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Abstract

In this paper we complete the investigation of those varieties of nilpotent groups of class (at most)
four whose free groups have no nontrivial elements of odd order. Each such variety is labelled by a
vector of sixteen parameters, each parameter a nonnegative integer or oo, subject to numerous but
simple conditions. Each vector satisfying these conditions is in fact used and directly yields a defining
set of laws for the variety it labels. Moreover, one can easily recognise from the parameters whether
one variety is contained in another. In view of the reduction carried out in the first paper of this series
(written jointly with L. G. Kovacs) this completes the determination of all varieties of nilpotent groups
of class four.

1980 Mathematics subject classification (Amer. Math. Soc): 20 E 10.

1. Introduction

This paper completes the determination of all varieties of nilpotent groups of
class at most four begun in Fitzpatrick and Kovacs (1983) and continued in
Fitzpatrick (1983); these will be referred to as I and II respectively. The results of
the latter will be used so extensively in the present work that it is convenient to
adopt the following convention: (a.b) refers to the result numbered a.b in II. In
addition we now adopt in toto the notation of that paper.

The outstanding problem is to determine those 2'-torsionfree subvarieties of 9? 4

which do not contain 9?3 or, equivalently, those 2'-isolated fully invariant
subgroups of the free group F of rank 4 of $14 not contained in N3 — Wi 3( F). This
is achieved in three steps. First those lying in N2 = 9ff2(ir), then those contained
in F' and finally those not contained in F' are found: details appear in Sections 3,
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110 Patrick Fitzpatrick [2]

4 and 5 respectively. In Section 2 we show how the methods of II can be adapted
to yield the solutions for the first two of these steps.

2. Preliminary lemmas

The first two results are based on the well-known classification of varieties of
nilpotent groups of class at most three (see, for example, Jonsson (1966)).

2.1 LEMMA. The 2'-isolated fully invariant subgroups / / , of F such that N3 < H]

< F' but Ht ^ N2, are in one-to-one correspondence with the ordered pairs (r, s) of
nonnegative integers such that r > s, the subgroup corresponding to this pair being
%r(F')N2

rN3.

2.2 LEMMA. The 2'-isolated fully invariant subgroups H2 of F such that N3 < H2

< N2 are in one-to-one correspondence with the nonnegative integers s, the subgroup
corresponding to s being N2 N3.

Here we have written Â 2* for the subgroup {wr \ w G JV2}, a convention we
shall employ with any abelian group in place of A^. We shall also use frequently,
and without any further reference, the result of I that products of 2'-isolated fully
invariant subgroups of F are 2'-isolated. Simple commutator calculations show
that in F

[[x,yf,z] = [x,y,zf and [[x, y, zf, t] = [x, y, z, tf

so we have that

(2.3) [%r(F)Ni'N3,F] = N2
rN3

r and [N2', F] = N3
r.

2.4 LEMMA. / / two endomorphisms of F agree on F/F', they also agree on
^r(F')N2

rN3/N2
rN2'.

PROOF. Let <p, ^ be endomorphisms of F which agree on F/F'. As is well
known, <p and \p then agree on F'/N2, on N2/N3 and on A .̂ In particular, if
a G F' then a<p = (a\j/)w for some w G A^. Since N2 is central in F', it follows
that ar<p = (a<p)r = (a\p)2wr — (ar\p)wr; thus <p and ^ agree on the element
arN2'N3

2' of our quotient. By a similar argument, they also agree on the elements
brN2

rN2' with b E N2 and cN2
rN2' with c G N3. The quotient is generated by

such elements (as group, not only as fully invariant subgroup), so it follows that <p
and \p agree on it.
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13 ] Varieties of nilpotent groups of class four III 111

Similarly,

2.5 L E M M A . / / two endomorphisms of F agree on F/F', they also agree on

Suppose now that H is any 2'-isolated fully invariant subgroup of F contained
in F'. If H =£ N3 then H has been dealt with in II, so suppose H 4 Ny We have to
look at two cases separately.

