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Induction of flow is commonly used to control the migration of a microswimmer in
a confined system such as a microchannel. The motion of a swimmer, in general, is
governed by nonlinear equations due to non-trivial hydrodynamic interactions between
the flow and the swimmer near a wall. This paper derives analytical expressions for
the equations of motion governing a circular treadmilling swimmer in simple shear
near a no-slip wall by combining the reciprocal theorem for Stokes flow with an
exact solution for the dragging problem of a cylinder near a wall. We demonstrate
that the reduced dynamical system possesses a Hamiltonian structure, which we use
to show that the swimmer cannot migrate stably at a constant distance from a wall
but only exhibit periodic oscillatory motion along the wall, or to escape from it.
A treadmilling swimmer with the lowest two treadmilling modes is investigated in
detail by means of a bifurcation analysis of the reduced dynamical system. It is
found that the swimming direction of oscillatory motion is clarified by the sign of
the Hamiltonian in the absence of flow, and that the induction of the flow suppresses
upstream migration but aligns swimmer orientations in downstream migration. These
results could inform strategies for the transport and control of micro-organisms and
micromachines.

Key words: biological fluid dynamics, low-Reynolds-number flows

1. Introduction
There is a proliferation in studies of microswimmer dynamics motivated by interest

in biological micro-organisms and artificial materials such as active colloids (Lauga &
Powers 2009; Duprat & Stone 2016) with a view to not only understanding physical
aspects of life at the microscale but also learning how to control active systems in
colloid science and micro- and nano-fluidics. The induction of the flow, by which we
mean the imposition of a controlled background ambient flow, is widely used as a
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means of controlling microswimmers (Hill et al. 2007; Kantsler et al. 2014; Rusconi,
Guasto & Stocker 2014) in a microfluidic chamber, where boundaries significantly
affect the behaviour (Denissenko et al. 2012; Kantsler et al. 2013; Nosrati et al.
2015). Such flows are ubiquitous in biological situations too. In the mammalian
oviduct, a flow is generated towards the uterus and then sperm is observed to swim
upstream under such a flow (Miki & Clapham 2013). This response to the flow,
known as (positive) rheotaxis, is hypothesized as a possible means to guide sperm
towards the eggs, and has been found to be a robust mechanical phenomenon (Kantsler
et al. 2014; Ishimoto & Gaffney 2015; Tung et al. 2015), driven by a hydrodynamic
interaction between the swimmer, the wall and the background shear flow. Rheotaxis
is also studied in bacteria (Hill et al. 2007) and in chemically reacting colloids
involving so-called Janus particles (Crowdy 2013; Uspal et al. 2015). Infectious
microswimmers are transported by the flow in vessels, e.g. a parasitic flagellate
protozoa, Trypanosoma, and travel in the bloodstream while interacting with the
epithelial surface (Broadhead et al. 2006). Such flow transportation should also be
considered when one designs a micromachine for a drug-delivery system.

Fundamental studies of flow effects on a microswimmer near a wall are therefore
important in a range of engineering and medical applications. The dynamics of a point-
like model swimmer in a Poiseuille flow in a cylindrical pipe has been investigated
theoretically by Zöttl & Stark (2012), with extensions of those models to ellipsoidal
swimmers made later (Zöttl & Stark 2013). Other authors (Rusconi et al. 2014) have
studied shear-induced depletion and trapping of swarms of bacteria in Poiseuille flow
in a microchannel, with the focus on understanding the coupling of the swimmer
motility with the ambient flow and including the effects of stochasticity. None of
these prior theoretical studies of swimmers in background flows take into account
the hydrodynamic interaction of the swimmer with the wall, and this is the focus of
the present article. Near a no-slip wall, and on the scale of an individual swimmer,
an ambient flow is well approximated as a simple linear shear. Here, we present a
theoretical model of a treadmilling swimmer near a wall in simple shear with full
account taken of the hydrodynamic interactions with the wall. We believe the results
to be valuable because no approximations are needed to derive the swimmer evolution
equations, even when the swimmer draws close to the wall.

One of the most commonly used theoretical models is a squirmer, also called a
treadmiller, which exhibits a tangential slip on its surface to propel it in low-Reynolds-
number flow (Ishikawa, Simmons & Pedley 2006; Leshansky et al. 2007). Even with
this simple geometry, the motion of such a swimmer near a no-slip wall is difficult
to study analytically, although an exact expression is given for a rigid sphere near a
no-slip wall in a shear by Goldman, Cox & Brenner (1967). Davis & Crowdy (2015)
used the method of matched asymptotics, both with and without use of the reciprocal
theorem, to determine the motion of a spherical treadmiller under the assumption that
it is always sufficiently well separated from the wall. In most cases, though, one must
resort to numerical methods to study such flows (Ishimoto & Gaffney 2013; Uspal
et al. 2015), but these can lose accuracy when the swimmers are very close to the
wall.

A simplified two-dimensional model of a squirmer is the circular treadmiller first
proposed by Blake (1971) and later investigated using singularity approximations to
understand the swimmer–wall hydrodynamic interactions by Crowdy & Or (2010)
and others (Crowdy & Samson 2011; Obuse & Thiffeault 2012). Spagnolie & Lauga
(2012) later extended the same singularity approximation ideas to three-dimensional
swimmers near walls. The model introduced in Crowdy & Or (2010) predicts

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

22
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.220


A treadmilling microswimmer near a no-slip wall in simple shear 649

oscillatory periodic motion of the swimmer along the wall, and this behaviour
was later shown to be qualitatively the same as that described by analytical solutions
that fully describe such a circular treadmiller near the wall without any need for
a singularity approximation (Crowdy 2011). Qualitatively similar nonlinear periodic
motions have been found in a three-sphere swimmer (Or, Zhang & Murray 2011),
a spheroidal squirmer (Ishimoto & Gaffney 2013) and in experiments (Or et al.
2011), which provides evidence that even idealized two-dimensional models can
provide useful insights into more complicated three-dimensional dynamics in certain
situations, especially when the physical source of the observed dynamics is not clear.
More recently, simple two-dimensional swimmer models have been used to study
self-diffusiophoretic Janus particles near a wall (Crowdy 2013), swimmer–swimmer
interactions in a film (Clarke, Finn & MacDonald 2014) and wall-bounded motion of
swimmers incorporating viscoelastic effects (Yazdi, Ardekani & Borham 2014, 2015).
Simple two-dimensional modelling has also been widely used to provide insights into
electrophoresis near a wall (Keh, Horng & Kuo 1991; Zhao & Bau 2007).

