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Cyclic Groups and the Three Distance
Theorem

Nicolas Chevallier

Abstract. We give a two dimensional extension of the three distance theorem. Let θ be in R
2 and

let q be in N. There exists a triangulation of R
2 invariant by Z

2-translations, whose set of vertices is

Z
2 + {0, θ, . . . , qθ}, and whose number of different triangles, up to translations, is bounded above by

a constant which does not depend on θ and q.

1 Introduction

Let θ be in R and let q be in N. The points {0}, {θ}, {2θ}, . . . , {qθ} cut the unit inter-
val [0, 1[ into q + 1 intervals having at most three lengths ({x} denotes the fractional
part of x). This property is known as the three distance theorem and was first proved

by V. T. Sós in 1957; (see [32–35]). Closely related to this result is the three gap the-

orem: if φ is in ]0, 1[, the gap between the successive integers n such that {nθ} < φ
takes at most three values as shown by N. B. Slater [29]. These two results can be

deduced from the continued fraction expansion of θ, but there are also direct proofs.
A survey of the different approaches can be found in [31] A relation with the com-
binatorics on words has recently been established by P. Alessandri and V. Berthé who
provided a combinatorial proof of the three distance theorem (see [1]).

Extensions of the three distance theorem lead to many works. The first was found
in 1976 by F. K. R. Chung and R. L. Graham; they showed that if θ1, . . . , θd are d real
numbers, then the points {kiθi}, for 1 ≤ i ≤ d and 0 ≤ ki ≤ qi , cut the interval

[0, 1[ into intervals having at most 3d values (see [9, 22] for a very simple proof).
Later in 1993, A. S. Geelen and R. J. Simpson found a two dimensional extension of
the three distance theorem . Let θ1, θ2 be two real numbers and n1, n2 two positive
integers. Then the points {k1θ1 + k2θ2}, 0 ≤ k1 < n1, 0 ≤ k2 < n1, cut the interval

[0, 1[ into n1n2 intervals having at most min{n1, n2} + 3 lengths (see [7, 14] for a
d-dimensional version of Geelen and Simpson’s result).

There are more abstract ways to generalize the three distance theorem . Endow R2

with the lexicographic order ((x, y) ≺ (x ′, y ′) means y < y ′ or y = y ′, x < x ′).
Let Λ be a lattice in R2, I ⊂ R a bounded interval and Λ(I) = {(x, y) ∈ Λ : x ∈ I}.
M. Langevin [21] proved that there exists a basis u, v of Λ such that for all w in

Λ(I), the next point in Λ(I) for the lexicographic order, is one of the three points
w + u, w + v or w + u + v. Both the three distance theorem and the three gap theorem
can be recovered by Langevin’s result. With a growing abstraction, E. Fried and V. T.
Sós [12] generalize Langevin’s theorem to some ordered abelian groups.
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Kronecker sequences are a natural generalization of the sequences (nθ mod 1)n≥0.
Let q be a positive integer and let Θ be in the d-dimensional torus Td = Rd/Zd. Con-

sider the finite sequence kΘ, 0 ≤ k ≤ q. The (classical) discrepancy of this finite
sequence has been extensively studied (see [11, pp. 66–90]) but less is known about
its local conformation. Extension of the three distance theorem should give more
information about it. In order to formulate a Td-three distance theorem, we have to

replace the intervals. In [6], Voronoı̈’s regions were chosen instead of the intervals.
It leads to a partial extension of the three distance theorem to the d-dimensional
torus; the extension holds only for a subsequence q = qn − 1 of the sequence of
all positive integers. This subsequence (qn)n≥0 is the sequence of all best simulta-

neous Diophantine approximations of Θ with respect to the Euclidean norm (see
the definition below). The appearance of best approximation is easy to understand.
On the one hand, best simultaneous approximations of Θ can be seen as a multidi-
mensional continued fraction expansion and on the other hand, the three distance

theorem can be strengthened for some particular q: let θ be a real number and let
θ = [a0; a1, . . . , an, . . . ] be its continued fraction expansion. Let qn be the denomi-
nator of the rational [0; a1, . . . , an]. Then for all a ∈ {1, . . . , an+1}, the points {kθ},
0 ≤ k < aqn + qn−1, cut the interval [0, 1[ into intervals having at most two lengths.

We shall refer to this result as the “two distance theorem”.

In the present work, we are mainly interested in two-dimensional extensions of the
three distance theorem. Intervals are replaced by triangles in a Z2-invariant triangu-

lation. We give two main results. The first corresponds to the two distance theorem
and holds only for the q of the shape q = qn − 1 where qn is a best approximation.
It improves the previous result about Voronoı̈’s regions [6]. The second corresponds
to the three distance theorem and holds for all positive integers q.

These two main results need a very simple lemma on translations in cyclic groups
(Lemma 3.1) similar to Liang’s proof of Chung and Graham’s theorem [22]. By the
way, we use this lemma in order to give another proof of the one dimensional two
distance theorem and also of one known property of length words associated with

the two distance theorem (see [26, 28]). In fact, our first idea to prove Theorem 1.3,
was to use this property of length words. But it does not seem to work, whereas the
lemma on cyclic groups proved to be efficient.

Another important ingredient of the proofs of both Theorems 1.2 and 1.3 is an
extension to best Diophantine approximations of a property of continued fractions
(§7, Theorem 7.1 for d = 2 and Theorem 7.2 for d ≥ 3), a result which may be of
independent interest.

1.1 Statement of the Two Main Results

Endow Rd with the usual Euclidean norm, and for every x in Rk set

‖x‖ = inf{|x − n| : n ∈ Zd}.

Clearly ‖ · ‖ induces a distance on the d-dimensional torus, which we also denote
‖ · ‖.
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Definition 1.1 Let Θ be in Td. A positive integer q is a best approximation of Θ if
‖kΘ‖ > ‖qΘ‖ for every integer k with 0 < k < q. Let θ be in Rd. A positive integer

q is a best approximation of θ if it is a best approximation of its projection Θ in the
d-dimensional torus, that is, if ‖kθ‖ > ‖qθ‖ for every integer k with 0 < k < q.

Best (Diophantine) approximations were introduced by C. A. Rogers [27] and
first studied as a multidimensional continued fraction expansion by J. C. Lagarias

[15–20], (see also [5,8]). Let θ be in Rd\Qd. Arranging the set of best approximations
of θ in ascending order, we get an increasing sequence (qn)n∈N of positive integers
starting with q0 = 1.

Theorem 1.2 Let θ be in R2\Q2 such that Z2 + Zθ is dense in R2. For all n in N, there

exists a Z2-invariant triangulation of R2 whose set of vertices is Z2+{0, θ, . . . , (qn−1)θ}
and with only 6 different triangles up to translations. Furthermore, the diameters of the

triangles go to zero when n goes to infinity.

Theorem 1.3 There exists an absolute effective constant K such that for all θ in R2\Q2

such that Z2 + Zθ is dense in R2 and for all integers q ≥ 1, there exists a Z2-invariant

triangulation of R2 whose set of vertices is Z2 + {0, θ, . . . , qθ} and with at most K

different triangles up to translations. Furthermore, the diameters of the triangles go to

zero when q goes to infinity.

Let θ = (θ1, θ2) be in R2. The topological hypothesis, Z2+Zθ is dense in R2, is
equivalent by Kronecker’s theorem to an algebraic hypothesis: θ1, θ2 and 1 are linearly

independent over Q.

The proof of Theorem 1.2 is given in Section 9. Sections 3, 6, 7 (Theorem 7.1 only)
and Section 8 (Lemma 8.4 only) are required for its proof. The rather long proof of

Theorem 1.3 is given in Section 10, again, Sections 3, 6, 7 (Theorem 7.1 only) and
Section 8 (Lemmas 8.3 and 8.4) are required for its proof.

2 Notations

Numbers: We denote the fractional part of a real x by {x} and the lowest integer
greater or equal than x by [x]. Therefore, x = [x] + {x}.

Geometry: The usual Euclidean norm of an element x of Rd is denoted by |x|. The
distance to the nearest lattice point of an element x of Rd is denoted by ‖x‖ = inf{|x−
n| : n ∈ Zd}. The scalar product of two elements x and y of Rd is denoted by x · y.

The angle of two elements x and y of R2 is denoted by ∠(x, y). The segment joining
to elements x and y of Rd is denoted by [x, y], [x, y] = {tx + (1 − t)y : t ∈ [0, 1]}.
The open segment (semi-open) is denoted by ]x, y[ ([x, y[ or ]x, y]).

Torus: Td = Rd/Zd. θ will always denote an element of Rd and Θ its projection in
Td. Let X be in Td. The distance of X to 0 is denoted by ‖X‖ = infx∈X |x|. Therefore,
the distance between two elements X and Y of Td is ‖X − Y‖.
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Sets and metric spaces: The cardinal number of a set E is denoted by |E|. Let (E, d)
be a metric space, let F be a subset of E and let a be an element of E. The distance

between a and F is denoted by d(a, F). We define r(F) = inf{d(x, y) : x, y ∈ F and
x 6= y} and e(F) = sup{d(x, F) : x ∈ E}.

Graphs: Let G be a planar graph. The set of vertices of G is denoted by V(G), the

set of connected components of R2\
⋃

[A,B]∈G[A, B] is denoted by C(G) and the set

{−→AB : A and B are vertices of G, and there exists ω in C(G) such that A, B ∈ ∂ω} is

denoted by E(G).

3 Cyclic Groups

For a given irreducible fraction r = p/q, let us place the points {kr}, 0 ≤ k < q, in
the unit interval. We get the sequence i/q, 0 ≤ i < q, and each fraction i/q is equal
to a {kr} where k = k(i) is an integer in {0, . . . , q − 1}. In this particular case, the
two distance theorem means that the differences k(i + 1) − k(i), 0 ≤ i < q, take two

values. We can restate this property in a cyclic group (G, ·) generated by an element
a. Each x in G is of the shape x = ak with 0 ≤ k < |G|, set log(x) = k. For b fixed in
G, the differences log(bx)− log(x), x in G, take two values. In the sequel, we shall use
not only one translation x → bx, but several simultaneously.

Lemma 3.1 Let G be a cyclic group with generator a, and let n be the cardinal number

of G.

(i) For all b in G, the number log(bx) − log(x), x ∈ G, have at most two possible

values (exactly two unless b = e).

(ii) For all m in N∗ and for all (b1, . . . , bm) in Gm, there exists a partition of

{0, . . . , n − 1} into m + 1 intervals I0, . . . , Im such that for all j ∈ {0, . . . , m}, the

m-tuple (log(b1aq) − log(aq), . . . , log(bmaq) − log(aq)) does not depend on q in I j .

Proof (i) If log(b) + log(x) < n, then log(bx) = log(b) + log(x) and log(bx) −
log(x) = log(b). If log(b) + log(x) ≥ n, then log(bx) = log(b) + log(x) − n and

log(bx) − log(x) = log(b) − n.
(ii) Arrange the points ni = n− log(bi) in increasing order, ni1

≤ ni2
≤ · · · ≤ nim

.
Set ni0

= 0 and nim+1
= n. Let p be in {0, . . . , m} and x be in G such that log(x) ∈

[ni p
, ni p+1

[. For q ∈ {1, . . . , m}, log(biq
) + log(x) < n ⇔ log(x) < n− log(biq

) = niq
,

therefore

log(biq
x) − log(x) =

{

log(biq
) for q > p,

log(biq
) − n for q ≤ p.

It follows that (log(b1x)− log(x), . . . , log(bmx)− log(x)) is constant on each interval
Ip = [ni p

, ni p+1
[ and hence takes at most m + 1 different values.

We shall need a slightly more sophisticated result.

Lemma 3.2 Let G be a commutative group, H a subgroup of G and a in G. Suppose

G/H is a finite cyclic group generated by aH. Let n be the cardinal number of G/H.
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(i) For each x in G there exist a unique integer log(x) in {0, . . . , n−1} and a unique

h(x) in H such that x = alog xh(x).

(ii) For all m in N∗ and for all (b1, . . . , bm) in Gm, there exists a partition of

{0, . . . , n − 1} into m + 1 intervals I0, . . . , Im such that for all j in {0, . . . , m} and

all i in {1, . . . , m}, there exist ni, j in Z and hi, j in H such that for all x ∈ G and all

i ∈ {1, . . . , m}, log(x) ∈ I j implies log(bix) − log(x) = ni, j and h(bix)h(x)−1 = hi, j .

Proof (i) is straightforward. To prove (ii), we use the previous lemma with the

group G/H which is generated by aH. There exist intervals I0, . . . , Im such that for
all i, log((biH)(aqH)) − log(aqH) is independent of q in I j . Since for all x in G,
log(xH) = log(x), log(bia

q) − log(aq) is independent of q in I j . Let ni, j be the value
of log(bia

q) − log(aq) on I j . For x in G, we have bix = bia
log xh(x) = alog(bi x)h(bix),

therefore

h(bix)h(x)−1
= bia

−(log(bi x)−log x)
= bia

−ni, j = hi, j

for all x with log(x) ∈ I j .

4 Proof of the Two Distance Theorem

This paragraph is not needed to prove Theorem 1.2 and 1.3; its aim is to give simple
consequences of previous lemmas. The two distance theorem can be stated without
using the continued fraction expansion:

Proposition 4.1 Let θ be in R\Z and let q be a positive integer such that {kθ} 6= 0,

0 < k ≤ q. Suppose either

(i) the interval ]0, {(q + 1)θ}[ does not contain any of the points {kθ}, 1 ≤ k ≤ q

(first case), or

(ii) the interval ]{(q + 1)θ}, 1[ does not contain any of the points {kθ}, 1 ≤ k ≤ q

(second case).

Let q1, q2 be the integers in {1, . . . , q} such that {q1θ} = min{{kθ} : 1 ≤ k ≤ q} and

{q2θ} = max{{kθ} : 1 ≤ k ≤ q}. If {k1θ} < {k2θ} are two consecutive points of

{{kθ} : 0 ≤ k ≤ q}, then k2 − k1 = q1 or −q2.

The usual statement of the two distance theorem follows from the proposition
because the integers of the shape q = aqn + qn−1 are exactly those who satisfy the hy-

pothesis of the proposition. Let us prove the proposition. In order to use Lemma 3.1
we replace θ by a rational approximation θ ′. The key fact is the following lemma.

Lemma 4.2 Let θ and q be as above. Set θ ′ = θ − 1
q+1

ε where ε = {(q + 1)θ} in the

first case and ε = {(q + 1)θ} − 1 in the second case. Then θ ′ belongs to 1
q+1

Z and the

points {kθ}, 0 ≤ k ≤ q are in the same order as the points {kθ ′}, 0 ≤ k ≤ q, i.e., for

all k1, k2 ∈ {0, . . . , q}, {k1θ} < {k2θ} ⇔ {k1θ
′} < {k2θ

′}.

Notation Let θ be in R. Set Eq(θ) = {0, {θ}, . . . , {qθ}}.
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Proof of Lemma 4.2 Clearly θ ′ ∈ 1
q+1

Z. Let us see that the two cases reduce to the

first. Indeed, suppose that ]{(q + 1)θ}, 1[∩Eq(θ) = ∅. Note that {(q + 1)θ} = 0 is

impossible, for it implies {θ} = 0 and θ ∈ Z. Since for all integer k with {kθ} 6= 0,
{kθ} + {−kθ} = 1, the image of set Eq(θ)\{0} by the symmetry x → 1 − x is the set
Eq(−θ)\{0}. It follows that ]0, {(q + 1)(−θ)}[∩Eq(−θ) = ∅. Furthermore,

(−θ) ′ = (−θ) − {(q + 1)(−θ)}
q + 1

= −
(

θ +
1 − {(q + 1)θ}

q + 1

)

= −θ ′.

Thus it suffices to use the first case with −θ.
Now, assume that

]

0, {(q + 1)θ}
[

∩Eq(θ) = ∅. The real number ε is non negative.
Let us show that kθ − {kθ} = kθ ′ − {kθ ′}, for 0 ≤ k ≤ q. By definition of the

fractional part, kθ − {kθ} is an integer and

kθ ′ − (kθ − {kθ}) = − kε

q + 1
+ {kθ} ≤ {kθ} < 1.

Moreover, since {kθ} ≥ {(q + 1)θ} = ε,

kθ ′ − (kθ − {kθ}) ≥ − kε

q + 1
+ ε ≥ 0.

Thus the integer kθ − {kθ} is the integer part of kθ ′ and is equal to kθ ′ − {kθ ′}.
We must show that {k1θ} < {k2θ} ⇔ {k1θ

′} < {k2θ
′}. Suppose on the contrary

that {k1θ} − {k2θ} < 0 and {k1θ
′} − {k2θ

′} ≥ 0. On making use of the equality
kθ − {kθ} = kθ ′ − {kθ ′} for k = k1 and k2, we get

0 ≤ {k1θ
′} − {k2θ

′} = {k1θ} − {k2θ} − (k1 − k2)
ε

q + 1
< (k2 − k1)

ε

q + 1
.

Therefore, k2 > k1, and −ε < (k1 − k2) ε
q+1

≤ {k1θ} − {k2θ} < 0. It follows that

{k2θ} − {k1θ} ∈ ]0, ε[ =
]

0, {(q + 1)θ}
[

,

but this is impossible, for it would imply that {(k2 − k1)θ} = {{k2θ} − {k1θ}} =

{k2θ} − {k1θ} ∈ ]0, {(q + 1)θ}[.