First, we may have H ^ N2. Then by 2.2 there is a unique nonnegative integer s
such that HN3 = N2

VN3. All H which correspond to the same s lie between N2'N3

and N3
2', for H > [H, F] = [HN3, F] = N3

2' because N3 is central in F and 2.3
applies. Thus the study of these H is equivalent to the investigation of the
2'-isolated (End F)-submodules of N2

rN3/N3
2'. We know from 2.5 that this

(2'-torsionfree, central) section of F may as well be viewed as an (End F/F')-
module, that is, as G-module where G = Matx(4, Z) in accordance with the
notation of II. Hence the methods of that paper can handle the problem.

Second, suppose H 4 N2. A similar argument using 2.1, 2.3 and 2.4 shows that
the study of these subgroups H is equivalent to the investigation of the 2'-isolated
submodules of the (2'-torsionfree, central) sections 93 r( F')N2

SN3/N
2'N3

V of F
regarded as G-modules. Thus our previous methods can also cope with this case.

Before proceeding to give the details it is convenient at this stage to record the
results of some elementary commutator calculations in F. Recall that F is freely
generated by {x, y, z, t).

2.6 L E M M A . Let a, b,c G {x, y , z, t). Then for each <p £ G, [a, b, c]2'q> is
congruent modulo N3

2' to a product UiW"(l) where w, = [a , , bt, c,]2* with a,, bt, c, G
[x, y , z, t} and the n(i) are integers.

P R O O F . Since JV3 is central the e lement [a, b, c]2'<p can b e expressed as a
produc t u2'v2' where u is a p roduc t of c o m m u t a t o r s [at, bt, c j a n d v G N3. T h u s
modu lo JVj2*, v2' is trivial and since N2 itself is cent ra l u2' can b e split u p as a
produc t of the required form.

2.7 L E M M A . Let a, b G {x, y , z, t}. Then for each <p G G, [a, b]2'(p is congruent
modulo N2

rN2' to a product 11,-iv/1*1* where either wt = [at, bt]
2 or wt —

[a:, bt,, c^ dj]2' with at, b,, c,, J , S {x, y , z, t) and the n(i) are integers.

P R O O F . In this case since N2 is central the e lement [a, b]r<p can be expressed as
a product M 2 U 2 ' where u is a p roduc t of c o m m u t a t o r s [a,-, bt] a n d v G N2. T h u s
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modulo N2
rN3

2\ v1' is trivial. Since F' has class two we have

( [ * „ b,][a2, b2]f = [ a x , b x f [ a i , b 2 f [ a 2 , b2,, a t , b . f '(r~l).

When there are more than two factors in u the pattern is similar.

3. Subgroups of N2

The abelian group N2'N3/N3
2' is a direct sum of 20 infinite cyclic groups and 60

cyclic groups of order 2s generated respectively by cosets with representatives the
2J-powers of the basic commutators of weight three and by the basic commutators
of weight four. Let X stand for the tensor product of this G-module (over Z) with
Z(2) regarded as Z(2)G-module in the obvious way. We shall temporarily use group
commutators as labels for the corresponding elements of X: thus the basic
commutators just mentioned are regarded as generators of the corresponding
cyclic direct summands of X. Section 3 of II may now be applied to reduce the
study of submodules of X to that of the eZ(2)Ge-submodules of Xe. Observe that e,
annihilates X so that X= Xe2 © Xe3 © ^£4. Besides the 18 generators corre-
sponding to commutators of weight four which are fixed by e there are precisely 4
of weight three namely

[ y , x , x ] 2 , [ y , x , y ] 2 , [ y , x , z ] 2 a n d [z, x , y ] 2 .

These 22 form a generating set for Xe. As before however it is convenient to
change to a different generating set.

Recall that in Section 4 of II certain elements of We were designated a,, . . . ,a lg.
We shall now use the same symbols to represent the corresponding elements of
Xe. Thus a, denotes the image in X of the coset of N2

2'N3/N3
2' represented by the

group commutator [y, x, x, y][y, x, x, x][x, y, y, y]~l. In addition we define in
the same way

x , = [y, x,xf, x 3 = [z. y , x ] 2 ' ,
X 2 = [*> .V> yf\ x 4 = [ z . x , v ] 2 ' .

W e t h e n h a v e

3.1 LEMMA. The following are generating sets for the Xet:

Xe2: { x 1 , x 2 , a , , a 2 , a 3 } ,

Xe3: { x 3 , x 4 , a 4 , . . . , a l 2 } ,
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PROOF. This follows directly from (4.2) and the following equations which hold
i n * :

[x, y , yf = -[y,x,y]r,

[z, v, x]2 = - [y, x, zf + [z, x, y]2 .