The purpose of this paper is to show that the analytical approach introduced
by Crowdy (2011) for a circular treadmiller near a no-slip wall (see § 2) can be
generalized to examine the additional effect of a linear shear flow. Crowdy & Samson
(2011) have already studied the motion of a model point swimmer near a wall when
a linear shear is imposed and where there is, in addition, a gap in the wall. Even
without the shear, the gap induces the existence of localized ‘hydrodynamic bound
states’, and the addition of shear affects the structure of these states (Crowdy &
Samson 2011). Here, we focus on a wall without a gap, but the swimmer here is
not taken to be a point singularity but is modelled as a finite-area circular cylinder
exhibiting a detailed treadmilling action. The derivation of the shear effects is given
in § 3. In § 4, the evolution equations of the swimmer are derived in analytical
form (with no approximation) for an arbitrary axisymmetric surface velocity profile.
It is not necessary to solve the swimmer problem directly; rather, the reciprocal
theorem is used together with an exact solution to the ‘dragging problem’ of a
cylinder near a wall. This is an idea first used in this geometry by Crowdy (2011),
and it has since been used by subsequent authors (Yazdi et al. 2014, 2015) in
more general situations. The solution to the dragging problem was first derived by
Jeffrey & Onishi (1981) using bipolar coordinates and rederived in a convenient
complex variable form by Crowdy (2011). It is the latter form of the solution that
we employ here. One of our main results is to show that the centre (X(t), Y(t))
and orientation angle θ(t) of a treadmilling swimmer near a no-slip wall in a shear
flow with shear rate γ̇ and actuated by an imposed tangential surface velocity
Us = [V1 sin(φ − θ)+ V2 sin(2(φ − θ))] dθ/ds evolve according to the system

dX
dt
=

1
2
(1− ρ2)[V1 cos θ − 2ρV2 sin 2θ ] + γ̇ r

1− ρ2

2ρ
,

dY
dt
=
(1− ρ2)2

2(1+ ρ2)
[V1 sin θ + 2ρV2 cos 2θ ],

dθ
dt
=

ρ2

r(1+ ρ2)
[2ρV1 cos θ + (1− 3ρ2)V2 sin 2θ ] −

γ̇

2
1− ρ2

1+ ρ2
,


(1.1)

where

ρ =
Y
r
−

[
Y2

r2
− 1
]1/2

. (1.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

22
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.220


650 K. Ishimoto and D. G. Crowdy

With γ̇ =0 and V1=0, these equations were derived by Crowdy (2011) using complex
variable methods; with γ̇ = 0, they were later generalized to the case V1 6= 0 by Yazdi
et al. (2014) using an approach based on bipolar coordinates. The new feature in (1.1)
is the addition of the shear-dependent terms with γ̇ 6= 0.

We also demonstrate, in § 5, the new result that the dynamical system (1.1) has
an associated Hamiltonian structure both with and without a background shear
flow. It is interesting to note that theoretical models of swimmers in Poiseuille
flow derived by previous authors (Zöttl & Stark 2012, 2013) have also been
shown to be Hamiltonian; those models do not, however, incorporate hydrodynamic
interactions with the wall and assume that the swimmer is sufficiently far from the
wall that those interactions can be neglected. An oscillatory swimmer motion in a
cylindrical tube has been reported in a detailed numerical calculation incorporating
swimmer–wall hydrodynamic interactions by Zhu, Lauga & Brandt (2013). In contrast,
the analytically expressed model (1.1) is valid for any separation of the swimmer from
the wall and fully accounts for hydrodynamic interactions, without any approximations.
In § 6, we use all of the aforementioned results to investigate how the periodic orbits
of a swimmer actuated by a particular two-mode tangential slip profile are modulated
by the background shear flow.

2. Problem setting
2.1. Flow configuration

We assume that a circular treadmiller of radius r is situated at distance Y(t) above
a plane no-slip wall (figure 1). Its centre is at xd(t)= (X(t), Y(t)). The ambient fluid
is assumed to have viscosity µ. A background shear with shear rate γ̇ is present, so
that, as y→∞,

(u, v)→ (γ̇ y, 0). (2.1)

A tangential treadmilling velocity is present on the swimmer boundary, causing it to
move in a force- and torque-free motion near the wall. This tangential slip can be
chosen as we like, and we will consider an arbitrary smooth axisymmetric velocity
profile, which is discussed in detail in § 4. The key difference between the flow
configuration here and that considered earlier in Crowdy (2011) is the presence of
the background shear.

2.2. Reciprocal theorem
Let D denote the domain shown in figure 2(b) and let ∂D denote its boundary,
including the semicircle CS of radius S around the point at infinity; later, we will
take the limit S→∞. The reciprocal theorem based on this domain choice implies
the following integral relation with respect to the velocity vectors and the stress
tensors, ∮

∂D
uiσ̃ijnj ds=

∮
∂D

ũiσijnj ds, (2.2)

between two distinct solutions of the Stokes equations in the same domain, i.e.