Proof of Proposition 4.1 By the lemma, we can prove the proposition with θ ′ in-
stead of θ. The projection of Eq(θ ′) in T1 = R/Z is a subgroup G of T1. On the one
hand, G is generated by the projection Θ ′ of θ ′ and on the other hand, G is generated
by the projection of β of 1

q+1
. If {k1θ

′} and {k2θ
′} are consecutive points of Eq(θ ′),

then k2Θ
′ − k1Θ

′ = β. Therefore, by Lemma 3.1 with a = Θ ′ and b = β, k2 − k1

takes two values. To determine these values, we just have to consider the two cases
k1 = 0, k2 = q1 and k1 = q2, k2 = 0.

A natural question arises: given an irrational number θ, what are the denomina-
tors of the rationals r such that the points {kθ}, 0 ≤ k ≤ q and the points {kr},
0 ≤ k ≤ q are in the same order?
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Proposition 4.3 Let θ be in R\Q and let q be in N. There exists a in Z with

gcd(a, q + 1) = 1 such that the points of Eq(θ) and Eq( a
q+1

) are in the same order if

and only if one of the sets

Eq(θ) ∩ ]0, {(q + 1)θ}[ and Eq(θ) ∩ ]{(q + 1)θ}, 1[

is empty.

Proof Set θ ′ =
a

q+1
. Let q1 and q2 be the elements of {1, . . . , q} such that the inter-

vals of T1, ]0, q1Θ
′[ ∩ Eq(Θ ′) and ]q2Θ

′, 0[ ∩ Eq(Θ ′) are empty. By our assumption,

the sets ]0, q1Θ[ ∩ Eq(Θ) and ]q2Θ, 0[ ∩ Eq(Θ) are also empty. The integers q1 and
q2 are one sided best approximations of both Θ and Θ ′ and since (q + 1)Θ ′ = 0, we
have q + 1 = q1 + q2, therefore q + 1 is also a one sided best approximation of Θ. It
follows that Eq(θ) ∩ ]0, {(q + 1)θ}[ or Eq(θ) ∩ ]{(q + 1)θ}, 1[ is empty.

As before, it suffices to consider the case Eq(θ) ∩ ]0, {(q + 1)θ}[ = ∅. Set ε =

{(q + 1)θ} and θ ′ = θ− 1
q+1

ε. We have (q + 1)θ ′ = (q + 1)θ− ε ∈ Z, hence θ ′ =
a

q+1

with ∈ Z. By the previous lemma, the points {kθ ′}, 0 ≤ k ≤ q, are in the same

order as the points {kθ}, 0 ≤ k ≤ q and since the points {kθ}, 0 ≤ k ≤ q, are all
distinct, by the previous lemma the points {kθ ′}, 0 ≤ k ≤ q, are all distinct. Now all
these points are in [0, 1[, therefore the points kΘ ′, 0 ≤ k ≤ q are distinct in T1 and
gcd(a, q + 1) = 1.

5 Circular Length Words

Let A be a finite alphabet and let I be an interval of Z. Let us recall the definition of

a C-balanced word w : I→A. We say w is C-balanced if the difference between the
numbers of occurrences of any letter in two subwords of w of the same length is at
most C .

Let θ be in R\Q and let Θ be its projection in T1. Let (an)n≥1 be the partial quo-

tients of θ and (qn)n≥0 the denominators of the convergents to θ. Fix an integer q

of the shape q = qn−1 + aqn − 1, 0 ≤ a ≤ an+1. We can look at the points {kθ},
0 ≤ k ≤ q or at the points kΘ, 0 ≤ k ≤ q. Either way, the two distance theorem

means that we have (q + 1) intervals of two different lengths. We associate to this
configuration a word w = (wi)0≤i≤q = w(θ, q) of q + 1 letters in the {0, 1} alphabet:

Choose the usual orientation on T1. When k2Θ is the successor of k1Θ, k2 − k1

takes two values δ0 and δ1. Describe T1 starting at 0, and set wi = 0 if the i-th
interval is of the shape [kΘ, (k + δ0)Θ] and 1 otherwise. Identifying {0, . . . , q}
with Z/(q + 1)Z, the word w may be seen as a circular word.

It is known that w is a Sturmian word, that is, a word with exactly k + 1 different
subwords of lengths k (see [25, Ch. 6]), and therefore a 1-balanced word (see [28]).
This balance property can be recovered directly with our approach.

Proposition 5.1 Let I and J be two intervals of Z/(q + 1)Z of the same length. Then

∣

∣ |{i ∈ I : wi = 1}| − |{i ∈ J : wi = 1}|
∣

∣ ≤ 1.
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Proof Let l be the length of I and J. By properties of continued fraction and Lemma
4.2, we know that w(θ, q) = w(θ ′, q) where θ ′ =

a
q+1

with gcd(q + 1, a) = 1. Let β

be the projection of 1
q+1

in T1. We have {0, Θ ′, . . . , qΘ ′} = {0, β, . . . , qβ}. We are

going to use Lemma 3.1, the first lemma on cyclic groups, with the additive group
G = {0, Θ ′, . . . , qΘ ′}, a = Θ, b = lβ. For each i ∈ Z/(q + 1)Z set k(i) = log(iβ).
Suppose I = {i, . . . , i + l − 1}, then the sub-word wi · · ·wi+l−1 is determined by the

difference k(i + 1) − k(i), . . . , k(i + l) − k(i + l − 1). We have

log(iβ + b) − log(iβ) = k(i + l) − k(i)

=
∣

∣{ j ∈ I : w j = 0}
∣

∣ δ0 +
∣

∣{ j ∈ I : w j = 1}
∣

∣ δ1

and by the first lemma on cyclic groups, it has only two possible values when i de-
scribes Z/(q + 1)Z. Therefore

∣

∣{ j ∈ I : w j = 1}
∣

∣ has two possible values only. Fur-
thermore, if I = {i, . . . , i + l − 1} and J = {i + 1, . . . , i + l}, then

∣

∣ |{ j ∈ I : w j = 1}| − |{ j ∈ J : w j = 1}|
∣

∣ ≤ 1,

hence |{ j ∈ I : w j = 1}|, i ∈ Z/(q + 1)Z, takes two values whose difference is 1.

Remarks (i) Can we extend the previous proposition to the two dimensional case?
Consider a lattice L of R2 with a basis (e1, e2) and Λ a sublattice of L such that L/Λ is a

cyclic group of order q. Fix θ a generator of this group. For each basic parallelogram
Pa = (a, a + e1, a + e2, a + e1 + e2), a ∈ L, set

δ(a) = (k(a + e1) − k(a), k(a + e2) − k(a), k(a + e1 + e2) − k(a)),

where k(x) is the unique integer in {0, . . . , q − 1} such that x + Λ = k(x)θ + Λ. By
Lemma 3.2, δ(a) has at most four different values, δ1, δ2, δ3, δ4. Therefore we can

label each parallelogram Pa with one of the four symbols δ1, δ2, δ3 or δ4. This gives
a two dimensional Λ-periodic word w : L → {1, 2, 3, 4}, w(a) = δ(a). With the
isomorphism (u, v) ∈ Z2 → ue1 + ve2 ∈ L, we can see w as word on Z2. Now a
n × m-subword of w is any restriction of w to a rectangle (u, v) + {0, . . . , m − 1} ×
{0, . . . , n − 1} ⊂ Z2. This raises to the following question.

Is the difference between the numbers of occurrences of δ1 in two n × m-
subwords of w, bounded by an universal constant?

If we follow the proof of Proposition 5.1, we count the number of new letters when

we move from an n × m-subword to an adjacent n × m-subword. However, this
number can be n or m and not just 1 as in the one dimensional case. This means that
a new idea is necessary to answer the previous question.

(ii) We can note that for a word w : {1, . . . , n} → {0, 1}, C-balancedness for

C > 1 without further assumption is a property far weaker than 1-balancedness:
the number of 1-balanced words of length n is polynomial in n and the number of
2-balanced word of length n is exponential in n [23].

(iii) V. Berthé and F. Tijdeman have studied 1-balancedness for multidimensional

words. They have showed that if d ≥ 2, a 1-balanced word w : Zd → {0, 1} must sat-
isfy a very strong condition on the frequencies of the letters 0 and 1: these frequencies
belong to a finite subset of the rational numbers [3].
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6 Best Approximation in R
d and T

d

Let θ ∈ Rd. Arranging the set of best approximation of θ in ascending order, we

get an increasing sequence (qn)n≥0 of positive integers starting with q0 = 1. For any
positive integer n, let εn be the vector of Rd and Pn be the integer d-tuple such that

qnθ = Pn + εn and |εn| = ‖qnΘ‖.

Set

θn = θ − 1

qn

εn =
1

qn

Pn and rn = |εn|.

Then θn is the rational approximation of θ corresponding to the best approximation
qn. We consider the lattice Λn = Zd + Zθn, which is a lattice included in Qd since θn

has rational coordinates.

The following lemma is easy; its proof can be found in [6].

Lemma 6.1 The sub-group 〈Θn〉 of Td generated by Θn, has exactly qn elements, that

is, kΘn is non-zero for all 0 ≤ k ≤ qn − 1. Furthermore, ‖pθ − pθn‖ ≤ rn for all

0 ≤ p ≤ qn − 1. Moreover, the lattice Λn has determinant 1
qn

and its first minimum

λ1,n satisfies 2rn−1 ≥ λ1,n ≥ rn−1/2.

7 A Good Basis of Λn

Let d = 1 and let q = qn − 1. By Lemma 4.2, the points {kθ} and the points {kθn},

0 ≤ k ≤ q are in the same order. In fact the points of {kθn} divide [0, 1[ in qn

intervals of length 1/qn. Each of these intervals contains the corresponding points of
Eq(θ), More precisely,

for all k in {0, . . . , q}
{

kΘ ∈ [kΘn, kΘn + 1
qn

[ if εn ≥ 0,

kΘ ∈ ]kΘn − 1
qn

, kΘn] if εn ≤ 0.

The next two theorems extend this property to d ≥ 2, and the first is an important
ingredient in the proofs of Theorems 1.2 and 1.3. When d = 1, the lattice Λn cuts R

into intervals of length 1
qn

, but when d ≥ 2, there are many tilings associated with the

lattice Λn. To each basis e1,n, . . . , ed,n of Λn, corresponds a tiling

P + {t1en,1 + · · · + tnen,d : t1, . . . , td ∈ [0, 1[}, P ∈ Λn.

We are looking for a basis of Λn such that each piece of the tiling contains exactly one
point of the shape kθ + P, 0 ≤ k < qn, P ∈ Zd. Moreover, we wish to find a basis

whose vectors are as short as possible. We are able to find such a basis when d = 2
(Theorem 7.1). Nevertheless, when d ≥ 3, we are only able to find a basis whose
vectors are not too long (Theorem 7.2).

Theorem 7.1 With the notations of the last section, suppose d = 2. There exists a

basis en,1, en,2 of Λn such that
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(i) i = 1, 2, |en,i| ≤ λn,1 + λn,2, where λn,1, λn,2 are the minima of Λn;

(ii) | sin ∠(en,1, en,2)| ≥
√

3/8;

(iii) for all k in {0, . . . , qn − 1} and all P in Zd,

kθ + P = kθn + P +
k

qn

εn ∈ kθn + P + {t1en,1 + tnen,2 : t1, t2 ∈ [0, 1[}.

Proof Step 1: Let k be in {0, . . . , qn − 1} and x = kθn + P be in Λn\{0}. We have

x.εn < |x|2. Indeed, if x.εn ≥ |x|2, then |εn| ≥ |x| and

|x − εn|2 = |εn|2 − 2x.εn + |x|2 ≤ |εn|2

and therefore,

d(εn, x) ≤ |εn| = rn d(εn, x + εn) = |x| ≤ rn.

By convexity, it follows that d(εn, x + k
qn

εn) ≤ rn, and projecting in T1, we get

‖(qn − k)Θ‖ = ‖qnΘ − kΘ‖ ≤ d(εn, kθ + P) = d
(

εn, x +
k

qn
εn

)

≤ rn.

By definition of the best approximation, we have k = 0 and x = P. But, by definition

of εn, |εn|2 ≤ |εn − Q|2, for all Q ∈ Z2, hence we have εn.Q ≤ 1
2
|Q|2, which is false

for Q = P = x. Note that this part of the proof works in every dimension.

Step 2: By Gauss reduction of a two dimensional lattice, there is a basis en,1, en,2 of
Λn such that

|en,1| = λn,1, |en,2| = λn,2.

Let α1 and α2 be the coordinates of εn in this basis. We can suppose α1 and α2 ≥ 0.

Furthermore, since |en,1 ± en,2|2 ≥ |en,2|2, we have | sin ∠(en,1, en,2)| ≥
√

3/2.

Step 3: Suppose en,1 · en,2 ≥ 0. By Step 1,

e2
n,1 > en,1.εn = α1e2

n,1 + α2en,1.en,2 and e2
n,2 > en,2.εn = α1en,1.en,2 + α2e2

n,2.

Since α1 and α2 are non negative, we get α1 and α2 < 1, which proves the theorem
in this case.

Step 4: Suppose en,1.en,2 < 0 and |en,2| ≤ 3|en,1|. The vector εn has nonnegative
coordinates in one of the bases (en,1, en,1 + en,2) or (en,1 + en,2, en,2). By Step 3, the
coordinates of εn in one of these bases are in [0, 1[. It remains to estimate the sinus.

For the first basis, we see easily that

| sin ∠(en,1, en,1 + en,2)| ≥ 1√
2
,

for the second basis, we can use a well-known formula in the triangle whose vertices

are 0, en,2 and en,2 + en,1

| sin ∠(en,2, en,1 + en,2)|
|en,1|

=
| sin ∠(en,1, en,2)|

|en,1 + en,2|
≥

√
3

2
× 1

|en,1 + en,2|
.
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Hence,

| sin ∠(en,1, en,1 + en,2)| ≥
√

3

2
× 1

4
.

Step 5: Suppose en,1 · en,2 < 0 and |en,2| ≥ 3|en,1|. Let us show that α2 < 1. By

Lemma 6.1, |εn| ≤ 2λn,1 = 2|en,1|. Hence,

α2
1|en,1|2 + α2

2|en,2|2 + 2α1α2en,1 · en,2 ≤ 4|en,1|2.

Since | cos ∠(en,1, en,2)| ≤ 1
2

and en,1 · en,2 ≤ 0,

α2
1|en,1|2 + α2

2|en,2|2 − α1α2|en,1||en,2| ≤ 4|en,1|2.

Hence,
1

2
(α2

1|en,1|2 + α2
2|en,2|2) ≤ 4|en,1|2

and

α2
2 ≤ 8

|en,1|2
|en,2|2

≤ 8 × 1

9
< 1.

Now we have α1 < 1 + α2, otherwise, by Step 1,

εn · en,1 ≤ |en,1|2

and

α1|en,1|2 + α2en,1 · en,2 ≤ |en,1|2,

α2(en,1 · en,2) ≤ −α2|en,1|2.

Hence,

|en,2 + en,1|2 = |en,1|2 + |en,2|2 + 2en,1.en,2 < |en,2|2,

which contradicts the equality λn,2 = |en,2|. If α1 ≥ 1, then εn = α1en,1 + α2en,2 =

(α1−α2)en,1+ α2(en,1 +en,2) has nonnegative coordinates in the basis (en,1, en,1 +en,2),
and as in Step 4, we easily see that | sin ∠(en,1, en,1 + en,2)| ≥ 1√

2
.

The next theorem is not necessary to prove Theorems 1.2 and 1.3, but may be of

independent interest.

Theorem 7.2 Suppose d ≥ 3. There exists a basis en,1, . . . , en,d of Λn such that

(i) for all i in {1, . . . , d}, |en,i | ≪ λn,d, where λn,d is the d-th minimum,

(ii) for all k in {0, . . . , qn − 1} and all P in Zd,

kθ + P = kθn + P +
k

qn

εn ∈ kθn + P + {t1en,1 + · · · + tnen,d : t1, . . . , td ∈ [0, 1[}.
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Proof We need to find a basis of Λn such that the coordinates of εn are all in [0, 1[.

Step 1: Let Λ be a lattice of Rd, e1, . . . , ed a basis of Λ and ε =
∑d

i=1 aiei a vector
of Rd with nonnegative coordinates. We now prove that if ai ≤ N for i = 1, . . . , d,
where N ∈ N∗, then there exists a basis e ′1, . . . , e ′d of Λ such that

max{|e ′i |, i = 1, . . . , d} ≤ dN max{|ei|, i = 1, . . . , d}

and ε has nonnegative coordinates in the new basis e ′1, . . . , e ′d with only one coordi-
nate ai0

≥ 1, this coordinate being ≤ N . We proceed by induction on N . There is

nothing to prove if N = 0. Let N ≥ 1. Let I = {i : ai ≥ 1} and choose i0 such that

ai0
= min{ai : i ∈ I}.

Set fi0
= ei0

+
∑

i∈I\{i0} ei and fi = ei for i 6= i0. We have

ε =

∑

i /∈I\{i0}
ai fi +

∑

i∈I\{i0}
(ai − ai0

) fi .

There are two cases.