With reference to the generating set x , , . . . , x 4 , a , , . . . , a 18 we can identify
E n d z Xe with a certain homomorphic image of Mat (22, Z(2)) according to a
well known formula (see, for example, Jacobson (1974) Section 3.11). Rather than
introduce cumbersome notation which would be used only briefly we shall avoid
describing that matrix algebra explicitly preferring instead simply to use informa-
tion about it in what follows. Let S, stand for the image of eZ^Ge in E n d Z j Xe.
We obtain a generating set for 5, from (3.4) and our aim is to write down the
matrices representing this generating set.

Now the lower left 18 X 4 submatrix of each element of E n d 7 *e is the zero
matrix and by virtue of 2.6 the upper right 4 X 1 8 submatrix of each element of
5, is also the zero matrix. Thus each matrix in 5, is the direct sum of a 4 X 4 and
an 18 X 18 matrix. For the generators of 5, the 1 8 X 1 8 direct summands can be
obtained simply by reading the corresponding matrix of S (given in Section 4 of
II) modulo 2SZ(2). It remains to give the 4 X 4 parts. Note that we are transferring
the labels of the elements of S wholesale to the corresponding elements of S,.

3.2 Action on Xe2.

x, x 2 x, x 2

e2a2e2: x, 1 e2Te2: x, 1 - 1

x 2 1 x 2 1

x, x 2 x3 x 4

e2ixKe2: x , K 2 ( 2 - > 3 ) : x, 1 1
X2 K X2

3.3. Action on Xe3.

x3 x 4 x 3 x 4

e3a2e3: x 3 1 e3a3e3: x 3

i4 1 - 1

x3 x4
E3TE3: x-, K (3 -» 2): x 3 1

Our investigation of 5, follows closely the pattern established in Section 4 of II.
Referring to the elements £ , , . . . ,£12 of 5, we find by direct calculation that for
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/ £ {2,3}, x,£, = x2£, = 0 while £2 and £3 act on Ae2 as diag( 1,0,0,1,0) and
diag(0,1,0,0,1) respectively. Action on Xe3 is not quite as straightforward: for
/ £ (4,5}, x3£, = x4£, = 0 but £4, £5 are not idempotent as they stand. Define

v=(U + f s M ' s - 3(/i_, + 1) - (T - l)a2le3({4 + *5)

with bracket notation as in II. Then

and

l5 = un - o? - PO3 + va3
2n

act on * E 3 as diag(l ,0,1,0, . . . , 0) and diag(0,1,0,1,0,.. . , 0) respectively. We
have thus proved the first of the following lemmas.

3.4 LEMMA. The £, , . . . ,£3, | 4 , | 5 , £6 , . . . ,£)2 are pairwise orthogonal idempotents
with sum 1 in Sx.

3.5 LEMMA. The following elements are in S,:

e22(i, j) + e22(i + 5,j + 5), i, j G {1,2 ,3 ,4},

e22U' J) + e22(i + I, j + 1), i,je {11,13,15,17,19}.

PROOF. This adapted from (4.7). The e,8(/, j) + e,8(/ + 1 , 7 + 1) given there
translate directly to the e22(i, j) + e22(i + 1, j + 1). The elB(i, j) for /, j G {2,3}
or /, ;' G {4,5} also translate directly to give the corresponding e22(i, j) +
e22(i + 5, j + 5). For the others a minor modification is necessary: we obtain
e22(l,3) + e22(6, 8) using $2(2 ^ 3)[2 - v]\A and e22(l,4) + e22(6, 9) using
£2(2 -H. 3)[2P - \]l5. The other e22(i, j) + e22[i + 5, j + 5] are found from these
by multiplication so the lemma is proved.

Rename

< > 2 2 ( 5 , 5 ) = e j , ,

e 2 2 ( i , j ) + e 2 2 ( i + 5 , j + 5 ) = ejj, i , ; 6 { 1 , 2 , 3 , 4 } ,

^22(10,10) = e?1,

«22(». 7") + e22(' + 1, 7 + 1) = e(V9)/2,O-9)/2, ' , 7 G {H, 13,15,17,19},

^ ( 2 1 , 2 1 ) + ^ ( 2 2 , 2 2 ) = ef,.