∂ui

∂xi
= 0,

∂σij

∂xj
= 0;

∂ ũi

∂xi
= 0,

∂σ̃ij

∂xj
= 0. (2.3a−d)

These are solutions to two different boundary value problems. We make the following
special choices: (ui, σij) is the solution of the Jeffrey–Onishi boundary value problem
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A treadmilling microswimmer near a no-slip wall in simple shear 651

FIGURE 1. Circular treadmiller, of radius r and orientation θ(t), with centre xd(t) =
(X(t), Y(t)) above a no-slip wall along y= 0.

(a) (b)

FIGURE 2. Contours of integration in (a) the ζ plane and (b) the z plane.

just described (for a solid cylinder translating and rotating near a no-slip wall); (ũi, σ̃ij)
is taken to be the flow associated with a force-free and torque-free treadmilling
swimmer in a linear shear with shear rate γ̇ .

In both problems, the fluid velocity on the wall vanishes, so (2.2) becomes

−

∮
|z−zd |=r

uiσ̃ijnj ds+ lim
S→∞

∫
CS

uiσ̃ijnj ds=−
∮
|z−zd |=r

ũiσijnj ds+ lim
S→∞

∫
CS

ũiσijnj ds, (2.4)

where CS is a semicircle of radius S centred at z= 0. On the cylinder boundary,

ui =Ui + εimnΩm(xn − xdn), (2.5)

where U = (U , V, 0) and Ω = (0, 0, Ω), and where U and V are the velocity
components of the cylinder and Ω is its angular velocity. We use xdn to denote the
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652 K. Ishimoto and D. G. Crowdy

components of xd. Similarly, we let U′= (U ′,V ′, 0) and Ω ′= (0, 0, Ω ′), where Ω ′ is
the angular velocity of the swimmer, so that, on the swimmer boundary,

ũi =U′i + εimnΩ
′

m(xn − xdn)+Usi, (2.6)

where Usi denotes the imposed treadmilling action. We can therefore write

−

∮
|z−zd |=r

(Ui + εimnΩm(xn − xdn))σ̃ijnj ds+ lim
S→∞

∫
CS

uiσ̃ijnj ds

=−

∮
|z−zd |=r

(U′i + εimnΩ
′

m(xn − xdn)+Usi)σijnj ds+ lim
S→∞

∫
CS

ũiσijnj ds. (2.7)

The left-hand side can be written as

−Ui

∮
|z−zd |=r

σ̃ijnj ds−Ωm

∮
|z−zd |=r

εmni(xn − xdn)σ̃ijnj ds

+ lim
S→∞

∫
CS

uiσ̃ijnj ds=−F′ · U−Ω · T′ + lim
S→∞

∫
CS

uiσ̃ijnj ds, (2.8)

where F′ and T′ are the force and torque on the swimmer. However, these are both
zero. It follows that

lim
S→∞

∫
CS

uiσ̃ijnj ds = −
∮
|z−zd |=r

(U′i + εimnΩ
′

m(xn − xdn)+Usi)σijnj ds

+ lim
S→∞

∫
CS

ũiσijnj ds. (2.9)

On rearrangement, and by similar arguments to those just used, we find

F · U′ +Ω ′ · T=−
∮
|z−zd |=r

Usiσijnj ds+ lim
S→∞

∫
CS

(ũiσijnj − uiσ̃ijnj) ds︸ ︷︷ ︸
shear-induced term

, (2.10)

where F and T are the force and torque on the cylinder in the Jeffrey–Onishi problem.
The key difference between (2.10) and an analogous equation derived in Crowdy

(2011) is the retention of the contribution from the integral around CS in the limit
S→∞. In the absence of background shear, this term vanishes and (2.10) reduces to
the equation considered in Crowdy (2011).

2.3. Conformal mapping
Following Crowdy (2011), we now compute these additional integral contributions
using a complex variable formulation together with the convenient complex variable
form of the Jeffrey–Onishi solution derived using conformal mapping ideas. The
general solution for the streamfunction associated with a two-dimensional Stokes flow
can be written as

ψ(z, z)= Im[zf (z)+ g(z)], (2.11)

where f (z) and g(z) are two functions that are analytic in the fluid region (and are
often called Goursat functions). We will use f (z) and g(z) to denote the Goursat
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functions for the dragging problem and f̃ (z) and g̃(z) to denote the Goursat functions
for the swimmer in shear. These functions will be time-dependent, but, due to the
quasisteady nature of the flow generated by the swimmer, it is natural to suppress
this explicit dependence on time in our notation.

We introduce the conformal mapping

z= X + iR
[
ζ + 1
ζ − 1

]
(2.12)

from the annulus ρ < |ζ |< 1 to the fluid region exterior to the treadmilling swimmer.
We let the centre of the swimmer have complex position zd = X + iY . It is known
(Crowdy 2011) that

ρ=
Y
r
−

[
Y2

r2
− 1
]1/2

,
1
ρ
=

Y
r
+

[
Y2

r2
− 1
]1/2

,
z− zd

r
=−

i
ρ

[
ζ − ρ2

ζ − 1

]
. (2.13a−c)

As the swimmer evolves, the parameters X and Y , and hence R, ρ and zd, will be time-
evolving parameters, but, again, we suppress this dependence in our notation. When
the swimmer is far from the wall, so that Y/r→∞, then ρ→ 0; the situation where
the swimmer draws close to the wall, so that Y/r→ 1, corresponds to ρ→ 1.