Case 1 If ai0
> N − 1, then ai − ai0

< 1 for all I\{i0}. It suffices to take e ′1 =

f1, . . . , e ′d = fd, and we have

max{|e ′i |, i = 1, . . . , d} = max{| fi |, i = 1, . . . , d} ≤ d max{|ei |, i = 1, . . . , d}.

Case 2 If ai0
≤ N −1, we apply induction hypothesis to the basis f1, . . . , fd. We get

a basis e ′1, . . . , e ′d with

max{|e ′i |, i = 1, . . . , d} ≤ dN−1 max{| fi |, i = 1, . . . , d}

≤ dN max{|ei |, i = 1, . . . , d}.

Step 2: We would like to use Step 1 with Λn and εn. Since the new basis given by
Step 1 can have vectors as long as those of the initial basis, we must start with a basis
(e1, . . . , ed) of Λn such that

max{|ei|, i = 1, . . . , d} ≪ λn,d.

The LLL algorithm (cf. [13, Theorem 5.3.13, p. 143]) gives us a basis e1, . . . , ed of Λn

such that |e1| . . . |ed| ≪ det Λn. By the Minkowski theorem on successive minima we
get

max{|ei|, i = 1, . . . , d} ≪ λn,d

where λn,d is the last minimum of Λn. Furthermore, Babai [2] has proved that this
basis verifies that for all k ∈ {1, . . . , d}, the sinus of the angle between ek and the
sub-space generated by the other vectors of the basis, is ≥ (

√
3/2)d. Then if x =
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∑d
i=1 aiei , |x| ≥ (

√
3/2)d max{|ai||ei | : i = 1, . . . , d}. By Lemma 6.1, rn = |εn| ≤

rn−1 ≤ 2λn,1. It follows that the absolute values of the coordinates a1, . . . , ad of εn

in the LLL basis e1, . . . , ed, are all ≤ 2 × (2/
√

3)d. With Step 1 we can find a new

basis e ′1, . . . , e ′d such that max{|e ′i |, i = 1, . . . , d} ≪ λn,d and εn =
∑d

i=1 αie
′
i with

αi ∈ [0, 1[ i ≥ 2 and α1 ∈ [0,Cd], where Cd depends only on d.

Step 3: We drop the primes and let e1, . . . , ed be the basis found in Step 2. If α1 < 1
we have εn ∈ {t1e1 + · · · + tned : t1, . . . , td ∈ [0, 1[} which give (ii). So it remains

to find a basis with α1 < 1. Take any i ≥ 2 with ei · e1 < 0. While α1 > 1 and
ei · e1 < 0, replace the vector ei by ei + e1 and do not change the other vectors. After
each step, the coordinates of εn in the new basis are α1−αi , α2, . . . , αd and the length
of e ′i = ei + e1 is given by e ′i · e ′i = (e ′i + ei) · e1 + e2

i . Since ei · e1 < 0, we have |e ′i | ≤ |ei|
if e ′i · e1 ≤ 0 and |e ′i | ≤ |ei | + |e1| if e ′i · e1 ≥ 0. At the end, we get a basis e ′1, . . . , e ′d
such that for i = 2, . . . , d,

|e ′i | ≤ |ei | + |e1|,
αi ∈ [0, 1[,

α1 ∈ [0, 1[ or e ′i · e ′1 ≥ 0,

Step 4: If α1 < 1, the theorem is proved. In the other case, e ′i · e ′1 ≥ 0, i = 2, . . . , d.

By Step 1 of the proof of Theorem 7.1, e ′1 · εn < e ′21 . Therefore,

α1e ′21 +

d
∑

i=2

αie
′
i · e ′1 < e ′21

and α1 < 1.

8 Graph and Triangulation

Definition 8.1 A triangulation T of R2 is a countable set of triangles (the convex
hull of three points) whose union is R2 and such that the intersection of two distinct

triangles T1 and T2 of T is either one edge of both T1 and T2, or one vertex of both
T1 and T2. Furthermore, a bounded region of R2 meets only finitely many triangles
of T. The edges of T are the edges of all triangles of T and the vertices of T are the

vertices of all triangles of T. We say that a triangulation T is Z2-invariant if for all T

in T and all v in Z2, v + T is in T. More generally if Λ is a lattice of R2, we say that T

is Λ-invariant if for all T in T and all v in Λ, v + T is in T.

Definition 8.2 A planar graph is given by a countable set of nonoriented edges G

verifying,

(i) all edges are segments of R2,
(ii) if two edges [A, B] and [C, D] of G meet i.e., [A, B] ∩ [C, D] 6= ∅, then [A, B] ∩

[C, D] is a common extremity of both [A, B] and [C, D] or [A, B] = [C, D],
(iii) a bounded region of R2 meets only finitely many edges of G.
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The vertices of the graph G are the extremities of the edges of G.

We say that a planar graph G is Z2-invariant if for all [A, B] in G and all v in Z2,
[A, B] + v is in G. More generally, if Λ is a lattice of R2, we say that G is Λ-invariant if
for all [A, B] in G and all v in Λ, [A, B] + v is in G.

Figures 1 and 3 below represent planar graphs whereas Figure 5 does not.

Obviously, if T is a triangulation, the set of edges of all triangles of T is a planar
graph G and it is possible to get T back from G.

We shall need two results on planar graphs and triangulations. The first lemma

allows us to get a triangulation with the desired property of finiteness. The second
lemma is on the homotopy of planar graph. Both lemmas will be proved in the
appendix.

Notation Let G be a planar graph. Let us denote by V(G) the set of vertices of G and
by C(G) the set of connected components of R2\⋃

[A,B]∈G
[A, B]. In the following, we

shall always write R2\G instead of R2\⋃

[A,B]∈G
[A, B].

Let us denote by B(G) the set of boundaries of elements of C(G), more precisely

B(G) = {B ⊂ G : ∃ω ∈ C(G), ∂ω =

⋃

[A,B]∈B

[A, B]}.

Lemma 8.3 Let G be a Z2-invariant planar graph. Suppose all elements of C(G) are

bounded. Set

E(G) = {−→AB : A and B are vertices of G,

and there exists ω in C(G) such that A, B ∈ ∂ω}.

If the set E(G) is finite, then there exists a Z2-invariant triangulation T of R2 whose

set of vertices is the set of vertices of G and whose number of different triangles, up to

translations, is less than a constant depending only on the cardinal number of E(G).

Lemma 8.4 Let G and G ′ be two planar graphs with no edge reduced to one point.

Suppose that all elements of C(G) are bounded and that there exists a bijection A ∈
V(G) → A ′ ∈ V(G ′) such that

•

{

|A − A ′| : A ∈ V(G)
}

is bounded;
• for each t ∈ [0, 1],

G(t) =
{

[(1 − t)A + tA ′, (1 − t)B + tB ′] : [A, B] ∈ G
}

is a planar graph with no edge reduced to one point;
• the map A ∈ V(G) →(1 − t)A + tA ′ ∈ V(G(t)) is a bijection.

Then the map B ∈ B(G) → {[A ′, B ′] : [A, B] ∈ B} ∈ B(G ′) induced by the map

A → A ′ is a bijection.
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Figure 1: The triangulation given by Theorem 1.2

9 Two Distance Theorem in R
2, Proof of Theorem 1.2

Let θ be in R2\Q2 such that Z2 + Zθ is dense in R2. We have to prove that for all
n in N, there exists a Z2-invariant triangulation of R2 whose set of vertices is Z2 +

{0, θ, . . . , (qn − 1)θ}, and with only six different triangles up to translations (see
Figure 1). We also have to prove that the diameters of the triangles go to zero when n

goes to infinity.

Let us outline the proof. The set of vertices Z2+{0, θ, . . . , (qn−1)θ} is very close to
the lattice Λn = Z2 + Zθn where θn is the rational approximation of θ corresponding
to the best approximation qn (see §6). With the help of a basis (e1, e2) of Λn, it is

not difficult to find a triangulation of R2 whose set of vertices is Λn; just take the
collection of triangles

conv(A, A + e1, A + e1 + e2), conv(A, A + e2, A + e1 + e2), A ∈ Λn.

There are only two kinds of triangles. Now each element A of Λn is of the shape
A = P + kθn with P ∈ Z2 and is close to the element A ′ = P + kθ of Z2 + {0, θ, . . . ,
(qn − 1)θ}. The map A → A ′ induces a map which sends each previous triangle T to
a new triangle T ′. A good choice of the basis (cf. Theorem 7.1) and Lemma 8.4 allow
us to show that the set of new triangles is a triangulation. Next, Lemma 3.22 allows
us to prove that there are at most six kinds of new triangles.
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Proof Let θ be in R2\Q2. Fix a best approximation qn and choose a basis of Λn

satisfying the conditions of Theorem 7.1. Consider the vectors u1 = en,1, u2 = en,2

and u3 = en,1 + en,2 of Λn. We define a first planar graph G by

G = {[A, A + ui] : A ∈ Λn, i = 1, 2, 3}.

Let A = P + kθn be in Λn where P is in Z2 and k in {0, . . . , qn − 1}. Set f (A) =
k

qn
,

A(t) = A + t f (A)εn for t in [0, 1], A ′ = P + kθ = A(1). Set

G ′
= {[A ′, B ′] : [A, B] ∈ G}, and G(t) = {[A(t), B(t)] : [A, B] ∈ G, }

for all t in [0, 1]. Note that

A ′
= A +

k

qn

εn = P + kθn +
k

qn

εn = P + k(θn +
1

qn

εn) = P + kθ.

Our aim is to prove that G ′ is a planar graph such that for all ω ′ in C(G ′), ∂ω ′ is a
triangle and the number of these triangles, up to translations, is at most 6.

It is obvious that for all ω in C(G), ∂ω is a triangle. Moreover, the map A ∈
V(G) → A ′ ∈ V(G ′) is clearly a bijection. So, by Lemma 8.4 on the homotopy of
graphs, if for all t in [0, 1], G(t) is a planar graph, then G(1) = G ′ is a planar graph
such that all elements of C(G ′) are triangles. Now, we show that G(t) is a planar

graph.

Step 1: For all [A, B] in G and all C in V(G), if C 6= A and if C 6= B, then
[C − εn,C + εn] does not meet [A, B]. In fact, [C − εn,C + εn[ is included in

R ={C + x1e1 + x2e2 : x1, x2 ∈ [0, 1[} ∪ {C + x1e1 + x2e2 : −x1,−x2 ∈ [0, 1[}

and [A, B] does not meet R, hence [A, B] ∩ [C − εn,C + εn] = ∅.

Step 2: For all [A, B] in G and for all C in V(G), if C 6= A and if C 6= B, then for all t

in [0, 1], C(t) is not in [A(t), B(t)]. Otherwise, there would exist λ in [0, 1] such that

C + t f (C)εn = λ(A + t f (A)εn) + (1 − λ)(B + t f (B)εn).

This would mean that C + t[ f (C)− (λ f (A) + (1−λ) f (B))]εn ∈ [A, B], but t[ f (C)−
(λ f (A) + (1 − λ) f (B))] ∈ [−1, 1], and this contradicts Step 1.

Step 3: Let A, B and C be vertices of G such that [A, B] and [B,C] are in G and
A 6= C . Then for all t in [0, 1], [A(t), B(t)[ does not meet ]B(t),C(t)]. Otherwise,
C(t) is in ]B(t), A(t)] or A(t) is in ]B(t),C(t)] which contradicts Step 2.

Step 4: Let [A, B] and [C, D] be in G. If they do not meet, then for all t in [0, 1],
[A(t), B(t)] and [C(t), D(t)] do not meet. Indeed, set

U = {t ∈ [0, 1] : [A(t), B(t)] ∩ [C(t), D(t)] = ∅},

V = {t ∈ [0, 1] : ]A(t), B(t)[ ∩ ]C(t), D(t)[ 6= ∅ and det(
−−−−−→
A(t)B(t),

−−−−−→
C(t)D(t)) 6= 0},

F = {t ∈ [0, 1] : (A(t) or B(t) ∈ [C(t), D(t)]) or (C(t) or D(t) ∈ [A(t), B(t)])}.

https://doi.org/10.4153/CJM-2007-022-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-022-3


Cyclic Groups and the Three Distance Theorem 519

We have [0, 1] = U ∪ V ∪ F. By Step 2, F is empty and by continuity, U and V

are open and since U and V are disjoint, U or V is empty. Since 0 is in U , we have

U = [0, 1].

Step 5: By Step 3 and Step 4, G(t) is a planar graph. Let ω ′ be a connected compo-

nent of R2\G ′. By Lemma 8.4 on the homotopy of graphs, there exists ω in C(G) such
that ∂ω ′ =

⋃

[A,B]⊂∂ω[A ′, B ′]. By definition of G we can find A in Λn such that

∂ω = [A, A + u1] ∪ [A + u1, A + u3] ∪ [A, A + u3]

or
∂ω = [A, A + u2] ∪ [A + u2, A + u3] ∪ [A, A + u3].

Suppose ∂ω = [A, A + u1] ∪ [A + u1, A + u3] ∪ [A, A + u3]. In this case

∂ω ′
= [A ′, (A + u1) ′] ∪ [(A + u1) ′, (A + u3) ′] ∪ [A ′, (A + u3) ′]

is determined, up to translations, by the two vectors (A+u1) ′−A ′ and (A+u3) ′−A ′.
Now we apply Lemma 3.2 on cyclic groups with G = Λn, H = Z2, a = θn, b1 = u1

and b2 = u3. There exists a partition of {0, . . . , qn − 1} into 3 intervals I0, I1, I2 such
that for all j in {0, 1, 2} and all i in {1, 2} there exist ni, j in Z and Hi, j in Z2 such that
for all A = P + kθn ∈ Λn,

k ∈ I j ⇒
{

A + b1 = (k + n1, j)θn + P + H1, j and k + n1, j ∈ {0, . . . , qn − 1},
A + b2 = (k + n2, j)θn + P + H2, j and k + n2, j ∈ {0, . . . , qn − 1}.

It follows that for all A = P + kθn ∈ Λn,

k ∈ I j ⇒
{

(A + u1) ′ = A ′ + n1, jθ + H1, j ,

(A + u3) ′ = A ′ + n2, jθ + H2, j .

Therefore, up to translations, there are at most three triangles (A ′, (A+u1) ′, (A+u3) ′).
Finally, there are at most 6 triangles.

Step 6: It remains to prove that the diameters of the triangles go to zero when n goes

to infinity. The length l of an edge of G is |e1,n|, |e2,n| or |e1,n + e2,n|. By the choice of
the basis (Theorem 7.1), we have l ≤ 2(λ1,n + λ2,n). Furthermore, for every vertex A,
the distance between A and A ′ is at most |εn|, therefore the diameter of each triangle
of G ′ is at most 2(λ1,n + λ2,n + |εn|), which goes to zero when n goes to infinity.

10 Proof of Theorem 1.3

10.1 The Different Cases

Let θ be in R2 such that Z2 + Nθ is dense in R2 and let q be in N∗. There exists n in N

such that q is between qn − 1 and qn+1 − 1 (qn − 1 ≤ q < qn+1 − 1). Furthermore,

there exists N ∈ N∗ such that Nqn − 1 ≤ q < (N + 1)qn − 1.
By Theorem 7.1, there is a basis (e1, e2) of Λn such that εn = αe1 + βe2 with 0 ≤

β ≤ α < 1 and | sin ∠(e1, e2)| ≥
√

3/8. Since Z2 + Zθ is dense in R2, β > 0. We
consider the four cases:
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Case(1) β ≤ 1/100 and Nβ < 1.
Case(2) β ≤ 1/100 and 1 ≤ Nβ < 1 + 3β.

Case(3) (Main case:) β ≤ 1/100 and Nβ ≥ 1 + 3β.
Case(4) β ≥ 1/100.

We will give a proof of Theorem 1.3 only in cases 1, 3 and 4. Case 2 is more
difficult than Case 1, but far easier than Case 3 and we leave it to the reader. Case 4
is very different; we use Voronoı̈’s diagram. Note that the inequality on ∠(e1, e2) is
only needed in Case 4.

Let us explain why we need to introduce four cases. We must construct a trian-
gulation whose set of vertices is Z2 + {0, θ, . . . , qθ}. By Lemma 8.4, it is enough to

construct a planar graph with the same set of vertices. Since Z2 + {0, θ, . . . , qθ} is
very close to Γ = Z2 + {0, θn, . . . , qθn}, we first define a planar graph whose set of
vertices is Γ. If A = P + kθn is a vertex with k + qn ≤ q, then the point A + εn

is another vertex and the segment [A, A + εn] will always be an edge of our graph.

All the vertices can be joined by a succession of such edges to the subset of vertices
Λn = Z2 +{0, θn, . . . , (qn − 1)θn}. Now we add some new edges which are not of the
shape [A, A+εn], in order to get a planar graph G such that all connected components
of R2\G are small. The definition of these new edges will be different in cases 1–3. In

the first case the new edges are easy to define because for any vertex A, the segment
[A, A + e1] never meets an edge of the shape [A ′, A ′ + εn]. Therefore, we can add all
the edges [A, A + e1], A ∈ Γ, to the graph G (see Figures 2 and 3). In the second case,
a segment [A, A + e1] meets at most one edge of the shape [A ′, A ′ + εn] and these

segments are very few. In the main case, most of the segments [A, A + e1] meet one
or more than one edge of the shape [A ′, A ′ + εn] (see Figures 4 and 5). Therefore, we
must find another kind of edge. This is the reason why the proof is rather technical
in the main case.