These satisfy (2.3) and (2.4) so it follows that

e = I , + |2 + €6 + €7 + «12

https://doi.org/10.1017/S1446788700024794 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024794


[7 ] Varieties of nilpotent groups of class four III 115

defines an idempotent with S,eS, = Sx and (2.1), (2.2), (2.6) and (2.7) become
applicable. Thus we can shift our attention to the ring eSxe and the module Xee,
which has a Z(2)-generating set comprising X | , a , , a 2 , a 6 , a 7 , a 8 , a 1 7 and a18 which
we rename x,, w,,. . . ,w7 respectively in accordance with II. We write Tx for the
image of eSxe in the algebra EndZ 2 Xee. By an argument similar to that used in
II we aim to find r,-submodules of Xee, and as in that case we shall construct Tx

explicitly (as an algebra of 8 X 8 matrices).
Let T{ be the set of 8 X 8 matrices a © /? satisfying:
(i) a is a 1 X 1 matrix and fi is an element of T with each /}(/, j) reduced

modulo 2fZ(2);
(ii)a(l, 1) =0(2 ,2 ) (mod 2).

3.6 THEOREM. TX = T[.

PROOF. This follows the pattern of (4.8) with minor modifications. Almost all
the generators of Tx arise naturally from the corresponding elements of T and
their inclusion in T'x follows from (4.8). The exceptions have at most two nonzero
entries which occur in the (1,1) and (3,3) positions. Tx < T{ follows once we have
carried out the straightforward check that in each case those entries are congruent
modulo 2.

The reverse inclusion follows similarly. T{ has 31 generators, 29 of which are in
T, by (4.8). The exceptions are 2e8(3,3) which is in Tx because it is [2e8(3,7) -
e8(3,8)]e8(7,3) and eg(l, 1) + e8(3,3) which is in Tx as the restriction of £2. This
completes the proof of the theorem.

Now let Wx be the image of W'va. Xee. Each submodule of Wx can be expressed
in terms of generators which are the images of u, . . . ,u5, v4, v5 according to (6.3).
As usual we adopt the same symbols for the corresponding elements of Wx. Let M
be a submodule of Xee and set M n Z(2px — 2/>Z(2)x1, M D Z(2)u, = 2"(/)Z(2)u,
and M D Z(2)vy- = 2vU)Z(2)Vj. Let Wfl Wx = Mx. Then since Tx \ W] contains e8(3,3)
we can write M, = (M n Z(2)u2) © M2. Also if N - 2/)Z(2)x1 © M, then since Tx

contains eg(l, 1) we have 2M < N. Finally, since Tx contains e8(l, 1) + es(3,3)

M = [A/n(Z(2)XlffiZ(2)u2)]ffiM2:

The first direct summand is of the same form as those analysed in Section 6 of II;
by a similar argument we conclude that M D (Z(2^ix © Z(2)u2) is generated by
2'ZpjX, © 2"<2)Z(2)u2 and y ( 2 ' - ' x , + 2"<2>-'u2) where j is 0 or 1 and if j = 1
then p > 1 and u(2) ^ 1. All that remains is to impose the additional conditions
that M contain the images of 2P\X and possibly 2/>~'x1 + 2"<2)~'u2 under the
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generators of 7", and then make the translation back to the group context. We

shall omit the details of this straightforward calculation for the moment prefer-

ring instead to subsume them in a more general statement later on.

4. Subgroups of F'

We carry out the same procedure described at the beginning of Section 3 on the
abelian section %5 2r(F')N2

rN3/N2
rN^' of F writing Y for the corresponding

Z(2)G-module. Now the only element of Y corresponding to a basic commutator
of weight 2 fixed by e is [y, x]r and we denote this element by y. The labels of
the other elements of F corresponding to the generators x , , . . . , a l g of Xe are
transferred to their images in ye. Thus Ye is a direct sum of 23 cyclic Z(2)-mod-
ules, one annihilated by 0 only, four by 2r~sZ(2) and 18 by 25Z(2). Also Ye = Ye2

© Ye3 © Ye4 and these are generated by {y ,x , ,x 2 , a 1 , a 2 , a 3 } , {x 3 ,x 4 , a 4 , . . . , a , 2 }
and {a,3, . . . ,a18} respectively. With reference to the generating set y, x , , . . . ,x4,
a, , . . . ,a l g Endz 2 Ye can be identified with a homomorphic image of Mat(23, Z(2))
(Jacobson (1979)). Denote by S2 the image of eZ(2)Ge in Endz ye. (Here the
matrix algebra representing End Z i ye is more complicated: there are two cases
according to whether r — s < s ox r — s > s. The former would have the genera-
tors in their present order; the latter would interchange the a, and the x,.
However this distinction makes no significant difference for the algebra S2 so we
can safely ignore it.)