For large S, the preimage of the large semicircular contour CS will be a small
semicircular contour Cε of radius ε � 1 centred at ζ = 1; see figure 2. In complex
variable notation,

σijnj 7→ 2µi
dH
ds
, σ̃ijnj 7→ 2µi

dH̃
ds
, (2.14a,b)

where

H ≡ f (z)+ zf ′(z)+ g′(z), H̃ ≡ f̃ (z)+ zf̃ ′(z)+ g̃′(z), (2.15a,b)

and where we use the notation 7→ to denote the complex variable form of a
two-dimensional vector quantity: a= (ax, ay) 7→ ax + iay. It follows that the complex
variable form of the new integral contribution in (2.10) is

lim
S→∞

∫
CS

(ũiσijnj − uiσ̃ijnj) ds= lim
ε→0

Re
[

2µi
{∫

Cε

(ũ− iṽ) dH − (u− iv)dH̃
}]

. (2.16)

3. Shear effects
We now show how to compute the additional shear-induced term on the right-hand

side of (2.16). Since it involves a contribution from around the large circular contour
CS, where S→∞, in the physical plane, this implies evaluation of an integral around a
small contour Cε of radius ε→ 0 around ζ = 1 in the parametric ζ plane, as indicated
schematically in figure 2.

For the swimmer problem, we have

f̃ (z)∼
iγ̇ z
4
+O(1/z), g̃′(z)∼−

iγ̇ z
2
+O(1/z2), (3.1a,b)

in order that ũ− iṽ→ γ̇ y+O(1/|z|). Written in terms of ζ and ζ , this is

ũ− iṽ→ γ̇R
(ζ ζ − 1)

(ζ − 1)(ζ − 1)
+O(|ζ − 1|). (3.2)
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It can be verified that, as |z|→∞, or as ζ→ 1,

H̃ = f̃ (z)+ zf̃ ′(z)+ g̃′(z)∼
iγ̇ z
2
+O(1/|z|). (3.3)

Written in terms of ζ and ζ , this is

H̃ =
γ̇R
2

(
ζ + 1
ζ − 1

)
+O(|ζ − 1|). (3.4)

On substitution of the following parametrizations of the contour Cε ,

ζ = 1+ εeiθ , ζ = 1+ εe−iθ , (3.5a,b)

we find

ũ− iṽ =
γ̇R
ε
[eiθ
+ e−iθ

] + o(1/ε), H̃ =
γ̇Reiθ

ε
+ o(1/ε). (3.6a,b)

On the other hand, for the dragging problem, it can be shown from the results in
Crowdy (2011) that

H = F(ζ )+ F(1/ζ )+
F′(ζ )
z′(ζ )
[z(ζ )− z(1/ζ )], (3.7)

implying the expression

H = Fd log
[
ζ

ζ

]
+ B

[
ζ +

1
ζ

]
+C

[
ζ +

1
ζ

]
+

[
Fd

ζ
−

B

ζ
2 +C

]
(ζ ζ − 1)

ζ − 1
ζ − 1

. (3.8)

Moreover,

u− iv =−F(ζ )+ F(1/ζ )+
F′(ζ )
z′(ζ )
[z(ζ )− z(1/ζ )], (3.9)

implying the expression

u− iv =−Fd log |ζ |2 + B
[
ζ −

1
ζ

]
+C

[
1
ζ
− ζ

]
+

[
Fd

ζ
−

B
ζ 2
+C

]
(ζ ζ − 1)

ζ − 1
ζ − 1

.

(3.10)
On substitution of the parametrizations (3.5), we find

H ∼ 2(B+C)+ ε[(Fd − B+C)(eiθ
− e−iθ)+ (Fd − B+C)(e−iθ

+ e−3iθ)] +O(ε2),

u− iv ∼ ε[(Fd − B+C)(eiθ
+ e3iθ)− (Fd − B+C)(eiθ

+ e−iθ)] +O(ε2).

}
(3.11)

On combining all of these results, we find∫
Cε

(u′ − iv′) dH − (u− iv) dH̃

=−iγ̇R
{∫ 3π/2

π/2
(Fd − B+C)[(eiθ

+ e−iθ)2 − (e2iθ
+ e4iθ)] dθ

+ (Fd − B+C)[e2iθ
+ 1− (eiθ

+ e−iθ)(e−iθ
+ 3e−iθ)] dθ

}
+ o(1)

=−2πiγ̇R(Fd − B+C)+O(ε). (3.12)
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From (2.16) and (2.10), in the limit ε→ 0,

F · U′ +Ω ′ · T=−
∮
|z−zd |=r

Usiσijnj ds+ 4πµRγ̇Re[Fd − ρ
2C+C]︸ ︷︷ ︸

shear-induced term

, (3.13)

where we have used the fact, derived in Crowdy (2011), that B= ρ2C.

3.1. Three comparison flows
Following Crowdy (2011), to derive the equations of motion, we make three
independent choices of solution to the dragging problem. Due to the linearity of
the flow problem, it is convenient to decompose the components of the speed of the
swimmer as follows:

U ′ = U ′tread + U ′shear, V ′ = V ′tread + V ′shear, Ω ′ =Ω ′tread +Ω
′

shear, (3.14a−c)

where it has already been demonstrated in Crowdy (2011, 2013) how to compute the
speeds U ′tread, V ′tread and Ω ′tread induced by the treadmilling action. Here, we focus on
calculating the additional terms U ′shear, V ′shear and Ω ′shear due to the background shear.