The last case could probably be handled as the first three, but we find it more
convenient to use Voronoı̈’s diagram.

10.2 A Consequence of the Three Distance Theorem

The following proposition is an important argument of the proof in the main case.
Given a lattice Λ and a segment S of R2, the subset Λ + S of R2 should not be very
intricate even if the length of the segment S is far greater than the lengths of the vec-
tors of a basis of Λ. To see it, consider the intersection of Λ + S with a straight line.

We shall see that this intersection is of the shape Z + {0, . . . , n}γ, therefore the three
distance theorem allows us to count the number of different distances between con-
secutive points of this intersection. In fact, our real aim is not to study the distances,
but some vectors closely related to these distances. Each point M of this intersection

lies on a segment A + S with A in Λ. We want to count the number of vectors A ′ − A

corresponding to successive points M and M ′ of this intersection.

Proposition 10.1 Let I be a bounded interval of R, let Λ = Ze1 ⊕ Ze2 be a lattice of

R2 and let u be a vector of R2. Suppose u is not parallel to any lattice directions. Let S be

the segment Iu and for any P ∈ R2 set T(P) = {t ∈ R : P + te1 ∈ Λ + S}. Then:
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(i) For each t ∈ T(P) there exists a unique A = A(P, t) ∈ Λ such that P +te1 ∈ A+S.

(ii) For t ∈ T(P), let t ′ = min{s > t : s ∈ T(P)}. The cardinal number of the set

{A(P, t ′) − A(P, t) : P ∈ R2 and t ∈ T(P)}
is at most 6.

Proof (i) Suppose P + te1 = A + ru = B + su with A, B ∈ Λ. If r 6= s, then u is
parallel to B − A which is in Λ, so r = s and A = B.

(ii) Let us use coordinates in the basis (e1, e2); note (u1, u2) the coordinates of u.
Fix P in R2. We can suppose P = pe2 with p ∈ R. For t in R we have

t ∈ T(P) ⇐⇒ there exist A ∈ Λ and s ∈ I such that P + te1 = A + su

⇐⇒ there exist a1, a2 ∈ Z and s ∈ I such that

{

t = a1 + su1,

p = a2 + su2.

By hypothesis u2 6= 0, so s =
1

u2

(p−a2) and t = a1 + p u1

u2

−a2
u1

u2

= (p u1

u2

+a1)−a2
u1

u2

).

It follows with γ = − u1

u2

that

T(P) =

{( pu1

u2
+ a1

)

+ a2γ : a1 ∈ Z and a2 ∈ (p − u2I) ∩ Z
}

.

There are integers a(p) and b such that (p − u2I) ∩ Z = {a(p), . . . , a(p) + b − 1 or

a(p) + b} (this interval may be empty). Set I(p) = {0, . . . , b − 1} in the first case
and I(p) = {0, . . . , b} in the second case. So, with a2 = b2 + a(p),

T(P) =

{( pu1

u2

+ a(p)γ
)

+ (a1 + b2γ) : a1 ∈ Z and b2 ∈ I(p)
}

.

Now, by the three distance theorem, t ′− t takes at most three different values in both

cases, which give at most 6 different values. Furthermore, γ = − u1

u2

is an irrational
number and t ′ − t ∈ Z + Zγ. Then there exist unique n1, n2 ∈ Z such that t ′ − t =

n1 + n2γ. If t ′ − t = n1 + n2γ, we have

M(P, t ′) − M(P, t) = a ′
1e1 + a ′

2e2 − (a1e1 + a2e2) = n1e1 + n2e2

for

t ′ − t =

( pu1

u2

+ a(p)γ
)

+ a ′
1 + b ′

2γ −
(( pu1

u2

+ a(p)γ
)

+ a1 + b2γ
)

= (a ′
1 − a1) + (a ′

2 − a2)γ.

Hence, M(P, t ′) − M(P, t) takes at most six values.

Remark

(1) A more careful use of the three distance theorem shows that the cardinal of the
set {M(P, t ′) − M(P, t) : P ∈ R2 and ∈ T(P)} is at most 4.

(2) On making use of Langevin’s generalization of the three distance theorem

(see [21]), it is possible to enlarge the definition of T(P) to T(P) = {t ∈ R : P + tv ∈
Λ + S} where v is an element of R2 independent with u. The same conclusion holds.
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10.3 Proof of Theorem 1.3 in Case 1

This case is far easier than the main case, but the basic ideas of the proof are the same,
geometric difficulties are avoided and the previous proposition is not necessary.

We define successively three planar graphs G1, G2 and G3, and thanks to Lemma

8.4, we shall see that G3 is the desired triangulation. The first graph is made from the
rational approximation θn. Then we slightly move the vertices of G1 keeping the same
edges; we get the second graph. Finally, we add some missing vertices to the graph G2

and get the graph G3.

Notation Let t be in R. The lowest integer greater than or equal to t is denoted
by ⌈t⌉.

First graph: Assume q = Nqn − 1 and consider the set

ΓN = Z2 + {0, . . . , (qn − 1)θn} + {0, εn, . . . , (N − 1)εn} =

N−1
⋃

k=0

(Λn + kεn).

The set ΓN is an approximation of the set {0, θ, . . . , qθ} + Z2 which must be the
set of vertices of our triangulation. Since the set ΓN is simply deduced from the

lattice Λn, it easy to find a triangulation G1 whose set of vertices is ΓN . The graph G1

(Figure 2) is defined by the set of vertices ΓN , and there are three kinds of edges. For
all A in ΓN but not in Λn + (N − 1)εn, [A, A + εn] is an edge (vertical edge). For all A

in ΓN , [A, A + e1] is an edge (horizontal edge). Set m = ⌈(N − 1)α⌉ and for all A in
Λn + (N − 1)εn, set A∗ = (A − (N − 1)εn) + me1 + e2 (note that A∗ is in Λn). For all
A in Λn + (N − 1)εn, [A, A∗] is an edge (exceptional edge).

It is straightforward to prove that

(i) G1 is a planar graph;

(ii) all connected components of R2\G1 are parallelograms;

(iii) if [A, B] is an edge of G1 , ±−→
AB has only six possible values.

Each point of ΓN is uniquely written as an element of Z2 plus an element of

{0, . . . , (qn − 1)θn} plus an element of {0, εn, . . . , (N − 1)εn} (see Lemma 10.3).
Let P = A + kθn + lεn be such a point and set P ′ = A + kθ + lεn. The point P ′ belongs
to Z2 + {0, θ, . . . , (Nqn − 1)θ} for P ′ = A + kθ + l(qnθ − Pn) = A − lPn + (k + lqn)θ.

Second graph: To each edge [P, Q] of G1, we associate the edge [P ′, Q ′], which leads
to a new graph G2 whose set of vertices is Z2 + {0, θ, . . . , (Nqn − 1)θ} (see Figure 3).

In order to show that the connected components R2\G2 are quadrilaterals, we use
Lemma 8.4 on the homotopy of graphs. We need a continuous family G(t) with

G(0) = G1 and G(1) = G2. For t ∈ [0, 1], let G(t) be the graph whose edges are
[(1− t)A + tA ′, (1− t)B + tB ′] with [A, B] in G1. We must show that these are planar
graphs.

Lemma 10.2 For all t in [0, 1], G(t) is a planar graph.
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A
A’

C
C’

B

B’

D

D’

Figure 2: Graph G1. The points of Λn are represented by the big black dots, the other points of

ΓN are represented by the small black dots and the points of {0, θ, . . . , qθ}+Z
2 are represented

in cross-shaped.

Proof Since the proof is the same for all t ∈ ]0, 1], we do it only for t = 1. Let us

show that G2 is a planar graph. We must study the intersections [A ′, B ′] ∩ [C ′, D ′]
where [A, B] and [C, D] are edges of G1. Since Nβ < 1, the only case which is not
obvious is the following:

A ∈ Λn + (N − 1)εn, [A, A∗] = [A, B] and [C, D] = [A + e1, (A + e1)∗].

We have
−−→
AA∗ = α ′e1 + β ′e2. By the choice of A∗, we have α ′, β ′ ≥ 0, and since

Nβ < 1, we have β ′ > β. First note that the strip A + R
−−→
AA∗ + [−1, 1]εn does not

meet the line A + e1 + R
−−→
AA∗. Indeed, A + λεn ∈ A + e1 + R

−−→
AA∗ if and only if there

exists µ such that λα = 1 + µα ′ and λβ = µβ ′. Hence, λ = (α − β
β ′

α ′)−1. Since

α, α ′ ∈ [0, 1[ and β
β ′

< 1, we have |λ| > 1 and the point A + λεn does not belong to

the line A + e1 + R
−−→
AA∗. Now, if there is a point P in [A ′, A∗ ′

] ∩ [C ′,C∗ ′

], there exist
s, t, λ, µ ∈ [0, 1] such that

P = sA + (1 − s)A∗ + λεn = tC + (1 − t)C∗ + µεn,

therefore,

tC + (1 − t)C∗
= sA + (1 − s)A∗ + (λ − µ)εn ∈ A + R

−−→
AA∗ + [−1, 1]εn.
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A’ C’

B’ D’

Figure 3: The graph G2 deduced from the graph G1 represented in Figure 2.

It follows that [A ′, A∗ ′

] ∩ [C ′,C∗ ′

] = ∅.

Since all connected components of G1 are quadrilaterals, by Lemma 8.4 on the ho-
motopy of planar graphs, the connected components of R2\G2 are also quadrilaterals.

Now we use Lemma 3.2 on cyclic groups to count the number of edges of G2.
Let A = P+kεn be in ΓN with P in Λn and k ∈ {0, . . . , N−1}. We have P = Q+iθn

and P + e1 = R + jθn with Q, R in Z2 and i, j in {0, . . . , qn−1}. By Lemma 3.2, the
couple ( j − i, R − Q) has only two possible values, hence the vector

(A + e1) ′ − A ′
= ( j − i)θ + R − Q

has only two possible values.
Suppose that A = P + (N − 1)εn = Q + iθn + (N − 1)εn is in Λn + (N − 1)εn. We

have
A∗

= A − (N − 1)εn + me1 + e2 = Q + iθn + me1 + e2 = R + jθn

where m does not depend on A. Hence, R + jθn − (Q + iθn) = me1 + e2. It follows
that ( j − i, R − Q) takes only two distinct values, and so

A∗′ − A ′
= R + jθ − (Q + iθ) − (N − 1)εn = R − Q + ( j − i)θ + (N − 1)εn

takes only two distinct values. The last kind of edge [A, A+εn] gives only one possible

value for (A + εn) ′ = A ′ + εn. Finally, we get 5 + 5 possible values for the vectors
−−→
A ′B ′

where [A ′, B ′] is an edge of G2.
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Third graph: For q between Nqn − 1 and (N + 1)qn − 1, we add some edges to G2 or
cut some edges, to get a new graph G3 whose set of vertices is Z2 + {0, θ, . . . , qθ}. In

fact, each new point P of Z2 + {Nqnθ, . . . , qθ} belongs to a connected component of
R2\G2 or to an edge [A, B] of G2. In the first case, we add the singular edge [P, P]. In
the second case, we split the edge [A, B] into two edges [A, P] and [P, B].

Notation E(G3) = {−→AB : A and B are vertices of G3, and there exists ω in C(G3)
such that A, B ∈ ∂ω}.

By Lemma 8.3 on graphs, the following property implies Theorem 1.3.

(∗) There exists an absolute constant K independent of θ and q such that
|E(G3)| ≤ K.

Therefore, we now prove property (∗). Since the connected components of R2\G2

are quadrilaterals and since G2 has only 5 kinds of edges, property (∗) is true for G2:
the number of elements of

E(G2) =
{−→

AB : A and B are vertices of G2, and there exists ω in C(G2)

such that A, B ∈ ∂ω
}

is less than (2 × 5 × 5 + 5) × 2. Let A be in Λn + (N − 1)εn. The point A ′ + εn is
in the connected component of R2\G2 which contains at least one of the points A ′,
(A + e1) ′, A∗ ′

and (A∗ + e1) ′. It follows that E(G3) ⊂ E(G2) ∪ (E(G2) + E(G2) + εn),

and (∗) is true for G3.

10.4 The Map A → A ′

In Section 10.3, we used the approximation

ΓN = Λn + {0, εn, . . . , (N − 1)εn}

= Z2 + {0, θn, . . . , (qn − 1)θn} + {0, εn, . . . , (N − 1)εn}

of the set

Z2 + {0, θ, . . . , (Nqn − 1)θ} = Z2 + {0, θ, . . . , (qn − 1)θ} + {0, εn, . . . , (N − 1)εn}.

This is an important idea of the proof of the first three cases. We have already used

the properties of ΓN and of the map A → A ′ which are given by the next lemma.

Lemma 10.3 Let N be in N∗ and q = Nqn − 1.

(i) Every element of the set ΓN is uniquely written as the sum of an element of Z2, an

element of {0, θn, . . . , (qn − 1)θn} and an element of {0, εn, . . . , (N − 1)εn}.
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(ii) The map A ∈ ΓN → A ′ ∈ Z2 + {0, θ, . . . , (Nqn − 1)θ} defined by

(P + kθn + iεn) ′ = P + kθ + iεn

where P ∈ Z2, k ∈ {0, . . . , qn − 1} and i ∈ {0, . . . , N − 1}, is one-to-one and

onto.

Proof (i) Suppose P + kθn + iεn = Q + lθn + jεn with P, Q ∈ Z2, k, l ∈ {0, . . . , qn−1}
and i, j ∈ {0, . . . , N − 1}. If i 6= j, then εn ∈ 1

i− j
Λn ⊂ Q2 and this is impossible for

θ /∈ Q2. Hence i = j. P + kθn = Q + lθn means that kΘn = lΘn in R2/Z2, and by
Lemma 6.1 we get k = l and P = Q.

(ii) Let A = P + kθn + iεn and B = Q + lθn + jεn be in ΓN . If A ′ = B ′, then

A ′
= P + kθ + iεn = B ′

= Q + lθ + jεn.

It follows that

P + kθ + iεn − (Q + lθ + jεn) =

(

P + k(θn +
1

qn

εn) + iεn

)

−
(

Q + l
(

θn +
1

qn

εn

)

+ jεn

)

= (P − Q) + (k − l)θn +
(

i − j +
k − l

qn

)

εn.

Again, (i − j + k−l
qn

) 6= 0 implies εn ∈ Λn ⊂ Q2. Now |k − l| < qn, hence i = j and

k = l. It follows that P = Q.
It remains to show that the map is onto. Let C = P + kθ be in Z2 + {0, θ, . . . ,

(Nqn − 1)θ}. There exist l ∈ {0, . . . , qn − 1} and m ≤ N − 1 such that C =

P + (l + mqn)θ. We have

C = P + (l + mqn)θ = P + lθ + mqn

(

θn +
1

qn

εn

)

= (P + mqnθn) + lθ + mεn.

Since qnθn ∈ Z2, we get C = ((P + mqnθn) + lθn + mεn) ′.

10.5 Outline of the Proof in the Main Case: β ≤ 1/100 and Nβ ≥ 1 + 3β

We proceed as in first case. We successively define four Z2-invariant graphs. The set
of vertices of the first graph is still ΓN , but the edges are more difficult to define for
Nβ ≥ 1.

First graph:

V(G1) = ΓN = Z2 + {0, . . . , (qn − 1)θn} + {0, εn, . . . , (N − 1)εn}

=

N−1
⋃

k=0

(Λn + kεn).

In Section 10.7 we define the edges of the graph G1. An example is given Figure 4.
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Figure 4: The graph G1 is constructed with rules given in Section 10.7.

Second graph: We remove some edges of G1 to get a second graph G2.

Third graph: To each edge [P, Q] of G2, we associate the edge [P ′, Q ′] (see Lemma

10.3 for the definition of the map A → A ′) which leads to a new graph G3 whose set
of vertices is Z2 + {0, θ, . . . , (Nqn − 1)θ}.

We need the second graph to be sure that G3 is a planar graph. Figure 5 shows the

kind of pictures we get without removing some edges first. The graph represented is
the graph deduced from the graph G1 by the map A → A ′. It is not a planar graph.

Fourth graph: For q between Nqn − 1 and (N + 1)qn − 1, we add some edges to G3

or cut some edges to get a new graph G4 whose set of vertices is Z2 + {0, θ, . . . , qθ}.
In fact, each new point P of Z2 + {Nqnθ, . . . , qθ} belongs to a connected component
of R2\G3 or to an edge [A, B] of G3. In the first case, we add the singular edge [P, P].

In the second case, we split the edge [A, B] into two edges [A, P] and [P, B].

Notation Remember that C(G) denotes the set of connected components of R2\G.
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Figure 5: This picture is deduced from the graph of Figure 4 by the map A → A′. It is no

longer a planar graph. Some edges have to be removed.

Set

Ei =
{−→

AB : A and B are vertices of Gi , and there exists ω in C(Gi)

such that A, B ∈ ∂ω
}

.

Let us introduce a property of the graph Gi .

P0 There exists an absolute constant K independent of θ and q such that |Ei | ≤ K.

If P0 holds for G4, then by Lemma 8.3 on planar graphs, Theorem 1.3 holds in the

main case. In order to prove P0, we shall prove the following two properties of the
graphs Gi .