Each entry apart from the first in the first column of each matrix in Endz ? ye
is zero. Moreover by virtue of 2.7 each entry apart from the first in the first row
of each matrix in S2 is zero with the possible exception of those occurring in the
columns corresponding to a8, a,0 and a12: the entries in these columns are from
2r~'Z(2). The lower right 22 X 22 submatrix of each matrix in S2 can be obtained
from the corresponding matrix in S, simply by reading its 4 X 4 direct summand
modulo 2r~sZ(2). Thus it remains to describe the action of the generators of S2

(obtained from (3.4)) on the single element y.

4.1. Action on Ye2.

ye2Te2 = y, y(2 - 3) = 2 ' " \V - l )a 1 2 .

The action of the elements £ , , . . . , | 4 , £ 5 , . . . , | 1 2 (of S2!) is checked by direct

calculation: they all annihilate y except £, which acts on ye2 as diag( 1,0,0,1,0,0).

Hence they are pairwise orthogonal idempotents with sum 1 in S2, £i is just
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e23(l, 1) + e23(6,6) and so translating 3.5 to the present context we have

4.2 LEMMA. The following elements are in S2:

e23(\,\) + e23(6,6),

e23(i,j) + e23(i + 5,j+5), i, j G { 2 , 3 , 4 , 5 } ,

<?23('. J) + ei3d +hj+ 1), /, j e {12,14,16,18,20}.

After relabelling these elements as before we can put e = £, + £2 + ^6 + £7 +
£12 so that S2eS2 — S2. Let T2 stand for the image of S2 in the algebra End z Yee
identified with an algebra of matrices in the usual way. Let T2 be the set of 9 X 9
matrices satisfying conditions:

(i) the first row is (y 0 0 0 0 0 8 0 0) with y G Z(2) and S G 2r~ 'Z(2);
(ii) the first column entries apart from the first are zero;
(iii) the lower right 8 X 8 submatrix is an element a © /J of Tx with a reduced

modulo 2r~sZ{2);
(iv)y = 0(1,1) (mod 2).
Then we have the following theorem whose proof is after the pattern of 3.6 and

(4.8) and will be omitted.

4.2 THEOREM. T2 = T2.

The analysis of submodules of Yee is analogous to that of submodules of Xee
carried out in Section 3. Write W2 for the image of W in Yee. Let M be a
submodule of Yee and with obvious adaptations of the notation set

M n Z(2)y = 2'<'>Z(2)y,

M H Z(2)X| =2'<2)Z(2)x1,

A/n w2 = M,,

M^ = (M n Z(2)u,) © (Af n Z(2)u2) © M2

(using the fact that e9(3, 3) and e9(4,4) are in T2 | WJ.
These lead to

M =[M n (Z(2)y © Z(2)u,)] ® [ M n (Z(2)Xl © Z(2)u2)] © M2.

The first direct summand is generated by 2pO)Z(2)y © 2"<1>Z(2)u1 and
2"(l)~'u,) where; - 0 or 1 and if / = 1 then/?(l)> 1 and M(1) > 1.

Now [M fl (Z(2yi(.l © Z(2)u2)] © M2 can be completely described in terms of the
known (but as yet unstated) parametrization of the fully invariant subgroups of F
contained in 7V2. Again we need only impose the conditions that M admit T2 and
translate back to F, and once again details are left until later.
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5. The final result

Different methods are needed to cope with 2'-isolated subgroups H of F which
are not contained in F'. The starting point here is that each such H must be of the
form (F' n //)332,(F) for some nonnegative integer q, which is identified by
taking 2q to be the exponent of F/H. This is virtually a paraphrase of B. H.
Neumann's classical result (12.12 in Hanna Neumann (1967)) that each law is
equivalent to an exponent law and a commutator law. Of course F' n H > F' D
932,(F); conversely, if Hx is any 2'-isolated fully invariant subgroup of /"between
F' n 932,(F) and F', then for H defined by H = / / ,S 2 , (F) one has that the
exponent of F/H is 2* and F' D / / = // , . Thus the general problem is reduced to
identifying the F ' n 232,(F) m terms of the (yet to be stated) parametrization of
the 2'-isolated fully invariant subgroups of F in F'. In those terms, one can then
recognise the Hx which lie between F' n 932,(F) and F'.