3.1.1. Angular velocity Ω ′shear
First, let U = 0, Ω = 1. Then, it follows (Crowdy 2011) that

Fd = 0, C=
2Rρ2

(1− ρ2)3
, T =−4πµr2

(
1+ ρ2

1− ρ2

)
. (3.15a−c)

It follows from (3.13) that

TΩ ′shear = 4πµγ̇R
2Rρ2

(1− ρ2)2
, (3.16)

implying

Ω ′shear =−
γ̇

2

[
1− ρ2

1+ ρ2

]
, (3.17)

where we have used the fact (Crowdy 2011) that

R
r
=
ρ2
− 1

2ρ
. (3.18)

3.1.2. Velocity U ′shear parallel to wall
Next, let Ω = 0 and U = 1. It follows that (Crowdy 2011)

Fd =−
1

log ρ2
, C=

Fd

(1− ρ2)
=−

1
(1− ρ2) log ρ2

, Fx + iFy =
4πµ

log ρ
. (3.19a−c)

Hence, (3.13) implies

FxU ′shear =−
4πγ̇ µR

log ρ
, (3.20)

from which we find

U ′shear =
γ̇ r(1− ρ2)

2ρ
. (3.21)
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3.1.3. Velocity V ′shear perpendicular to wall
Finally, let Ω = 0 and U = i. It follows that (Crowdy 2011)

Fd =−
i

2(1− ρ2)/(1+ ρ2)+ log ρ2
, C=−

Fd

1+ ρ2
(3.22a,b)

and
Fx + iFy =−

4πµi
log(1/ρ)− (1− ρ2)/(1+ ρ2)

, (3.23)

which, from (3.13), implies that

V ′shear = 0. (3.24)

Hence, the background shear does not induce any swimmer motion perpendicular to
the wall.

3.2. Summary
We can rewrite the final results in physical variables. On use of (2.13), the results we
have found are

U ′shear = γ̇ [Y
2
− r2
]

1/2, V ′shear = 0, Ω ′shear =−
γ̇

2Y
[Y2
− r2
]

1/2. (3.25a−c)

These contributions can be added to the contribution to the swimmer motion from
the treadmilling action to produce the generalized dynamical systems for swimmers
in shear. As a check on the results, it should be noted that in the limit Y/r→∞, we
find

U ′shear = γ̇Y, V ′shear = 0, Ω ′shear =−
γ̇

2
, (3.26a−c)

which retrieves the known result for the motion of a solid cylinder in force- and
torque-free motion in simple shear (see Crowdy (2016), for example).

The evolution equations (3.25) for a solid force-free and torque-free two-dimensional
circular cylinder in a shear flow near a no-slip wall have been previously calculated in
a thesis by Raasch using a separable solution method based on bipolar coordinates;
a little-known paper, in German, summarizing that derivation appeared in 1961
(Raasch 1961). In principle, we could have simply invoked those results, but the
derivation above using the reciprocal theorem and conformal mapping (rather than
bipolar coordinates) is novel and is worth reporting in its own right. It is also a
natural extension of previous work for swimming near a wall in the absence of shear
(Crowdy 2011, 2013).

4. Swimmer dynamics
Consider a general axisymmetric treadmilling swimmer with a tangential velocity

slip profile Vslip such that the slip velocity Us on its boundary is given by

Us = Vslipt, Vslip =

∞∑
n=1

Vn sin(n(φ − θ)), (4.1a,b)

where t denotes the unit tangent to the swimmer boundary and φ is the angular
coordinate on the surface relative to the centre of the swimmer. This is an extension
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of the treadmilling swimmer of Crowdy (2011) where only the n = 2 mode is
considered in detail (such a swimmer does not move in the absence of wall effects).
We can invoke the reciprocal theorem (2.10), without the shear-induced term,

F · U′ +Ω ′ · T=−
∮
|z−zd |=r

Usiσijnj ds=−Re
[

2µi
∮
|ζ |=ρ

Us
dH
dζ

dζ
]
, (4.2)

to derive the formulae for the linear and angular velocities due to the surface slip. In
the second equality, we have used the complex variable form of the expression and
rewritten the surface velocity as

Us 7→Us = Vslip
dz
ds
, (4.3)

where we have used the fact that t 7→ dz/ds. On use of (2.13), the surface velocity
profile Vslip can be expressed in terms of ρ and ζ in the form

Vslip =

∞∑
n=1

−
i
2

Vn

[(
−

i
ρ

(
ζ − ρ2

ζ − 1

))n

e−inθ
−

(
−

i
ρ

(
ζ − ρ2

ζ − 1

))−n

einθ

]
. (4.4)

We can therefore write Us =
∑
∞

n=1 us
(n), where

u(n)s =
i
2

[
cninρn

(
ζ − 1
ζ − ρ2

)n

− cni−nρ−n

(
ζ − ρ2

ζ − 1

)n] dz
ds
, (4.5)

and where the notation cn = Vneinθ is introduced.
One of the authors (Crowdy 2013) has previously shown that for a general

tangential slip profile of the form

Vslip = b0 +

∞∑
k=1

(
bkζ

k
+ bk

ρ2k

ζ k

)
, (4.6)

the associated velocities of a force-free and torque-free circular swimmer are

(U ′tread, V ′tread, Ω
′

tread)=

(
ρRe[b1],−

ρ(1− ρ2)

1+ ρ2
Im[b1],−

1
r

b0 −
2ρ2

r(1+ ρ2)
Re[b1]

)
.

(4.7)
In other words, only the two coefficients b0 and b1 contribute to any net motion of
the swimmer. If we denote by b(n)0 and b(n)1 these relevant coefficients arising from the
contribution u(n)s , then some direct calculations lead to

b(n)0 =
1

2πi

∮
|ζ |=ρ

|u(n)s |

ζ
dζ =

iρn

2
[cnin
− cn(−i)n],

b(n)1 =
1

2πi

∮
|ζ |=ρ

|u(n)s |

ζ 2
dζ =

(−1)nin+1

2
n(1− ρ2)ρn−2cn.