P1 The number of vectors
−→
AB with [A, B] in Gi is finite and less than a number inde-

pendent of θ and q.
P2 The number of edges of the boundary of any connected component of R2\Gi is

less than a number independent of θ and q.

The proof of P0 for G4 is organized as follows:

• G1 is defined such that P1 is true for G3 (§10.6, Lemma 10.4) and that P2 is true
for G1 (§10.8, Proposition 10.17).
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• Next, we prove that the connected components of R2\G2 are the union of at most 7
components of R2\G1 (§10.9, Proposition 10.25); together with the property P2

for G1, this shows that the property P2 is true for G2.
• Lemma 8.4 on homotopy, property P2 for G2 and property P1 for G3 lead to prop-

erty P0 for G3 (§10.10, Proposition 10.35).
• Finally, we prove that P0 is true for G4 (§10.11, Proposition 10.37).

10.6 Properties of G1

In this section we introduce three properties which imply that P1 holds for G3. We

shall define G1 in the next section.

P3 If [A, B] is an edge of G1 parallel to εn, then B = A ± εn.

P4 If [P, Q] is an edge of G1 which is not parallel to εn, then
−→
PQ = λe1 + γεn with

λ 6= 0 and γ ∈ ]−1, 1[.
P5 There exists a subset V of Λn with less than 8 elements such that if [P, Q] is an

edge of G1, then
−→
RS ∈ V where P = R + lεn and Q = S + mεn with R, S in Λn and

l, m in {0, . . . , N − 1}.

Lemma 10.4 If G1 satisfies P3, P4 and P5, then there exists an absolute constant K1

such that the number of vectors
−−→
A ′B ′ with [A, B] in G1 is less than K1. It follows that P1

is true for G3.

Proof The edges of G1 parallel to εn give only one vector, for if [P, P + εn] is in G1

with P = A + kθn + lεn, then

P ′
= A + kθ + lεn, (P + εn) ′ = A + kθ + (l + 1)εn and

−−−−−−−→
P ′(P + εn) ′ = εn.

For the other edges, we use P5 and Lemma 3.2 with G = Λn, H = Z2, a = θn and

{b1, . . . , bk} = V. There exists a subset E of Z × Z2 whose cardinal number is less
than |V| (|V| + 1) and such that if [P, Q] is an edge of G1 with P = A + kθn + lεn and
Q = B + jθn + mεn, then ( j − k, B − A) ∈ E. Set R = A + kθn and S = B + jθn. By

P4,
−→
PQ =

−→
RS + (m − l)εn = λe1 + γεn with γ ∈ ]−1, 1[. Since

−→
RS ∈ Λn we have−→

RS = a1e1 + a2e2 with a1 and a2 in Z, hence

a1e1 + a2e2 + (m − l)(αe1 + βe2) = λe1 + γ(αe1 + βe2),

a2e2 + (m − l)βe2 = γβe2, (m − l) = −a2

β
+ γ.

Since
−→
RS belongs to V, a2 has at most |V| different values and since m− l is an integer

and γ ∈ ]−1, 1[, m − l has at most 2|V| different values. Finally, the number of

vectors
−−→
P ′Q ′

= (B + jθn + mεn) ′ − (A + kθn + lεn) ′

= (B − A) + ( j − k)θ + (m − l)εn

is less than 2|V|2(|V| + 1).
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10.7 Definition of G1

In this section and the following we simply write Λ instead of Λn and ε instead of εn.

We have ε = αe1 + βe2 with 0 < β ≤ α < 1 and Nβ > 1 + 3β, and since Z2 + Zθ is
dense in R2, ε is not parallel to any lattice direction of Λ. Set

Γ = Λ + {0, . . . , N − 1}ε and S =Λ + [0, N − 1]ε.

We want to define G1 such that the set of vertices of G1 is Γ (Γ = Γn) and such that

P3, P4 and P5 hold for G1.

Conventions

(1) For all points A, B, . . . in R2, (a1, a2), (b1, b2), . . . denote the coordinates of
A, B, . . . in the basis (e1, ε).

(2) The vectors or edges parallel to ε will be called vertical and the others horizontal.

(3) Writing a segment [A, B] of R2, we shall always suppose that b1 ≥ a1.
(4) A point A is above (under) a horizontal segment [C, D] means that c1 ≤ a1 ≤ d1

and that there is t < 0 (t > 0) with A + tε ∈ [C, D].

Lemma 10.5 For all A in Γ there exists B in Γ such that b2 ∈ [a2, a2 +1[ and b1 > a1.

Proof Take B = A + e1.

Lemma 10.6 If A and B are in Γ, if a1 = b1and if A 6= B, then |a2 − b2| ≥ 1.

Proof We have A = pe1 + qe2 + nε and B = re1 + se2 + mε, therefore

−→
AB = (r − p)e1 + (s − q)e2 + (m − n)ε = (b2 − a2)ε.

Hence, if |b2 − a2| ∈ ]0, 1[, ε is parallel to the lattice direction (r − p)e1 + (s − q)e2.

Definition 10.7 For all A in Γ, the successor of A is the point B of Γ such that
b2 ∈ [a2, a2 + 1[ and b1 > a1 with b1 minimal. We denote the successor A by A+. By

Lemma 10.6, the point A+ is unique.

Lemma 10.8 ∀A ∈ Γ, [A, A+] is not vertical and a+
1 − a1 ≤ 1.

Proof By definition, a+
1 > a1. Hence [A, A+] is not vertical. Furthermore a+

1 ≤ b1

where B = A + e1.

Lemma 10.9 ∀A ∈ Γ, ]A, A+[ ∩ S = ∅.
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Proof Otherwise, there exists P in Λ such that (P + [0, N − 1]ε) ∩ [A, A+[ 6= ∅.
By Lemma 10.8, this intersection contains only one point B. All the points in

P + [0, N − 1]ε have the same first coordinate in the (e1, ε) basis. This coordi-
nate is b1 and is in ]a1, a+

1 [ for B ∈ ]A, A+[. Let n be in {0, . . . , N − 2} such that
B ∈ P + [n, n + 1]ε. The second coordinate of one of the two points P + nε and
P + (n + 1)ε is in [a2, a2 + 1[ which contradicts the definition of A+.

Lemma 10.10 ∀A, B ∈ Γ, A 6= B ⇒ [A, A+[∩ [B, B+[= ∅.

Proof We can suppose a1 ≤ b1. We consider 6 cases.

Case 1 If b1 ≥ a+
1 , then [a1, a+

1 [ ∩ [b1, b+
1 [ = ∅ and [A, A+[ ∩ [B, B+[ = ∅.

Case 2 If b2 > a+
2 , then [a2, a+

2 ] ∩ [b2, b+
2 ] = ∅ and [A, A+[ ∩ [B, B+[ = ∅.

Case 3 If b1 ∈ ]a1, a+
1 [ and b2 ∈ [a2, a+

2 ], then b2 ∈ [a2, a2 + 1[ and the point B

contradicts the definition of A+. Indeed, we have b2 ∈ [a2, a2 + 1[ and a1 < b1 < a+
1 ,

therefore a+
1 is not minimal.

Case 4 If b1 = a1 and b2 ∈ [a2, a+
2 ], then |b2 − a2| < 1, which contradicts Lemma

10.6.

Case 5 If b1 ∈ [a1, a+
1 [, b2 < a2 and b+

2 ≥ a+
2 , then a+

2 ∈ [b2, b+
2 ] ⊂ [b2, b2 + 1[

and b1 < a+
1 . Hence, by definition of B+, b+

1 ≤ a+
1 . But a2 ≤ a+

2 ≤ b+
2 < b2 + 1 ≤

a2 + 1, hence a2 ≤ b+
2 < a2 + 1. Since a1 ≤ b1 < b+

1 , we get B+ = A+. Therefore
[A, A+[ ∩ [B, B+[ = ∅.

Case 6 If b1 ∈ [a1, a+
1 [, b2 < a2 and b+

2 < a+
2 , then b+

2 < a2 + 1. We consider three

sub-cases.

Subcase 6.1 If b+
2 < a2, then [b2, b+

2 ] ∩ [a2, a+
2 ] = ∅ and [A, A+[ ∩ [B, B+[ = ∅.

Subcase 6.2 If a2 ≤ b+
2 and b+

1 ≤ a+
1 , then B+ contradicts the definition of A+.

Subcase 6.3 If a+
1 < b+

1 , then B+ 6= A+ and by definition of B+, b+
2 < b2 + 1 ≤ a+

2 .
Consider f : R2 → R2 defined by f (X) = (x1 −a1)(a+

2 −a2)− (x2 −a2)(a+
1 −a1). We

have f (A) = f (A+) = 0, furthermore, f (B) = (b1−a1)(a+
2−a2)−(b2−a2)(a+

1−a1) ≥
0 and

f (B+) = (b+
1 − a1)(a+

2 − a2) − (b+
2 − a2)(a+

1 − a1)

= (b+
1 − a+

1 )(a+
2 − a2) + (a+

1 − a1)(a+
2 − a2) − (b+

2 − a2)(a+
1 − a1)

= (b+
1 − a+

1 )(a+
2 − a2) + (a+

1 − a1)(a+
2 − b+

2 ) > 0,

hence ]B, B+[ ∩ [A, A+[ = ∅.

https://doi.org/10.4153/CJM-2007-022-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-022-3


532 N. Chevallier

Lemma 10.11 ∀A, B ∈ Γ, A = B or ]A, A+[ ∩ [B, B+] = ∅.

Proof If A 6= B, then by the previous lemma, ]A, A+[∩[B, B+[ = ∅. But, by Lemma
10.9, no point of S belongs to ]A, A+[, hence the point B+ which is in Γ ⊂ S, is not in

]A, A+[.

Now, we wonder whether, for A in Γ, there exists B in Γ with B+ = A. As before it
is easy to prove the next lemma.

Lemma 10.12 (cf. Lemma 10.5) For each A in Γ there exists a unique B in Γ with

b1 < a1, b2 ∈ ]a2 − 1, a2] and b1 maximal. We call this point A−.

Lemma 10.13 Let A be in Γ. Suppose there is no P in Γ with P+ = A. Let B = A−

and C = B+. Then C ∈ Λ, c1 < a1 and c2 ∈ ]a2, a2 + 1[.

Proof Since a2 − 1 < b2 ≤ a2 and b2 ≤ c2 < b2 + 1, we have c2 ∈ ]a2 − 1, a2 + 1[.
Therefore by Lemma 10.6, we have c1 6= a1 or C = A which is false by hypothesis.
Hence c1 6= a1. Since a2 − 1 < b2 ≤ a2, we have b2 ≤ a2 < b2 + 1, together with

b1 < a1, this gives by definition of B+, c1 = b+
1 ≤ a1 and c1 < a1. It follows by

definition of B = A−, that c2 > a2. The point D = C − ε cannot belong to Γ, for
c2 − 1 > a2 − 1 and c2 − 1 < (b2 + 1)− 1 = b2 ≤ a2 which contradicts the definition
of B = A−. Finally C ∈ Γ and C − ε /∈ Γ imply C ∈ Λ.

Lemma 10.14 Let A be in Γ. Suppose there is no P in Γ with P+ = A. Let B = A−

and C = B+. The segment ]C, A[ does not meet S, nor any segment [D, D+] with D

in Γ.

Proof By definition of A− the rectangle

R = {X ∈ R2 : x1 ∈ ]a−1 , a1[ and x2 ∈ ]a2 − 1, a2]}

contains no point of Γ.

Step 1: If a vertical segment [D, D + ε] with D and D + ε in Γ meets ]C, A[, then
d1 ∈ ]c1, a1[, hence d1 ∈ ]b1, a1[. If d2 ≤ a2, then d2 ≤ a2 − 1, for D is not in
the rectangle R. But d2 + 1 ≤ a2 is the second coordinate of D + ε which is not in
R, therefore d2 + 1 ≤ a2 − 1 and [D, D + ε] ∩ ]C, A[ = ∅. If a2 < d2 ≤ c2, then

a2 − 1 < d2 − 1 ≤ c2 − 1 ≤ a2, therefore, D − ε is in R, hence D ∈ Λ. It follows that
the rectangle

U = {X ∈ R2 : x1 ∈ ]a1 − 1, a1[ and x2 ∈ ]a2, a2 + 1]}

contains the two points C and D of Λ, which is impossible for β < 1, and therefore
U is included in a fundamental domain for the action of Λ. If d2 > c2, the result is
obvious.
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Step 2: Before studying the intersections [D, D+] ∩ ]C, A[, let us note that the rect-
angle

V = {X ∈ R2 : x1 ∈]a−1 , a1[ and x2 ∈ ]a2, c2]}
contains only one point of Γ which is C . Indeed, if P is in V ∩ Γ, then Q = P − ε
satisfies a−1 < q1 < a1 and a2−1 < q2 ≤ c2−1 ≤ a2 which contradicts the definition
of A−. Furthermore, since β < 1, V cannot contain two points of Λ.

Let D be in Γ. We can suppose D 6= B.

• If d2 < a2 and d1 ∈ [b1, a1[, then d2 ≤ a2 − 1 for D 6= B and D /∈ R. Hence,
d+

2 < d2 + 1 ≤ a2, [d2, d+
2 [ ∩ ]a2, c2[ and [D, D+] ∩ ]C, A[ = ∅.

• If d2 < a2 and a1 ≤ d1, then [d1, d+
1 ] ∩ ]c1, a1[ = ∅.

• If d2 < a2 and d1 < b1 and d2 < b2, then by definition of D+, d+
1 ≤ b1 or

d2 ≤ b2 − 1. It follows that [d1, d+
1 ] ∩ ]c1, a1[ = ∅ or [d1, d+

1 ] ∩ ]a2, c2[ = ∅.
Hence [D, D+] ∩ ]C, A[ = ∅.

• If d2 < a2 and d1 < b1 and b2 ≤ d2, then d+
1 ≤ c1. Therefore, [d1, d+

1 ] ∩ ]c1, a1[ =

∅.
• If c2 < d2, then [d2, d+

2 ] ∩ [a2, c2] = ∅ and [D, D+] ∩ [C, A[ = ∅.
• If d2 ∈ [a2, c2] and d1 < c1, then, by definition of D+, d+

1 ≤ c1 and [D, D+] ∩
]C, A[ = ∅.

• If d2 ∈ [a2, c2] and a1 ≤ d1, then ]c1, a1[∩[d1, d+
1 ] = ∅ and [D, D+]∩]C, A[ = ∅.

• If d2 ∈ ]a2, c2] and d1 ∈ [c1, a1[, then D ∈ V and D = C .
• If d2 = a2 and d1 ∈ [c1, a1[, then the point D contradicts the definition of B.

Lemma 10.15 (cf. Lemma 10.14)

(i) Let C be in Λ. There is at most one A in Γ with (A−)+ = C.

(ii) All segments [C, A] with C in Λ and C = (A−)+ are disjoint.

Proof For D in Λ, set

R(D) = {X ∈ R2 : x1 ∈ [d1, d1 + 1[ and x2 ∈ [d2 − 1, d2]}.

Since β < 1, the rectangle R(D) contains exactly one point of Λ which is D. Further-

more, these rectangles are disjoint.

(i) Let A and B be in Γ such that (A−)+ = (B−)+ = C . Suppose that A 6= B. We
have a2 and b2 ∈ ]c2 − 1, c2[, hence, by Lemma 10.6, a1 6= b1. Suppose a1 < b1. If
A is above [C, B], then by Lemma 10.14, A is in Λ for [A − ε, A] meets [C, B]. Since

R(C) contains only one point of Λ which is C, A is under [C, B]. It follows that A is
in Λ + (N − 1)ε and therefore A − ε is in Γ. One of the points A or A − ε is in

{X ∈ R2 : b−1 < x1 < b1 and x2 ∈ ]b2 − 1, b2]}

which contradicts the definition of B−.

(ii) The segment [C, A] is contained in R(C) and the rectangles, R(C), C ∈ Λ, are
disjoint.
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Definition of G1 G1 is the collection of all edges of one of the three types:

(i) vertical edges [D, D + ε] with D and D + ε in Γ,
(ii) horizontal edges [A, A+] with A in Γ,

(iii) exceptional horizontal edges [C, A] where A is in Γ and there is no point P in Γ

with P+ = A and C = (A−)+.

By Lemmas 10.6, 10.9, 10.11, 10.14 and 10.15, G1 is a planar graph. (Since Γ is

discrete and the lengths of edges of G1 are bounded, a bounded region of R2 meets
only finitely many edges of Gi .) Clearly, G1 is invariant by Λ-translation, and G1

satisfies P3 and P4.
Now we use Proposition 10.1 to prove the following.

Proposition 10.16 Property P5 is true for G1.

Proof Let [A, B] be an edge of G1. There exist unique R, S in Λ and m, l in
{0, . . . , N − 1} such that A = R + mε and B = S + lε. If [A, B] is vertical, then−→
RS = 0 for ε is not parallel to any lattice direction. Suppose [A, B] is a horizontal

edge of G1 such that B = A+. We would like to prove that
−→
RS takes at most 6 values.

Set U =]−1, N−1]ε and for P in R2, T(P) = {t ∈ R : P+te1 ∈ Λ+U}. For t ∈ T(P)
let t ′ = min{s ∈ T(P) : t < s}. By Proposition 10.1, for each t in T(P) there exists a
unique point M(P, t) such that M(P, t) ∈ Λ and P + te1 ∈ M(P, t) + U. Furthermore,

the difference M(P, t ′) − M(P, t) takes at most 6 values when P runs through R2 and
t runs through T(P). By definition of A+,

a+
1 = min{s > a1 : ∃ δ ∈ [0, 1[, se1 + a2ε + δε ∈ Γ}.