We can ignore the cases q = 0 and q = 1, for then 932«(/) > F'; so henceforth
<7 s» 2. Our aim here is to prove that F' D 932,(F) is the fully invariant closure of
[y, x]2" u2* and 332i(F')N2

2" . This is good enough to enable one to complete
the work; the subsequent details follow the pattern we have already established,
and instead of elaborating them we proceed directly to the statement of the main
result.

For simplicity, write F' n 932,(F) as D.
The first step is to quote again from the classification of varieties of nilpotent

groups of class at most 3:

(5.1) DN3 = ^2,-,(F')N2
2"'N3.

(Strictly speaking, the left hand side has to be rewritten as F' n 932,(F)A^, using
the modular law, before we are entitled to quote.) By 2.3, D 2* N2" ; as obviously
D > 932,(F'), we already have that

(5.2) D^%r(F')N2
2q~\

We shall use repeatedly the following fact.

5.3 LEMMA. If U and v are elements of a nilpotent group C of class at most 3, then
2Vq 2q modulo ( C ) 2 ' " .

The proof is a straightforward collection, a special case of Lemma 5.7 below so
we omit it. For the first application, we take C as the subgroup of F generated by
x and [x, y] and note that now C" < N2, so we may conclude that

[x2\ y] = x~2\x[x, y]f = [x, yf mod JV2
2*~',
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and hence [x2\ y] £ ^^(F^N2" • This observation proves

5.4 LEMMA. ^2q{F)/S82q{F')N2
2"^ is a central section of F.

For the second application of 5.3, let a be any element of F and <p, ^ two
endomorphisms of F which agree on F/F', so a<p = (ai)b for some element b of
F'. Take C as the subgroup generated by a>p and b, noting that again C < N2.
Now 5.3 yields that

a2\ = (a<pf = ((a+)b)2' = (a2»Z>2' mod JV-T',

so <p and ^ agree on the element a2"^diq{Fr)N2
2'' of the section considered in 5.4.

That section is generated by such elements (as group, not only as fully invariant
subgroup), so we may conclude

5.5 LEMMA. / / two endomorphisms of F agree on F/F', they also agree on

Let d be the element of D defined by

(xy) -x^y^d,

and let D] be the fully invariant closure of d and S&2<,{F')N2
1'' in F. The next step

is to prove

5.6 LEMMA. D — Dv

PROOF. Clearly, D s» £>,. We know that %2,(F)/D - 93 2 , (F)F ' /F ' =
932«(F/F'), so 932«(F)/£) is free abelian of rank 4, and therefore it cannot be
written as a proper homomorphic image of any 4-generator abelian group. Thus
the lemma will follow if we can establish that 93 2 , (F) /D| is a 4-generator abelian
group. We already know from 5.4 that it is abelian; we shall now show that it is
generated by x2"Dv... ,/2*£>,. To this end, it is clearly sufficient to show that the
subgroup of S32«(F)/Z)1 generated by these elements admits all endomorphisms
of F. This subgroup obviously admits all endomorphisms which merely permute
or power the generators x, y, z, t. It also admits the endomorphism which maps x
to xy and leavesy, z, t fixed: for, this will map xvDx to {xy)2<lDx which is equal to
(x2'D1)(>'2'£)1) by the definition of Dx. We know from (3.1) that each endomor-
phism of F will agree on F/F' with some composite of the endomorphisms just
considered; hence it follows by 5.5 that our subgroup will admit it. This proves
the lemma.
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To reach our stated aim, it remains to prove that

d^ly^fu]"'1 modulo 232,(F')^2
2" '.

At this point, one cannot avoid a complicated collection to find out just what d is.