 (4.8)

The swimmer velocities are then obtained from (4.7) in the form

(
U ′tread, V ′tread, Ω

′

tread

)
=

(
∞∑

n=1

U′n,
∞∑

n=1

V ′n,
∞∑

n=1

Ω ′n

)
, (4.9)
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with

U′n =
n
2
(1− ρ2)ρn−1Vn sin

(
n
(
θ +

π

2

))
, (4.10)

V ′n =−
n
2
(1− ρ2)2

1+ ρ2
ρn−1Vn cos

(
n
(
θ +

π

2

))
, (4.11)

Ω ′n =−
ρn

r
(n− 1)− (n+ 1)ρ2

1+ ρ2
Vn sin

(
n
(
θ +

π

2

))
. (4.12)

5. Hamiltonian structure
Since the problem has a translational symmetry with respect to the x axis, the

dynamical system is independent of X(t). It is therefore convenient to study a
two-dimensional symmetry reduction of the system in the coordinates Y and θ ,
or, equivalently, in ρ and θ . It turns out that this system possesses an interesting
mathematical structure: it is Hamiltonian. To see this, for each mode of the swimmer
surface velocity, let us consider the integral curve as in Crowdy (2011). It is easy to
show that

dρ
dt
= nρn+1 1− ρ2

1+ ρ2

Vn

r
cos
(

n
(
θ +

π

2

))
, (5.1)

and the two-dimensional phase portrait is obtained by integrating dρ/dθ , given by

dρ
dθ
=

dρ/dt
dθ/dt

=−
nρ(1− ρ2)

(n− 1)− (n+ 1)ρ2
cot
(

n
(
θ +

π

2

))
. (5.2)

On integration, we find

ρn−1(1− ρ2) sin
(

n
(
θ +

π

2

))
= const. (5.3)

These constants can be used to construct the Hamiltonian

Htread =

∞∑
n=1

Hn =

∞∑
n=1

ρn−1(1− ρ2)
Vn

r
sin
(

n
(
θ +

π

2

))
, (5.4)

where the canonical coordinates for the system are not (ρ, θ) but (Q, P), where

Q≡ ρ − ρ−1
=−2

[(
Y
r

)2

− 1

]1/2

, P= θ. (5.5a,b)

The governing equations can then be verified to have the canonical form

dQ
dt
=
∂Htread

∂P
(Q, P) and

dP
dt
=−

∂Htread

∂Q
(Q, P), (5.6a,b)

where

Htread(Q, P)=−
∞∑

n=1

Vn

r
Q
[

Q+
√

Q2 + 4
2

]n

sin
(

n
(

P+
π

2

))
. (5.7)
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From this, we conclude that the trajectories in the phase portrait are periodic orbits,
corresponding to oscillatory trajectories near a wall (Crowdy 2011) or ‘escapers’ that
can approach infinity. In turn, unless the swimmer dynamics lies on the separatrices
in the phase plane, the swimmer cannot swim stably at constant separation from
the wall, in contrast to what is known to occur for spherical squirmers (Ishimoto &
Gaffney 2013). This is because the Hamiltonian structure precludes the existence of
asymptotically stable fixed points in the reduced system.

The imposition of a background shear flow does not destroy the Hamiltonian
structure. Indeed, from (3.25), the velocities induced by the shear flow u∞ = γ̇ y are

U ′shear = γ̇ r
1− ρ2

2ρ
, V ′shear = 0, Ω ′shear =−

γ̇

2
1+ ρ2

1− ρ2
, (5.8a−c)

from which we can write down the Hamiltonian of the reduced system associated with
the background shear flow as

Hshear(Q, P)=−
γ̇

2

(
ρ +

1
ρ

)
=−γ̇

[
Q2

4
+ 1
]1/2

. (5.9)

The Hamiltonian H(Q, P) associated with a treadmilling swimmer in a background
shear is the sum of the two contributions,

H(Q, P)=Htread(Q, P)+Hshear(Q, P). (5.10)

This Hamiltonian structure of a general circular treadmiller near a no-slip wall does
not appear to have been noticed before.

6. Two-mode swimmer
We consider a treadmilling swimmer with the lowest two modes in the tangential

surface velocity, i.e. Us = [V1 sin(φ − θ) + V2 sin(2(φ − θ))] dθ/ds. With V1 = 0, the
dynamics of such a treadmilling swimmer near a wall was studied by Crowdy & Or
(2010) and Crowdy (2011); with V1 6= 0, it was used in Yazdi et al. (2014, 2015) as
a theoretical alternative for the spherical squirmer with the lowest two modes with
respect to the Legendre expansions (Ishikawa et al. 2006).

Although § 5 discussed the Hamiltonian nature of the system with respect to
canonical coordinates (Q, P) in order to discuss its general properties, we continue
to use the coordinates (ρ, θ) in performing the calculations to follow. From a
combination of the expressions derived in §§ 3 and 4, the equations of motion of the
two-mode swimmer are given by the system (1.1) reported earlier.

From the time-reversal symmetry of the Stokes equations, these equations are
identical with respect to the change of variables X → −X, θ → −θ , V2 → −V2,
γ̇ →−γ̇ t→−t. When V1 6= 0, the sign of the parameter β =V2/V1 characterizes the
swimming, and the treadmiller is called a puller for a positive β case and a pusher
when β is negative. When β = 0, the swimmer is called neutral. The time-reversal
symmetry, therefore, means that the dynamics of a pusher is obtained if we trace
back the dynamics of the corresponding puller to the negative time direction, which
we call pusher–puller duality (Ishimoto & Gaffney 2013). In the presence of shear
flow, the swimming direction relative to the background shear is identical between a
puller and the corresponding pusher.

