{\sin \pi \alpha}{\pi} \int_{0}^{x} u^{\alpha - 1} (1 - u)^{-\alpha} du \qquad (0 \le x \le 1, 0 < \alpha < 1), \end{cases}$$

$$F_{1}(x) = \begin{cases} 0 & (x < 1), \\ 1 & (x \ge 1). \end{cases}$$

It is therefore clear that as $n \to \infty$, $n^{-1}I_n([na])$ will converge in law to a random variable with the same distribution as $aY_1 + (1-a)(1-Y_2)$, where Y_1 and Y_2 are independent and each has distribution function F_{α} . It remains only to examine the particular cases.

If 0 < a < 1, $0 < \alpha < 1$, aY_1 has density $\pi^{-1} \sin \pi a x^{\alpha-1} (a-x)^{-\alpha}$, $0 \le x \le a$, while $(1-a)(1-Y_2)$ has density $\pi^{-1} \sin \pi a x^{-\alpha} (1-a-x)^{\alpha-1}$, $0 \le x \le 1-a$. The density of the random variable $aY_1 + (1-a)(1-Y_2)$ is therefore

 $\left(\frac{\sin \pi \alpha}{\pi}\right)^2 \int_{y=\max(0,x+a-1)}^{\min(x,a)} \frac{dy}{(x-y)^{\alpha} (1-a-x+y)^{1-\alpha} y^{1-\alpha} (a-y)^{\alpha}} \quad (0 \le x \le 1),$ as required.

The other cases can be read off immediately using relations (5). If $0 \leq a \leq 1, \alpha = 0$, then $n^{-1}I_n([na])$ converges in law to 1-a as $n \to \infty$, and hence converges in probability to 1-a. Similarly, if $0 \leq a \leq 1, \alpha = 1$, $n^{-1}I_n([na])$ converges in probability to a as $n \to \infty$. On the other hand, we see that $\lim_{n\to\infty} \Pr\{n^{-1}I_n([na]) \leq x\}$ is $1-F_{\alpha}(1-x)$, if a = 0 or $F_{\alpha}(x)$ if a = 1.

Finally, if the condition (1) is not satisfied then the relation

$$\frac{\Pr(S_1 > 0) + \dots + \Pr(S_n > 0)}{n} = E \frac{N_n}{n}$$

shows us that $n^{-1}N_n$ cannot converge in distribution and so neither can $n^{-1}N'_{[na]}+1-n^{-1}[na]-n^{-1}N''_{n-[na]}$ or, in other words, $n^{-1}I_n([na])$. This completes the proof of the theorem.

Theorem 2 of Darling [1] is the particular case of our Theorem 2 where the X_i are restricted to have a continuous and symmetric distribution. The case $0 < \alpha < 1$ of our theorem could have been established along parallel lines to the proof of Theorem 2 of [1] by making use of Theorem 2 of Heyde [2] in which it is shown that there must exist a function of slow variation L such that

$$k^{1-\alpha}(n-k)^{\alpha}\frac{L(n-k)}{L(k)} \operatorname{Pr} (N_n = k) = \frac{\sin \pi \alpha}{\pi} + o(k, n)$$

where o(k, n) tends to zero uniformly in k and n as min $(k, n-k) \rightarrow \infty$.

In order to read off the results of Spitzer's generalization [3], Theorem 7.1, of the arc-sine law from our Theorem 2 we note that

$$\Pr(N_n = k) = \Pr\{I_n(n-k) = 0\} = \Pr\{I_n(0) = n-k\},\$$

so that

$$\Pr(N_n \leq nx) = \Pr(N_n \leq [nx])$$

=
$$\Pr(n - [nx] \leq I_n(0) \leq n)$$

$$\rightarrow 1 - G_{0,\alpha}(1 - x) = F_{\alpha}(x), \text{ as } n \rightarrow \infty.$$

References

- [1] D. A. Darling, 'Sums of symmetrical random variables', Proc. Amer. Math. Soc. 2 (1951), 511-517.
- [2] C. C. Heyde, 'Some local limit results in fluctuation theory', J. Austral. Math. Soc. 7 (1967), 455-464.
- [3] F. L. Spitzer, 'A combinatorial lemma and its application to probability theory', Trans. Amer. Math. Soc. 82 (1956), 232-339.

University of Sheffield