Now se1+a2ε+δε ∈ Γ with δ ∈ [0, 1[ is equivalent to A+(s−a1)e1 = se1+a2ε ∈ Λ+U,
therefore

a+
1 − a1 = min{s > 0 : A + se1 ∈ Λ + U} = 0 ′.

Since R = M(A, 0) and S = M(A, a+
1 − a1), it follows by Proposition 10.1 that

−→
RS

takes at most six values.
Since G1 is Λ-invariant, if [A, B] is an exceptional edge, all other exceptional edges

are of the shape [A, B] + −→u with −→u ∈ Λ. Therefore, exceptional edges give rise to

only one vector
−→
RS.

Remark The construction of the graph G1 works with Z2 instead of the lattice Λn

and ε = θ instead of εn. But it leads to a graph whose edges have lengths which do
not go to zero.

10.8 The Boundary of the Elements of C(G1)

The aim of this paragraph is to prove P2 for G1.

Proposition 10.17 The connected components of R2\G1 are bounded and their

boundaries are connected, bounded and made of at most six edges.
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Lemma 10.18 If [A, B] is an horizontal edge of G1, then A or B is not in Λ.

Proof Suppose A ∈ Λ. The rectangle

R = {X ∈ R2 : x1 ∈ [a1, a1 + 1[, x2 ∈ [a2, a2 + 1/β[}

is a fundamental domain for the action of Λ, therefore it contains exactly one point
of Λ+(N −1)ε; let C = D+(N −1)ε be this point. Since (N −1)β ≥ 1+2β, we have

d2 < a2 − 2. Since ε is not parallel to any directions of Λ, ε is not parallel to
−→
DA and

d1 ∈ ]a1, a1 + 1[. Since [A, B] is a horizontal edge of G1, we have b2 ∈ ]a2 −1, a2 + 1[.
Furthermore, by Lemma 10.9, [A, B] does not cross [D,C], therefore b1 ∈ ]a1, d1[. It
follows that B ∈ R − ε. The rectangle R − ε contains already one point of Λ which
is A, hence B /∈ Λ.

A similar proof leads to:

Lemma 10.19 (cf. Lemma 10.18) If [A, B] is a horizontal edge of G1, then A or B is

not in Λ + (N − 1)ε.

Lemma 10.20 Let P be in R2. Then there is a horizontal edge [A, B] of G1 and λ ∈
[0, 3[ such that P − λε ∈ [A, B].

Proof Since (N − 1)β ≥ 1, the set E = {A ∈ Γ : a2 ∈ [p2 − 2, p2 − 1] and
a1 < p1} is not empty. Let A be the point of E with a1 maximal. If p1 ≤ a+

1 , we have

P − λε ∈ [A, A+] with λ ∈ [0, 2[. If a+
1 < p1, by Lemma 10.18, one of the points A

or A+ is not in Λ; but A+ must be in Λ for the point A+ − ε cannot be in E. Now, the
line [B = A − ε, B+] ∪ [B+, B++] ∪ · · · is under the point P.

Lemma 10.21 Let [A, B = A+] be a horizontal edge of G1 with A and B not in Λ +
(N − 1)ε. If (A + ε)+ 6= B + ε, then there exists D such that [A + ε, D] and [D, B + ε]
are in G1.

Proof For all point P ∈ [A, B], let [AP, BP] be the first horizontal edge of G1 meeting
the half line P + λε, λ > 0. By Lemma 10.20 and the discreteness of G1 there are only
a finite number of such edges, i.e.,

{[AP, BP] : P ∈ [A, B]} = {[A1, B1], . . . , [An, Bn]}.

We can suppose that the first coordinates ai,1 of Ai are in increasing order.

Step 1: Let us show that a1 ≤ ai,1 ≤ bi,1 ≤ b1 for all i. Suppose ai,1 < a1 for
some i. Let Pi be a point of [A, B] for which [Ai , Bi] is the first edge to meet the half

line P + R+ε. The edge [A + ε, (A + ε)+] cannot meet [Ai , Bi[, therefore, A + ε is
under [Ai , Bi]. It follows that the edge [A + ε, (A + ε)+] is entirely under [Ai , Bi]. Let
C = (A + ε)+. Since N ≥ 6, the points C + ε, C + 2ε and C + 3ε are in Γ. But by
previous remark, one of the edges [C,C +ε], [C +ε,C + 2ε] or [C + 2ε,C + 3ε] meets
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[Ai , Bi] which means that C , C + ε or C + 2ε is Bi and we can drop the edge [Ai , Bi].
By the same reasoning, we prove that bi,1 ≤ b1. (In this case, we use the existence of

a point C such that C+ = B + ε or such that [C, B + ε] is an exceptional edge.)

Step 2: By 1, a1,1 = a1. Furthermore, by definition of G1, there is no edge [A,C]
with [A,C] above [A, B], therefore A1 = A + ε.

Step 3: Let us show that if a point Ai is such that ai,1 > a1, then Ai is in Λ. Indeed, if
C = Ai − ε is in Γ, then the sequence of edges [Ci ,C+

i ], [C+
i ,C++

i ], [C++
i ,C+++

i ], . . .
is under [Ai , Bi], which contradicts the definition of the segment [Ai , Bi].

Step 4: Since the rectangle R = {X ∈ R2 : x1 ∈ [a1, b1[ and x2 ∈ [a2, a2 + 4]}
contains at most one point of Λ, it follows that n = 1 or 2.

Step 5: Suppose n = 1. Since A + ε is not in Λ, the edge [A1, B1] cannot be excep-
tional, hence b1,2 ≥ a2 + 1 > b2. It follows that B + ε is under [A1, B1] and therefore

B1 = B + ε.

Step 6: Suppose n = 2. Considering the edge [B1, B+
1 ], [B+

1 , B++
1 ], [B++

1 , B+++
1 ] . . . ,

we see that A2 must be under the edge [A1, B1]. Considering the predecessor of A2,
we see that A2 = B1. If B2 is not B, then B + ε is under [A2, B2] and it follows that

B2 = B + ε.

The proofs of Lemmas 10.22, 10.23 and 10.24 are similar to the proof of Lemma
10.21.

Lemma 10.22 Suppose [A, B = A+] is in G1 and that B is in Λ + (N − 1)ε. Then

either (A + ε)+ = B+ + ε either [A + ε, (A + ε)+] and [(A + ε)+, B+ + ε] are in G1.

Lemma 10.23 Suppose [A, B] is an exceptional edge of G1 and that B is not in Λ +
(N − 1)ε. Then A+ = B + ε is in G1.

Lemma 10.24 Suppose [A, B] is an exceptional edge of G1 and that B is in Λ +
(N − 1)ε. Then either A+ = B+ + ε, or [A+, B+ + ε] is in G1.

Proof of Proposition 10.17 Let ω be in a connected component of R2\G1 and Q in

ω. There exists a first horizontal edge to meet the half line Q − tε, t > 0, let [A1, A2]
be this edge. By Lemmas 10.21, 10.22, 10.23 and 10.24, we can find a sequence of
edges [A1, A2], . . . , [An−1, An = A1] with n ≤ 6, such that Q is inside the simple
closed curve γ = [A1, A2]∪ · · · ∪ [An−1, An]. Now, it is easy to see that ω is bounded

and that ∂ω = γ.

10.9 The Graph G2

Definition of G2 The vertices of G2 and the vertices of G1 are the same. We remove
all horizontal edges [A, B] of G1 such that there exist C in Λ and t ∈ ]0, 1[ with
C − tε ∈]A, B[ or such that there exist C in Λ + (N − 1)ε and t ∈ ]0, 1[ with
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C + tε ∈ ]A, B[. In these cases, we shall say that the edge [A, B] is removed by C . We
keep all the other edges of G1. We get a new set of edges G2. Since G1 is Λ invariant,

G2 is also Λ invariant. The only thing to prove about G2, is the property P2. It follows
from the next proposition.

Proposition 10.25

(i) If ω is a connected component of R2\G2, there exist ω1, . . . , ωm connected compo-

nents of R2\G1, with m ≤ 7, such that ω = ω1 ∪ · · · ∪ ωm.

(ii) The property P2 holds for G2.

Since P2 holds for G1 (Proposition 10.17), (ii) follows from (i). The proof of (i) is
rather long; we outline the proof:

Step 1: We study the number of removed edges by one element of Λ or Λ+(N −1)ε.

Step 2: Vertical curves. We construct a sequence (Γn)n∈Z of simple curves such that

• Γn+1 = Γn + e1,
• all Γn are in the union of edges of G2,
• if n 6= m, then Γn ∩ Γm = ∅,
• all Γn go from +∞ to −∞ in the ε direction, that is limt→+∞ Γn,2(t) = +∞ and

limt→−∞ Γn,2(t) = −∞.

Step 3: Horizontal curves. For some B ∈ Γ we construct a simple curve

∆B = [B0 = B, B1] ∪ [B1, B2] ∪ · · · ∪ [Bn−1, Bn]

contained in G2 and in a strip of width 3, namely {X ∈ R2 : x2 ∈ [t, t + 3]}.

Step 4: Let ω be a connected component of R2\G2. Since previous curves are in
G2, they do not meet ω. Jordan’s theorem allows us to enclose ω in a box B whose

boundary is made of parts of previous curves. Furthermore, we construct the curves
∆B sufficiently close to each other so that B is contained in a fundamental domain
for the action of Λ on R2. By Step 1, we see that there are at most six removed edges
of G1 in B. This shows that ω is contained in the union of at most 7 connected

components of G1.

10.9.1 Number of Removed Edges

Lemma 10.26 For each C in Λ there exist at most three removed edges [Ai , Bi] of the

first kind, i.e., such that there exists ti ∈ ]0, 1[ with C − tiε ∈ [Ai , Bi].

For each C in Λ + (N − 1)ε there exist at most three removed edges [Ai , Bi] of the

second kind, i.e., such that there exists ti ∈ ]0, 1[ with C + tiε ∈ [Ai , Bi].

It is enough to prove the following.

Lemma 10.27 If P is in R2, then there are at most three edges [Ai , Bi] such that

]Ai , Bi[ ∩ [P, P + ε] 6= ∅, i = 1, 2, 3.
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Proof Suppose on the contrary that there are four edges [Ai , Bi] such that ]Ai , Bi[∩
[P, P + ε] 6= ∅, i = 1, 2, 3, 4. Let Ci be the intersection of ]Ai , Bi[ and [P, P + ε]. We

can assume that ci,2 are in increasing order.

For all horizontal edge [A, B], we have b1 − a1 ≤ 1 and |a2 − b2| < 1, therefore,
ai,1 ∈ ]p1 − 1, p1[ and ai,2 ∈ ]p2 − 1, p2 + 1[. Since the rectangle R = {X ∈ R2 :
x1 ∈ ]p1 − 1, p1[ and x2 ∈ ]p2 − 1, p2 + 2[} contains at most one point of Λ and at

most one point of Λ + (N − 1)ε, there is at most one point of Λ among the Ai and
one point of Λ+ (N −1)ε. Remember that N −1 ≥ 6 and that the second coordinate
is nondecreasing along all horizontal nonexceptional edges.

Case 1 The points Ai are all distinct.

If a1,1 < a2,1, then A2 or A2 − ε or A2 − 2ε is in Λ and hence [A2, A2 + ε],

[A2 + ε, A2 + 2ε] and [A2 + 2ε, A2 + 3ε] are in G1. It follows that a3,1 ≥ a2,1. But if
a3,1 > a2,1, then A3 or A3 − ε or A3 − 2ε is in Λ and there would be two points of Λ

in R, which is not possible, so a3,1 = a2,1. Therefore A3 = A2 + ε or A2 + 2ε. Again,
we get A4 = A3 + ε, but this is impossible, for T = {X ∈ R2 : x1 ∈ ]p1 − 1, p1[ and

x2 ∈ ]p2 − 1, p2 + 1[} cannot contain A2, A2 + ε and A2 + 2ε.

If a1,1 > a2,1, then A1 or A1 + ε or A1 + 2ε is in Λ + (N − 1)ε. It follows that
[A2, A2 + ε], [A2 + ε, A2 + 2ε] and [A2 + 2ε, A2 + 3ε] are in G1. Therefore a3,1 or
a4,1 < a2,1 is not possible.

If a3,1 = a2,1, then A3 = A2 + ε and a4,1 > a2,1; now there is no room for A4. In-
deed, a4,2 < a3,2 implies that A4 ∈ Λ and the edge [A3, B3] cannot cross [A4, A4 + ε]∪
[A4 + ε, A4 + 2ε]. Furthermore, a4,2 ≥ a3,2 implies b3,1 = a+

3,1 ≤ a4,1 < p1 or
a4,2 ≥ a3,2 + 1 = a2,2 + 2 > p2 + 1. It follows that [A4, B4] is an exceptional edge. In

this case the point D = B−
4 verifies d2 < b4,2 < a3,2 + 1, d2 > a4,2 − 1 ≥ a3,2 and

a3,1 < d1 < a4,1 ; therefore a+
3,1 ≤ d1 < p1, which is impossible.

If a3,1 > a2,1, then A3 or A3 − ε is in Λ, hence a4,1 ≥ a3,1. Furthermore, a3,2 ≥
a2,2 + 1 > p2 for A+

2 6= A3. Therefore A4 6= A3 + ε and a4,1 > a3,1. Again A4 has to be
in Λ and there are too many points in Λ.

If a1,1 = a2,1, then A2 = A1 + ε.

If a3,1 > a2,1, then A3 ∈ Λ and [A3, A3 + ε] is in G1. Now, there is no room for A4.

If a3,1 = a2,1, then A3 = A2 + ε = A1 + 2ε and [A3, B3] cannot meet [P, P + ε].

If a3,1 < a2,1, then A2 ∈ Λ + (N − 1)ε. Therefore, [A3, A3 + ε] is in G1. It
follows that a4,1 > a3,1 and A4 ∈ Λ. Hence, A3 /∈ Λ and A+

3 = B3. By definition

of A+
3 , we have a4,2 ≥ a3,2 + 1, for the same reason we have a3,2 > a2,2, therefore

a4,2 ≥ a2,2 + 1 ≥ a1,1 + 2 > p2 + 1. It follows that [A4, B4] is an exceptional
edge. The point D = B−

3 is not A3 for A+
3 6= A4. We have d2 > a4,2 − 1 ≥ a3,2,

d2 < p2 ≤ a1,2 + 2 ≤ a2,2 + 1 ≤ a3,2 + 1, therefore, by definition of A+
3 , d1 ≤ a3,1. If

d1 = a3,1, then D = A3 + ε and b4,2 > d2 > p2 + 1, which is impossible, for [A4, B4]
is an exceptional edge. Finally, d1 < a3,1 is impossible for in this case, [D, D+ = A4]
must cross [A3, A3 + ε] or [A3 + ε, A3 + 2ε].

Case 2 The points Ai are not distinct.

Since there are four edges [Ai , Bi], there must be at least one point Ai with two
successors. Two Ai with two successors is impossible, for points with two successors
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are in Λ and R contains at most one point of Λ. It follows that one of the Ai is in Λ

and has two successors, and that the other two are distinct and not in Λ.

If A1 is in Λ, then A2 = A1, a1,2 ∈ [p2, p2 + 1] and the edge [A1, A1 +ε] exists. The
point A3 must be over [A1, A+

1 ], but this implies that A3 is in Λ, which is impossible.

If A2 = A3 is in Λ, then a2,2 ∈ [p2, p2 + 1] and the edge [A2, A2 + ε] exists.
The point A4 must be over [A2, A+

2 ], but this implies that A4 is in Λ, which is again
impossible.

If A3 = A4 is in Λ, then [A3, B3] is an exceptional edge and B3 /∈ Λ. Since [A3, B3]
is exceptional, there is no point Q in Λ with Q+ = B3, hence A+

1 and A+
2 6= B3.

Considering the polygonal line [A3, B3] ∪ [B3, B3 − ε], we see that B1 = A+
1 and

B2 = A+
2 are in Λ + (N − 1)ε for the segments [B1, B1 + ε] and [B2, B2 + ε] meet

[A3, B3]. Therefore A+
1 = A+

2 , but this implies that A1 ∈ Λ + (N − 1)ε, which is
impossible, for R contains only one point of Λ + (N − 1)ε.

Lemma 10.28 Either [A, A+] is in G2 for all A in Λ, or [A + ε, (A + ε)+] is in G2 for

all A in Λ.

Proof These edges can only be removed by a point of Λ + (N − 1)ε. Suppose that

the edge [A, A+] is removed by a point C of Λ + (N − 1)ε. Therefore |a+
1 − c1| < 1

and |a+
2 − c2| ≤ 2. It follows that C and A+ cannot be both in Λ + (N − 1)ε, so A+ is

not in Λ+ (N −1)ε. The interior of the parallelogram P = conv(A, A+, A+ +ε, A +ε)
cannot contain a point of Γ for such a point would be in Λ and would be too close

to A which is already in Λ. It follows that the edge [A + ε, (A + ε)+] is above P and
therefore can not be removed by C . Since G1 is invariant by Λ-translations, if [A, A+]
is in G2 for A in Λ, it holds for all A in Λ and the same is true for [A + ε, (A + ε)+].