As in previous studies (Crowdy 2011; Ishimoto & Gaffney 2013), we focus on the
reduced dynamical system with the two variables, Y and θ . In this two-dimensional
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FIGURE 3. (Colour online) Example trajectories of the two-mode swimmer without a
shear flow. The swimmer parameter is set to β = 2 and the initial position is (X, Y) =
(0, 1.2r), where the length scale is non-dimensionalized by selecting r= 1. The different
initial angles θ = 0 (a) and θ = 2 (b) lead to the two types of swimmer behaviour: escape
from the wall (a) and periodic motion confined near a wall (b). The arrows indicate the
swimming directions.

reduction, the pusher–puller duality means that if there is a fixed point of a source
(or a sink) for a puller, the stability around the fixed point is opposite, i.e. a sink (or
a source) for the corresponding pusher. However, due to the Hamiltonian structure,
there cannot be any fixed points that are sources or sinks, but they must be centres
or saddles, which leads to oscillatory motion or ‘escapers’ in the real space unless
on the separatrices. In figure 3, the two types of behaviour are illustrated by example
trajectories for the case without the shear flow, which we discuss in detail below.

6.1. Without a shear flow
First, we consider the case of no shear flow: γ̇ = 0. When V1 = 0, the swimmer
exhibits nonlinear periodic motion in the phase portrait, as discussed in Crowdy
(2011) (figure 4d), and this swimmer is called a stirrer (Yazdi et al. 2015). Hereafter,
we consider V1 6= 0 and can set β to be positive without loss of generality due to
the pusher–puller duality. Thus, the results in this subsection will be similar to the
numerical examinations by Yazdi et al. (2015), but here with more mathematical
detail.

The fixed points of the two-dimensional reduced dynamical system are obtained by
the equations dY/dt= 0 and dθ/dt= 0, or

0= sin θ + 2ρβ cos 2θ,
0= cos θ [2ρ + (1− 3ρ2)β sin θ ].

}
(6.1)

It is readily found that cos θ = 0 is a solution of the second equation, and then the
first equation gives us a fixed point (ρ∗, θ∗)= (1/(2β),π/2). Noting that the variable
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FIGURE 4. (Colour online) Contour of the Hamiltonian and the trajectory in the phase
portrait for different values of β. The arrows show the flow of the dynamical system and
the white circles indicate equilibria of the system. The length scale is non-dimensionalized
by r= 1 and the velocity is non-dimensionalized by V1 = 1 (a–c) or V2 = 1 (d).

ρ moves between 0 and 1, this fixed point appears only when β > 1/2 (figure 4b).
When cos θ = 0, we find dX/dt= 0, and thus these solutions are equilibria since the
motion is totally steady.

Next, we consider the case of cos θ 6= 0. Then, the solutions are, in general, not
steady in the sense that dX/dt 6= 0, and we call these solutions relative equilibria.
Without loss of generality, we can limit the range of the angle as θ ∈ (−π/2, π/2).
The set of equations gives the relative equilibria as the solutions of

β2
=

1+ ρ2

2− 12ρ2 + 18ρ4
, (6.2)

and we can find three types of regions with different numbers of relative equilibria,

no relative equilibria, 0<β 6 1
2 ,

one relative equilibrium, 1
2 <β 6 1

√
2
,

two relative equilibria, 1
√

2
<β.

 (6.3)

This bifurcation can be illustrated using contours of the Hamiltonian, which
correspond to trajectories in the phase plane with respect to the polar coordinate (ρ, θ)
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(a) (b) (c) (d)

High

0

Low

FIGURE 5. Contours of the Hamiltonian plotted in polar coordinates (ρ, θ) for different
values of β and Γ , where ρ moves between 0 and 1. The angle θ indicates the swimmer
orientation as shown in figure 1. The wall is depicted by a blue unit circle (ρ = 1) and
infinity is denoted by a point at the origin (ρ = 0). The colour of the contour is graded
from blue to red as the Hamiltonian increases from negative to positive values. Thus, a
closed loop that passes through the origin represents escape from the wall, whereas time-
periodic motion near a wall is expressed by a loop that does not contain the origin.

(figure 5). For a neutral swimmer (β= 0), all trajectories pass the origin, meaning that
the swimmer–wall interaction is repulsive and the swimmer goes to infinity (figure 4a)
except in the case θ = −π/2, when it approaches the wall. When β exceeds 1/2,
new separatrices emerge and closed trajectories appear. These trajectories correspond
to oscillatory motion along the wall, with the angle 0< θ < π (figure 4b). The next
bifurcation occurs at β = 1/

√
2, where another oscillatory motion with −π<θ < 0 is

possible (figures 4c, 5c). When V1 = 0 or β =∞, all of the trajectories are nonlinear
periodic orbits unless they lie on the separatrices (figure 4d).

In the absence of the background shear flow, the velocity in the flow direction is
simply written as

dX
dt
= 2r

∞∑
n=1

nHn. (6.4)

Thus, we have for the two-mode squirmer dX/dt=2r(H1+2H2)=2r(H+H2), where
the Hamiltonian H=H1 +H2 is a constant.

The periodic orbits around a relative equilibrium that bifurcates at β = 1/2 are
confined by separatrices, H=0 and θ =π/2 (figure 5), and therefore we have negative
H for a periodic orbit with 0 < θ < π/2 and positive H for a periodic orbit with
π/2< θ < π. Together with the sign of H2, we have dX/dt < 0 for a periodic orbit
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around a relative equilibrium with 0 < θ < π/2 and dX/dt > 0 for a periodic orbit
around a relative equilibrium with π/2< θ <π.

We then consider the periodic orbits around a relative equilibrium that bifurcates
at β = 1/

√
2. When the treadmiller swims at distances far from the wall (ρ ≈ 0), it

has a straight trajectory, and thus θ must be 0< θ <π. Noting that dθ/dt is positive
for θ = 0 and that it becomes negative for θ = π, the periodic orbits around these
equilibria are confined in the third and fourth quadrants in the polar coordinates (ρ, θ)
(figure 5). From analogous arguments for the first type of periodic orbit, we find that
dX/dt< 0 for a periodic orbit around a relative equilibrium with π< θ <−π/2 and
dX/dt> 0 for a periodic orbit around a relative equilibrium with −π/2< θ < 0.