5.7 LEMMA.

(xyf = x2Y<[y, x]a[y, x, *]"[*, y, yV\y, x, x, x]su\
where

«=( 2
2 ' ? ) - 2 " - 1 (mod2"),

0 (mod2'-1),

= o

= 2"~2 (mod 2 " - ) .

This confirms the claim concerning d; the straightforward but tedious proof is
omitted, as in the remaining detail which leads to our main result.

We recall the convention 2°° = 0, and supplement it by the usual oo ± 1 = oo.
It will be convenient to have the following shorthand available: (u'(\),...,v'(5);
k', /', m', «') < M will mean that u'(\),... ,n' satisfy the conditions (7), (8), (9)
and (10) of (6.2); when 5 is a nonnegative integer, we write VW for
(s,..., s; 0,0, 1,1).

5.8 THEOREM. The 2'-isolated fully invariant subgroups of F are in one-to-one
correspondence with the ordered 16-tuples

(q; r; s; w(l),. . . ,w(5), v(4), v(5); i; j : k, I, m, n)

which satisfy conditions (1), (2) of (6.1), (4), (5), (6) of (6.2), (11), (12), (13), (14) of
(6.3) and the following.

(15) q, r, s are nonnegative integers or oo, while /, j G {0, 1}.
(16) If q^ 1 thenr = 0.
(17) If r = 0 then the \6-tuple is

(18) / / q 3= 2 and r 3* 1 then s < q — I, s < r, either s = 00 or 2SW«£ A/,
either r < q — \ and u(l) < q — 2 and w(4) < r — 1, or r = q and u(\) = q —
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(19) / / / - 1 then \ *H u(\) ^ s < r < oo and

( M ( 1 ) , M ( 1 ) , M ( 1 ) - l , w ( l ) , w ( l ) - l , r - l , r - 1; 1 ,0 ,0 ,0) <M.

(20) Ifj = 1 then 1 < u(T) < j < oo, 2S'XW < A/ awe?

w(2) > max{u( l ) - 1, «(3) , M ( 4 ) , M ( 5 ) + 1} .

r/ie corresponding subgroup of F is the fully invariant closure of

x2\ [y,xf, [y,x,xf,

y,x\ "2 ) . {[y,x,x] u\ ) ,

a«i/ the elements listed in (7.1). It contains the subgroup corresponding to (q'\...,«')
if and only if q *£ q', r =S r\ s ^ 5'', (u'(\),... ,n') < M, a n J

(21) ;/ /' = 1 r/ze« either r ^ r' - \ and u(\) < «'(!) ~ \ or r = r' and u(\) =
u'{\) and i — 1;

(22) ifj' = 1 ;/ien either s ^ s' — 1 anJ M(2) < w'(2) ~~ 1 or s = s' and u{2) =
M'(2)

It follows, in particular, that the subgroup 934(F) corresponds to

(2; 2; 1; 1 ,1 ,0 ,1 ,0 ,1 ,0 ; 1; 0 ; 0 , 0 , 1 , 0 ) .

This has been compared and found to agree with the known structure of the
Burnside group B(4,4) (see, for instance, Hall (1973)). The isolated fully invariant
subgroups are readily identified as those with all parameters in {0, oo} except that
when the middle group of seven parameters consists of zeros the last two
parameters are ones. There is no problem in identifying the parameters of the
isolator from the parameters of a subgroup, or in obtaining at least a crude upper
estimate for the exponent of their quotient (if p is the sum of the finite parameters
of the subgroup, 22+p will always do). Thus the reduction obtained in I does in
fact apply. It is implicit in our arguments that, given any subgroup by its
parameters and any element of F, one can decide whether the element belongs to
the subgroup, but to make this explicit and elaborate an algorithm is beyond the
scope of this work. We have also found algorithms for calculating from the
parameters of two subgroups the parameters of their intersection and product.
These are very easy to state and apply but to prove that they work involves a long
and complicated case by case analysis so we do not include them.

Since each variety of nilpoint groups of class at most 4 is defined by its
4-variable laws (see 34.15 and 34.34 in Hanna Neumann (1967)), the result we
have reached is equivalent to determining all 2'-torsionfree varieties of nilpotent
groups of class at most 4. In view of I, this completes the task of finding all
varieties of nilpotent groups of class at most 4.
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