10.9.2 Construction of Vertical Curves

Let A be in Λ. Let V be the vector of Λ such that (Case i) A+ ∈ A + V + {0, N − 1}ε
if [A, A+] ∈ G2, and (Case ii) (A + ε)+ ∈ A + V + {0, N − 1}ε if [A, A+] /∈ G2. By
Λ-translation invariance the vector V does not depend on A.

Lemma 10.29 v2 ≤ −1/β.

Proof We prove the inequality in (Case ii); (Case i) is similar. Set B = A + ε. By
definition of V we have B+ ∈ A + V + {0, N − 1}ε, therefore b+

2 ∈ [a2 + v2, a2 + v2 +
(N−1)]∩[a2 +1, a2 +2[. Furthermore v2β ∈ Z and β < 1/2, hence v2 ≤ 0. If v2 = 0,
then v1 ≥ 1 and the set {X ∈ R2 : x1 ∈ ]a1, a1 + 1[ and x2 ∈ [a2 + 1, a2 + 2[} contains

no point of Γ, which is impossible for (N − 1)β ≥ 1 + β. Therefore v2β ≤ −1.

We consider two cases.

https://doi.org/10.4153/CJM-2007-022-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-022-3


540 N. Chevallier

Case 1 The points A and A + V are joined by the path

γA = [A, A+] ∪ [A+, A+ − ε] ∪ [A+ − ε, A+ − 2ε] ∪ · · · ∪ [A + V + ε, A + V ].

Case 2 The points A + ε and A + V + ε are joined by the path

γA = [A+ε, B = (A+ε)+]∪[B, B−ε]∪[B−ε, B−2ε]∪· · ·∪[A+V +2ε, A+V +ε].

Now we define the vertical path as the infinite union

ΓA =

⋃

n∈Z

γA+nV .

The curve ΓA is clearly simple and goes from +∞ to −∞ in the ε direction, therefore,
by Jordan’s theorem, ΓA splits R2 in exactly two connected components. Moreover

ΓA ⊂ G2 and ΓA+e1
= ΓA + e1

Definition 10.30 The vertical curves are Γn = Γne1
, n ∈ Z.

Lemma 10.31 Let A be in Λ and t in R. Then diam ΓA ∩ {X ∈ R2 : x2 = t} < 1.

Proof We give the proof in Case 1; the second case is similar. Let t be in R and set
Dt = {X ∈ R2 : x2 = t}. For B in Λ ∩ ΓA, let IB be the interval {x2 : X ∈ γB}
and JB = [b2, b+

2 ]. We have IB = [b2 + v2, b+
2 ]. Since β < 1/2 and v2 ≤ −1/β,

the intervals JB, B ∈ Λ ∩ ΓA, are disjoint and an interval IB only meets IB−V and
IB+V . Furthermore, IB ∩ IB−V = JB. It follows that there exists B in ΓA ∩ Λ such that
Dt ∩ΓA = Dt ∩γB or Dt ∩(γB∪γB−V ). Since (N−1)β ≥ 1, we have b+

1 −b1 < 1 (use

(N−1)β ≥ 1+β in Case 2). Therefore, diam(Dt ∩γB) ≤ b+
1 −b1 < 1. If Dt ∩γB 6= ∅

and Dt ∩ γB−V 6= ∅, then t ∈ JB and diam Dt ∩ (γB ∪ γB−V ) ≤ b+
1 − b1 < 1.

The following lemma is an obvious consequence of Lemma 10.31.

Lemma 10.32 Let A be in Λ. Then ΓA ∩ ΓA+e1
= ∅.

10.9.3 Construction of Horizontal Curves.

Lemma 10.33 Let A be in Γ. There exists a sequence (An)n∈N of Γ such that A0 = A,

and for all n, an,2 ∈ [a2, a2 + 3[ and either An+1 = A+
n or An − ε and [An, An+1] ∈ G1 .

Proof We proceed by induction. Take A0 = A. Assume A0, . . . , An are constructed.

• If an,2 ≤ a2 + 2, take An+1 = A+
n .

• If an,2 > a2 + 2 and [An, An − ε] ∈ G1, take An+1 = An − ε.
• If an,2 > a2 + 2 and [An, An − ε] /∈ G1, then An−1 − ε 6= An and by Lemma 10.18,

[An−1, An−1 − ε] ∈ G1. We change An to An−1 − ε and take An+1 = (An−1 − ε)+.
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Completion of Proof of Proposition 10.25 Let ω be a connected component of
R2\G2. Each curve Γn splits R2 into two connected components. Let Γ+

n be the

connected component of R2\Γn which contains Γn+1 = Γn + e1 and Γ−
n the other

component. Set Ωn = Γ+
n\Γ+

n+1, so Ωn is the region lying between Γn and Γn+1.
Since, by definition of the curve Γn, ω does not meet the curve Γn, there exists n0 ∈ Z

such that ω is in Ωn0
= Ω. For a point A ∈ Γ ∩ Γn0

, let ∆A be the horizontal

path [Ap, Ap+1] ∪ [Ap+1, Ap+2] ∪ . . . [Aq−1, Aq] where the sequence (An) is defined
in Lemma 10.33 with A0 = A, Ap is the last point of the sequence in Γn0

, and Aq is
the first point of the sequence in Γn0+1 (the sequence of edges [An−1, An] meets Γn0+1

since an ∈ [a2, a2 + 3[, an,1 → ∞, and there exists X ∈ Γn0+1 with x2 arbitrarily near

to +∞ or −∞). If A and B are in Γ ∩ Γn0
with a2 − b2 > 3, then ∆A does not meet

∆B. We can find a sequence (Bn)n∈Z in Γ ∩ Γn0
with

bn,2 + 3 < bn+1,2 ≤ bn,2 + 4.

The seven paths ∆Bn
, ∆Bn+1

, . . . , ∆Bn+6
are all in the strip

{X ∈ R2 : x2 ∈ [bn,2, bn,2 + 24[},

hence in R = Ω ∩ {X ∈ R2 : x2 ∈ [bn,2, bn,2 + 27[}.

In order to see that one of the paths ∆Bn
, . . . , ∆Bn+6

is in G2, by Lemma 10.26, it
suffices to show that no points of R are equivalent modulo Λ. Let X and Y be in R

such that X−Y ∈ Λ. Since β < 1/28, we have x2 = y2 and X−Y = me1 with m ∈ Z.

Suppose m ≥ 1. Since Y ∈ Γ+
n0

, X ∈ Γ+
n0

+ me1. Furthermore, Γ+
n + e1 is included in

Γ+
n+1 for all n, hence Γ+

n0
+ me1 = Γ+

n0+1 + (m − 1)e1 ⊂ Γ+
n0+1 and X ∈ Γ+

n0+1. This

contradicts X ∈ Ωn0
= Γ+

n0
\Γ+

n0+1.

For each n ∈ Z, choose Cn among B7n, . . . , B7n+6 such that ∆Cn
is in G2. The curve

∆Cn
splits Ω into two connected components and the sets

R+
n = {X ∈ Ω : x2 > cn,2 + 3} and R−

n = {X ∈ Ω : x2 < cn,2}

are not in the same component. Since ω does not meet the curve ∆Cn
, ω cannot meet

both R−
n and R+

n . The choice of the sequence (Cn) shows that

cn,2 + 3 ≤ cn+1,2 ≤ cn,2 + 52.

It follows that diam{x2 : X ∈ ω} ≤ 55, hence there exists t ∈ R such that

ω ⊂ B ={X ∈ Ω : x2 ∈ [t, t + 55]}.

As before, we see that B contains no equivalent points modulo Λ. Therefore, by

Lemma 10.26, B contains at most six removed edges and ω is the union of at most
seven connected components of R2\G1.
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10.10 The Graph G3

Remember that G3 is the set of all edges [A ′, B ′] with [A, B] in G2 (see Section 10.4).
We have to show that G3 a is Z2-invariant planar graph and that G3 satisfies P0. First,
Z2-invariance is easy: observe that (A + P) ′ = A ′ + P for all A in Γ and P in Z2. Now
we show that G3 is a planar graph.

Lemma 10.34 Let [A, B] 6= [C, D] be in G2. Then [A ′, B ′] ∩ [C ′, D ′] = ∅ or is one

common extremity of [A ′, B ′] and [C ′, D ′].

Proof

Step 1: We first suppose {A, B} ∩ {C, D} = ∅.

Case 1 [A, B = A + ε] and [C, D = C + ε] are vertical. Since for each X in Γ, we
have x ′

1 = x1, the condition a1 6= c1 implies [A ′, B ′] ∩ [C ′, D ′] = ∅. In the other

case we can suppose c2 > a2. By Lemma 10.6, we have b2 = a2 + 1 ≤ c2 − 1 and since
for each X in Γ, we have x ′

2 − x2 ∈ ]0, 1[, [A ′, B ′] ∩ [C ′, D ′] = ∅.

Case 2 [A, B = A + ε] is vertical and [C, D] horizontal. If a1 /∈ [c1, d1], then the
result is obvious. If a1 ∈ [c1, d1], then A is above [C, D] or B is under [C, D]. If
A is above [C, D], by definition of removed edges we have A + tε ∈ [C, D] with

t ≤ −1. Therefore A is above [C ′, D ′] and [A ′, B ′] ∩ [C ′, D ′] = ∅. The same way
of reasoning shows that [A ′, B ′] ∩ [C ′, D ′] = ∅ if B is under [C, D].

Case 3 [A, B] and [C, D] are horizontal. We can suppose a1 ≤ c1. If b1 < c1, the
result is obvious. If b1 = c1, then by Lemma 10.6, we have |b2 − c2| ≥ 1 and therefore
B ′ 6= C ′ and [A ′, B ′] ∩ [C ′, D ′] = ∅. If c1 < b1 ≤ d1, B is under or above [C, D].

Suppose B is above [C, D]. By definition of the removed edges, we have B − tε ∈
[C, D] with t ≥ 1. Since [A, B] ∩ [C, D] = ∅, C is under [A, B] and C + sε ∈ [A, B]
with s ≥ 1. All the points Q of [C ′, D ′] are of the shape P + rε with P ∈ [C, D]
and r ∈ ]0, 1[, therefore [C ′, D ′] is under [A, B] and [A ′, B ′] ∩ [C ′, D ′] = ∅. If

b1 > d1, then C and D are both above [A, B] or both under [A, B]. We see as before
that [A ′, B ′] ∩ [C ′, D ′] = ∅.

Step 2: Suppose A = C . If one of the edges is vertical, the result is obvious. Suppose
that both edges are horizontal. One of the edges [A, B] or [C, D] must be exceptional.

Suppose [C, D] is exceptional. Therefore A+ = B. If d1 ≤ b1 by definition of removed
edge, D + tε ∈ [A, B] with t ≥ 1. Therefore, D ′ is under [A, B] and [A ′, B ′] ∩
[C ′, D ′] = A ′ = C ′. If b1 > d1 by definition of removed edge, B − tε ∈ [A, B] with
t ≥ 1. Therefore B is above [C ′, D ′] and [A ′, B ′] ∩ [C ′, D ′] = A ′ = C ′.

Step 3: The case B = D is not possible. Indeed, if the point B = D has two prede-
cessors A and C , then by definition of exceptional edges, neither [A, B] nor [C, D] is
exceptional and

[A, B] and [C, D] ⊂ {X ∈ R2 : x2 ∈]b2 − 1, b2].
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Therefore one of the two edges [A, B] and [C, D] must be removed.

Step 4: The cases B = C and A = D are obvious.

It remains to prove that P0 is true for G3:

Proposition 10.35 Let E3 = {
−−→
A ′B ′ : A ′ and B ′ are vertices of G3, and there exists

ω ′ in C3 such that A ′, B ′ ∈ ∂ω ′}. We have |E3| ≤ K2 = K42
1 where K1 is defined in

Lemma 10.4.

Proof Let ω ′ be a connected component of R2\G3, and C and D two vertices of G3

lying in ∂ω ′. By Lemma 8.4, there exists a connected component ω of R2\G2 such

that

{[E, F] ⊂ ∂ω ′ : [E, F] ∈ G3} = {[A ′, B ′] : [A, B] ⊂ ∂ω and [A, B] ∈ G2}.

Therefore, there are two vertices A and B of G2 which are in ∂ω, such that A ′ = C

and B ′ = D. By Proposition 10.25, there are connected components ω1, . . . , ωm of
R2\G1, with m ≤ 7, such that ω = ω1 ∪ · · · ∪ ωm. It follows that there exists a
sequence A0 = A, A1 . . . , Ak = B of vertices of G1 such that

k ≤ 7 and ∀i ∈ {0, . . . , k − 1}, ∃ j ∈ {1, . . . , m}, Ai and Ai+1 ∈ ∂ω j .

By Proposition 10.17, for each i ∈ {0, . . . , k − 1}, there is a sequence

[Bi,0, Bi,1], . . . , [Bi,ki−1, Bi,ki
]

of less than six edges of G1, lying in ∂ωi , such that Bi,0 = Ai and Bi,ki
= Ai+1. It

follows that

−→
CD =

k−1
∑

i=0

−−−→
A ′

i A ′
i+1 =

k−1
∑

i=0

ki−1
∑

j=0

−−−−−→
B ′

i, jB
′
i, j+1

is the sum of at most 42 vectors of the shape
−−→
E ′F ′ with [E, F] in G1. Finally, by Lemma

10.4, the number of such vectors is at most K42
1 .

10.11 The Graph G4

Let q be in {Nqn − 1, . . . , (N + 1)qn − 2}. We recall the definition of G4: we add to
G3 some new vertices and some new edges. The new vertices are the points of the set

Z2 + {Nqnθ, . . . , qθ}. Each new vertex belongs to a connected component of R2\G3

or to an edge [A, B] of G3. In the first case, we add the singular edge [P, P]. In the
second case, we split the edge [A, B] into two edges [A, P] and [P, B].

By Lemma 10.27, we have:

Lemma 10.36 For all P in R2 the segment [P, P + εn] meets at most six edges of G3.
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(If [P, P + εn] meets an edge [A, B] of G3, then [P − εn, P + εn] meets the edges
[C, D] of G1 where C ′ = A and D ′ = B).

Remember that

E4 =
{−→

AB : A and B are vertices of G4 and there exists

a connected component ω of R2\G4 such that A, B ∈ ∂ω
}

.

Proposition 10.37 There is an absolute constant K3 such that ∀q ∈ N, ∀θ ∈ R2,

|E4| ≤ K3.

Proof Set

E =
{−→

AB : A is a vertex of G3, B is a vertex of G4 but not of G3 and

there exists a connected component ω of R2\G4 with A, B ∈ ∂ω
}

.

We have E4 ⊂ E3 +E∪{0}+(−E)∪{0} (note that 0 ∈ E3). Therefore by Proposition
10.35, it suffices to find an upper bound to |E|. Let ω be in C(G4), A a vertex of G3

and B a vertex of G4 but not of G3, such that A and B are in the boundary of ω. By

definition of G4, there is a vertex C of G3 such that B = C + εn. By Lemma 10.36,
the segment [C, B] cuts at most six edges of G3; let ([Di , Ei])i=1,...,m, m ≤ 6, be the
sequence of such edges. Let ti be the element of [0, 1] such that tiB + (1 − ti)C =

[C, B] ∩ [Di , Ei]. We can suppose that t1 ≤ t2 ≤ · · · ≤ tm. The points C and D1

are in the boundary of the same element of C(G3), the same is true for Di and Di+1,
i = 1, . . . , m − 1 and Dm and B are in the boundary of the same element C(G3). We
have

−−−→
DmB =

−→
BC +

−−→
CD1 +

m−1
∑

i=1

−−−−→
DiDi+1.

Hence,

−−−→
D ′

mB ′ ∈ −(εn +

6
∑

i=1

E3) and
−−→
A ′B ′

=
−−−→
A ′D ′

m +
−−−→
D ′

mB ′ ∈ E3 − (εn +

6
∑

i=1

E3),

finally, E ⊂ E3 − (εn +
∑6

i=1 E3).

Completion of proof of Theorem 1.3 We now handle the main case. By Proposi-

tion 10.37, G4 satisfies P0. Furthermore, by definition, G4 is Z2-invariant. Now,
Lemma 8.3 gives Theorem 1.3 in the main case. Furthermore, the lengths of the
edges of G4 are smaller than |e1,n| + 2|εn|. It follows that the diameters of the con-
nected component of G4 go to 0 when n goes to infinity.
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10.12 Proof of Theorem 1.3 in Case 4

We are going to use Voronoı̈’s diagram as in [5, 6]; it is probably not necessary but
it seems more efficient. Nevertheless, we also need Delaunay’s triangulation, for the
vertices of Voronoı̈’s diagram are not those we want. The basic definitions and prop-

erties about Voronoı̈’s diagram and Delaunay’s triangulation (see Definition 10.38,
10.39 and Proposition 10.40 below) can be found in [4, 24]; but it should be noticed
that we use an infinite set instead of a finite set.

Definition 10.38 Let F be a subset of R2. For A in F, we call the region given by

V (F, A) = {X ∈ R2 : d(X, A) ≤ d(X, B) for B ∈ F}

the Voronoı̈ polygon associated to A. The set V(F) = {V (F, A) : A ∈ F} is called the
Voronoı̈ diagram generated by F and the points in F are called generators.

Definition 10.39 Let F be a subset of R2. Let D be a maximal subset of F such that
all points of D are on the same circle and such that there is no point of F inside the
circle. The convex hull of D is called a Delaunay polygon associated to F.

Remember the notations:

e(F) = sup{d(x, F) : x ∈ R2}, r(F) = inf{d(x, y) : x, y ∈ F, x 6= y}.

Proposition 10.40 Let F be a discrete subset of R2 such that e(F) < +∞. Then

(i) if A and B are two points of F on the same Delaunay polygon, then V (F, A) ∩
V (F, B) 6= ∅;

(ii) if A and B are two points of F on the same Delaunay polygon and consecutive

on this polygon, then V (F, A) ∩ V (F, B) is a segment which contains at least two

points;

(iii) the set of all Delaunay polygons forms a tessellation of R2;

(iv) each point A in F is a vertex of a Delaunay polygon.

Notation Let θ be in R2 and q be in N. Set Fq = {0, θ, . . . , qθ} + Z2. In [5, 6] we
used Voronoı̈’s diagram in T2 instead R2. Some straightforward changes in results
of [5] give the two following results we state without proofs.

Lemma 10.41 Let θ be in R2, q in N and A in Fq.

(i) Let k be in {0, . . . , q − 1}. If for all X in V (Fq, A), d(X, A) ≤ d(X,−θ + Z2),

then V (Fq, A) + θ ⊂ V (Fq, A + θ).

(ii) Let k be in {1, . . . , q}. If for all X in V (Fq, A), d(X, A) ≤ d(X, (q + 1)θ + Z2),

then V (Fq, A) − θ ⊂ V (Fq, A − θ).

Corollary 10.42 Let θ be in R2 and q in N. Set

I+
= {k ∈ {0, . . . , q − 1} : ∃X ∈ V (Fq, kθ), d(X, kθ) > d(X,−θ + Z2),

I− = {k ∈ {1, . . . , q} : ∃X ∈ V (Fq, kθ), d(X, kθ) > d(X, (q + 1)θ + Z2)}.

Then, up to translations, the number of distinct regions in V(Fq) is at most 1+|I+|+|I−|.
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Lemma 10.43

|I+|, |I−| ≤
( 2e(Fq)

r(Fq)

) 2

.

Proof For all A in Fq and X in V (Fq, A), the open ball B◦(X, d(X, A)) contains no
point of Fq; therefore, d(X, A) ≤ e(Fq). Let k be in I+. There exist X in V (Fq, kθ) and

P ∈ −θ + Z2 such that d(X, kθ) > d(X, P). It follows that d(kθ,−θ + Z2) ≤ 2e(Fq).
Now, for all k, d(kθ,−θ + Z2) = d(kθ + Z2,−θ), hence

|I+| ≤ |{A ∈ Fq : A ∈ B(−θ, 2e(Fq))| ≤
( 2e(Fq)

r(Fq)

) 2

.

The same argument shows the inequality for I−.

Proposition 10.44 Let θ be in R2 and q be in N∗ such that qn − 1 ≤ q < qn+1 − 1.

Suppose that ( f1, f2) is a basis of Λn such that | sin ∠( f1, f2)| ≥
√

3/8 and εn = α1 f1 +
α2 f2 with 1/100 ≤ α1, α2 < 1. Then

(i) up to translations, the number of different Voronoı̈ regions in V(Fq) is at most 106,

(ii) the cardinal of the set

{−→AB : A, B ∈ Fq and V (Fq, A) ∩V (Fq, B) contains at least two points}

is at most 1012.

Proof (i) By definition of the best approximation, for all q less than qn+1 − 1, we

have r(Fq) = rn = |εn|. The length of εn is greater than the length of its orthogonal
projection on the line orthogonal to f1 or f2, therefore

|εn| ≥ max(α1| sin ∠( f1, f2)|| f1|, α2| sin ∠( f1, f2)|| f2|)

≥ 1

100
×

√
3

8
max(| f1|, | f2|) ≥

√
3

800
e(Λn).

But e(Fq) ≤ e(Fqn
) ≤ e(Λn) + rn, hence

( 2e(Fq)

r(Fq)

) 2

≤
( 2e(Λn)

√
3

800
e(Λn)

+ 2
) 2

≤ 106.

(ii) Let A be in Fq. If B is another point of Fq such that V (Fq, A)∩V (Fq, B) contains
at least two points, then one edge of V (Fq, A) is included in the bisector of [A, B]. It

follows that for fixed A, the number of vectors
−→
AB such that B is in Fq and V (Fq, A)∩

V (Fq, B) contains at least two points, is less than the number of edges of V (Fq, A).

Furthermore if V (Fq, A2) = V (Fq, A1) +
−−→
A1A2, then the two corresponding sets of

vectors are the same. It follows that the cardinal of

{−→AB : A, B ∈ Fq and V (Fq, A) ∩V (Fq, B) contains at least two points}
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is less than the number of different Voronoı̈ polygons up to translations multiplied
by the maximal number of edges of a Voronoı̈ polygon. As in the previous lemma,

we see that if V (Fq, A) ∩ V (Fq, B) 6= ∅, then d(A, B) ≤ 2e(Fq) and therefore the

maximal number of edges is less than
( 2e(Fq)

r(Fq)

) 2
. Finally we get the upper bound

( 2e(Fq)

r(Fq)

) 4 ≤ 1012.

Completion of proof of Theorem 1.3 in Case 4 Let θ be in R2 and q be in N∗ such
that qn − 1 ≤ q < qn+1 − 1. Consider the set of all Delaunay polygons associ-
ated to Fq. It is obviously Z2-invariant. The chosen basis (e1, e2) of Λn is such that

| sin ∠(e1, e2)| ≥
√

3/8 and εn = αe1 + βe2 with 0 ≤ β ≤ α < 1. By hypothesis we
have β ≥ 1

100
, so we can use the previous proposition:

{−→AB : A, B ∈ Fq and V (Fq, A) ∩V (Fq, B) contains at least two points}

has less than 1012 elements. By Proposition 10.40, it means that the number of possi-
ble edges for a Delaunay polygon is less than 1012. Furthermore, the number of edges

of a Delaunay polygon is less than
2πe(Fq)

r(Fq)
for the radius of the circle associated to a

Delaunay polygon, is less than e(Fq). As in the previous proof, we see that

e(Fq)

r(Fq)
≤ e(Λn)

√
3

800
e(Λn)

+ 1 ≤ 500.

Therefore, the maximal number of edges of a Delaunay polygon is at most 1000π.

Finally, there is an absolute constant K such that the set

{−→AB : A, B are two points of the same Delaunay polygon}

has a cardinal less than K. It means that P0 holds for the planar graph associated to
Delaunay tessellation. We conclude with Lemma 8.3.

A Appendix

Proof of Lemma 8.3 Consider the equivalence relation on the set C(G) of connected

components of R2\G defined by ω1 ∼ ω2 if and only if there exists −→u in Z2 such that
ω1 = ω2 + −→u . Choose a subset Ω of C(G) containing exactly one element of each
equivalence class. Let ω be in Ω and set E(ω) = {[A, B] : A, B are vertices of G

and ]A, B[⊂ ω}. For each ω in Ω, select a maximal subset M(ω) of E(ω) such that

G ∪ M(ω) is a planar graph. Set

G ′
= G ∪

(

⋃

ω∈Ω

⋃

−→u ∈Z2

(−→u + M(ω))
)

.

Step 1: Let us show that G ′ is a planar graph. Let [A, B] and [C, D] be two edges of
G ′ such that [A, B] ∩ [C, D] 6= ∅.
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If [A, B] and [C, D] are in G, there is nothing to prove.

If [A, B] is in G ′\G and [C, D] in G, then there exist ω in Ω and −→u in Z2 such that
[A, B] + −→u ∈ M(ω), hence [A, B] + −→u and [C, D] + −→u are in G ∪ M(ω). It follows
that ([A, B]+−→u )∩[C, D]+−→u ) is a common extremity of [A, B]+−→u and [C, D]+−→u .

If [A, B] and [C, D] are in G ′\G, then there exist ω1, ω2 in Ω and −→u1 , −→u2 in Z2

such that [A, B] + −→u1 ∈ M(ω1) and [C, D] + −→u2 ∈ M(ω2). Suppose [A, B] ∩ [C, D]

contains a point P of ]A, B[. The point P is in ω1 − −→u1 and in ω2 − −→u2 , therefore
ω1 − −→u1 = ω2 − −→u2 and ω1 = ω2. Moreover, since the connected components of
R2\G are bounded we have −→u1 =

−→u2 . It follows that [A, B] + −→u1 and [C, D] + −→u1 are
in M(ω1) ⊂ G ∪ M(ω1), hence intersection [A, B] ∩ [C, D] cannot be inside ]A, B[.

Step 2: Let U be a connected component of R2\G ′. We have to prove that U is the
interior of a triangle.

First we show that there exist [A, B] and [A,C] in ∂U such that {λ−→Ab + µ
−→
AC :

λ, µ ∈]0, r]} is included in U for some positive r. Choose a point O in R2. There

is a point A in U which is the furthest from O. This point is in ∂U and must be in
V(G ′) = V(G). Set r = inf{d(A, [Q, R]) : [Q, R] ∈ G ′ and A /∈ [Q, R]}. Then r

is positive and the open ball B(A, r) meets only edges of the shape [A, P] ∈ G ′. Let
P0, . . . , Pn−1 be the vertices such that [A, Pi] is an edge G ′. We can order them such

that the angles ∠(
−−→
AP0,

−→
APi) increase. One of the sectors (

−→
APi ,

−−−→
APi+1) (with Pn = P0)

must meet U . Let (
−−→
APi0

,
−−−→
APi0+1) be this sector, B = Pi0

and C = Pi0+1. The ball

B(O, d(A, O)) contains this sector, hence ∠(
−−→
APi0

,
−−−→
APi0+1) < π.

Let ω be the connected component of R2\G containing U . We can suppose that

ω ∈ Ω. Let V be the set of vertices of G ′ which belong to T = {λ−→AB + µ
−→
AC : λ, µ ∈

]0, 1]} and let C be the convex hull of V ∪ {B,C}. Since there is no edge between

A and a point of V, T\C does not meet G ′. Furthermore, if V 6= ∅, there exists a
point D in V such that ]A, D[ ⊂ T\C, but this contradicts the maximality of M(ω).
It follows that V 6= ∅ and by maximality of M(ω), [B,C] ∈ G ′.

Step 3: Finally, all triangles are made of edges belonging to E(G). By hypothesis,

|E(G)| ≤ K, therefore the number of triangles up to translations is less than K2.

Proof of Lemma 8.4 Set O(G) = {(A, B) : [A, B] ∈ G}. Then O(G) is the set of
oriented edges of G; note that (A, B) ∈ O(G) ⇔(B, A) ∈ O(G).

We use O(G) to make the sides of the edges precise. For −→u , a non zero vector,

let −→u ⊥ be the unit vector such that (−→u ,−→u ⊥) is a direct orthogonal basis of R2. We
say that an element (A, B) of O(G) is a boundary edge of ω ∈ C(G) if there exists

t0 > 0 such that 1
2
(A + B) + t

−→
AB⊥ ∈ ω for all t ∈ ]0, t0]. Denote by BO(G) the set of

“oriented” boundaries of elements of C(G), more precisely

BO(G) = {A ⊂ O(G) : ∃ω ∈ C(G), (A, B) ∈ A ⇔ (A, B) is a boundary edge of ω}.

For each t ∈ [0, 1] and each vertex A of G, set A(t) = (1 − t)A + tA ′.
We shall prove the more precise result. The map

A ∈ BO(G) → {(A ′, B ′) : (A, B) ∈ A}
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is one-to-one and its image is BO(G ′).
For each t , we define a binary relation on O(G(t)) by (A(t), B(t)) ∼t (C(t), D(t)) if

(A(t), B(t)) and (C(t), D(t)) are boundaries edges of the same element ω ∈ C(G(t)).
It is easy to show that ∼t is an equivalence relation.

By a simple continuity argument, it is possible to show that for all (A, B) and
(C, D) in O(G) and all t0 in [0, 1], there exists δ > 0 such that

(A(t0), B(t0)) ∼t0
(C(t0), D(t0)) ⇒ ∀t ∈ [t0 −δ, t0 +δ], (A(t), B(t)) ∼t (C(t), D(t)).

The converse

(A(t0), B(t0)) is not equivalent to (C(t0), D(t0))

⇒ ∀t ∈ [t0 − δ, t0 + δ], (A(t), B(t)) is not equivalent to (C(t), D(t)).

is “geometrically” obvious but is more difficult to prove. We need an auxiliary result
(see [10, Appendix of Ch. IX]):

Let U be the unit circle of C. Let K ⊂ C be a compact set.

• A continuous map f : K → U is not essential if there exits a continuous map

g : K → R such that f (z) = exp ig(z) for all z in K. If the map g does not
exist we say that f is essential on K

• Let a and b be two points of C\K. The points a and b are in the same con-
nected component of C\K if and only if the map

sa,b(z) =
z − a

z − b
× |z − b|

|z − a|
is not essential.

Let (A, B) and (C, D) be in O(G) and t0 in [0, 1]. Suppose that (A(t0), B(t0)) is not
equivalent to (C(t0), D(t0)) (it may be that [A, B] = [C, D]). Then (A(t0), B(t0)) is in
the boundary of a connected component ω0 and (C(t0), D(t0)) is not in the boundary
of ω0. Therefore, there exists α0 > 0 such that for all α ∈ ]0, α0],

1

2
(A(t0)+B(t0))+α

−−−−−−→
A(t0)B(t0)⊥ ∈ ω0 and

1

2
(C(t0)+D(t0))+α

−−−−−−→
C(t0)D(t0)⊥ /∈ ω0.

For α ≥ 0, set

I(α) =

[ 1

2
(A(t0) + B(t0)) − α

−−−−−−→
A(t0)B(t0)⊥,

1

2
(A(t0) + B(t0)) + α

−−−−−−→
A(t0)B(t0)⊥

]

,

J(α) =

[ 1

2
(C(t0) + D(t0)) − α

−−−−−−→
C(t0)D(t0)⊥,

1

2
(C(t0) + D(t0)) + α

−−−−−−→
C(t0)D(t0)⊥

]

.

By continuity, there exist α and δ > 0 such that the following hold:

∀t ∈ [t0 − δ, t0 + δ], ∀[E, F] ∈ G\{[A, B]}, d([E(t), F(t)], I(α)) > 0;

∀t ∈ [t0 − δ, t0 + δ], ∀[E, F] ∈ G\{[C, D]}, d([E(t), F(t)], J(α)) > 0;

]A(t), B(t)[ ∩ I(α/2) contains exactly one point G(t);

]C(t), D(t)[ ∩ J(α/2) contains exactly one point H(t).
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Set a =
1
2
(A(t0) + B(t0)) + α

−−−−−−→
A(t0)B(t0)⊥ and b =

1
2
(C(t0) + D(t0)) + α

−−−−−−→
C(t0)D(t0)⊥.

For all t in [t0 − δ, t0 + δ], a and b do not belong to an edge of G(t). Let ω1(t) (resp.,
ω2(t)) be the connected component of R2\G(t) containing a (resp., b). Note that
ω1(t0) = ω0. Set K0 = ∂ω1(t0), K0 is a finite union of distinct edges of G(t),

K0 =

m
⋃

i=1

[Ai(t0), Bi(t0)].

For t in [t0 − δ, t0 + δ], set Kt =
⋃m

i=1[Ai(t), Bi(t)]. Since the map A ∈ V(G) →
A(t) ∈ V(G(t)) is bijective and since G(t) is a planar graph, for all t ∈ [t0 − δ, t0 + δ]
the map

ft : λAi(t0) + (1 − λ)Bi(t0) ∈ K0 → λAi(t) + (1 − λ)Bi(t) ∈ Kt

is a homeomorphism. Furthermore, the map

F : (t, P) ∈ [t0 − δ, t0 + δ] × K0 → ft (P)

is continuous. By our choice of α and δ, neither a nor b are in Kt for t in [t0−δ, t0+δ],
therefore the map

G : (t, P) ∈ [t0 − δ, t0 + δ] × K0 → sa,b( ft (P)) ∈ U

is continuous. Since by hypothesis a and b are not in the same connected component
of C\K0, the map sa,b is essential on K0. Suppose that there exists t1 in [t0 − δ, t0 + δ]
such that

sa,b : P ∈ Kt1
→ sa,b(P)

is not essential on Kt1
. Since the map ft1

: K0 → Kt1
is continuous, the map P ∈ K0 →

sa,b( ft1
(P)) is not essential, hence by homotopy, it follows that for all t ∈ [t0−δ, t0 +δ]

the map sa,b ◦ ft is not essential on K0 (see [10, Appendix of Ch. IX]) but for t = t0

this means that a and b are in the same connected component of C\K0 which is false.

Finally, for all t in [t0 − δ, t0 + δ], a and b are not in the same connected component
of C\Kt and (A(t), B(t)) ∼t (C(t), D(t)) is false. Finally, since [0, 1] is connected, we
see that for all (A, B) and (C, D) in O(G),

(A(0), B(0)) ∼0 (C(0), D(0)) ⇐⇒ (A(1), B(1)) ∼1 (C(1), D(1)).
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[35] S. Świerczkowski, On the successive settings of an arc on the circumference of a circle, Fund. Math.
46(1959), 187–189.
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