In summary, in the absence of a background shear flow, the swimming direction on
the x axis is the same as the signature of the Hamiltonian H for periodic orbits, i.e.

sgn
(

dX
dt

)
= sgn(H). (6.5)

6.2. Under a shear flow
Now, we consider a background shear flow with γ̇ > 0 in (1.1). We introduce
a parameter Γ = γ̇ r/V1 when V1 6= 0 and Γ = γ̇ r/V2 when V1 = 0 (stirrers). The
parameters Γ and β are set to be non-negative without loss of generality, and contours
of the Hamiltonian for different values of Γ and β are illustrated in figure 5.

The stationary solutions of the system satisfy the equations

0= sin θ + 2ρβ cos 2θ, (6.6)

Γ =
4ρ2

1− ρ2
[ρ + β(1− 3ρ2) sin θ ] cos θ. (6.7)

We first study a neutral swimmer. With the shear, we find that periodic orbits appear
around the origin (ρ= 0), which are illustrated in figure 5(a). These orbits correspond
to shear-induced rotation. Meanwhile, periodic orbits also appear that do not include
the origin and that move around a relative equilibrium with −π/2 < θ < π/2. The
periodic orbits around this relative equilibrium are downstream migration due to the
sign of Htread, and the orientation of the treadmiller oscillates but the range of the
angle is limited. When β = 0 with −π/2 < θ < π/2, equations (6.6) and (6.7) are
reduced to Γ = 4ρ3/(1− ρ2), which possess a solution for arbitrary Γ > 0. Thus, it
is found that such a relative equilibrium and its accompanying periodic orbits exist
for any strength of the shear. Even when β > 0, from (6.6), ρ can be arbitrarily close
to unity as we choose θ (−π/4 6 θ < 0), and the right-hand side of (6.7) can be
increased indefinitely. In turn, for any β and Γ , there exists a relative equilibrium
and periodic orbits with downstream migration. It is noteworthy that for the spherical
squirmer under a shear flow there exists a relative equilibrium that corresponds to
downstream migration at a separation from the wall with constant distance. This
relative equilibrium is unstable to disturbances perpendicular to the xy plane (Uspal
et al. 2015), which leads to a large basin of attraction for the equilibria corresponding
to rheotaxis (upstream migration). In the model here, however, the motion is confined
in two dimensions and there cannot be pathways between equilibria for the upstream
and downstream migration.

The shear flow induces another bifurcation in the Hamiltonian. Without a shear, the
equilibria arising from the bifurcation at β = 1/2 are accompanied by separatrices
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FIGURE 6. (Colour online) Trajectories of a swimmer in a shear flow. The swimmer
trajectories are shown by red lines, and the swimmer at the final time of the computation
is depicted by a blue circle, with its direction shown by an arrow. The swimmer parameter
β = 2 and the shear strength Γ = 0.2 are fixed. The initial angle was set to θ = 1, and
the positions are (a) (X, Y) = (0, 1.4r), (b) (X, Y) = (0, 1.6r), (c) (X, Y) = (0, 1.62r);
the initial positions of the swimmers are shown by small black dots. The shear flow is
applied towards the +x axis, and the swimmer can exhibit upstream migration (a,b) or a
more complex trajectory (c), although these are periodic orbits in the phase space. The
length scale is non-dimensionalized by r= 1.

corresponding to the isosurface Htread = 0. The relative equilibrium with 0< θ <π/2,
corresponding to swimming with dX/dt< 0 in the absence of a shear flow, disappears
as the shear strength Γ increases (figure 5c,d).

When β = ∞, from (6.6) and (6.7), the critical shear strength is obtained as
Γ∗ = 10− 4

√
6≈ 0.202, below which it is found that the swimmer exhibits rheotaxis

(upstream migration, dX/dt< 0) at the relative equilibrium.
The trajectory in real space is, in general, more complicated, even though the

trajectories in the phase portrait are time-periodic. Example trajectories are illustrated
in figure 6. All trajectories are obtained with the parameters (β, Γ )= (2, 0.2), but for
different initial distances from the wall, (a) (X, Y)= (0, 1.4r), (b) (X, Y)= (0, 1.6r)
and (c) (X, Y) = (0, 1.62r). The periodic orbit close to the relative equilibrium can
exhibit oscillatory wave-like motion as in the absence of the flow (figure 6a), but
when the treadmiller is initially located at a larger separation from the wall, the
trajectory can form a closed loop. The slight change in the initial position leads to
swimming in the opposite direction, as illustrated in figure 6(b) (upstream migration)
and figure 6(c) (downstream migration).

The relative equilibrium with π/2 < θ < π, corresponding to swimming with
dX/dt > 0 in the absence of a flow, however, does not disappear even when the
shear strength is increased, which follows from the similar argument on the relative
equilibrium with −π/2< θ < 0.

When β exceeds 1/
√

2, another relative equilibrium bifurcates from infinity (ρ= 0)
with the angle −π/2 < θ < −π/2. When a shear is applied to the swimmer with
1/
√

2<β <∞, this relative equilibrium disappears at a lower shear strength than that
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discussed for the relative equilibrium with 0 < θ < π, as this relative equilibrium is
located further away from the wall. When β =∞, the critical shear strength is again
Γ∗ = 10− 4

√
6, due to the symmetry.

7. Discussion
We have derived analytical expressions for the equations of motion of a circular

treadmiller, with an arbitrary tangential velocity profile, near a no-slip wall in a simple
shear. The governing dynamical equations are exact, and we have made no simplifying
approximations. The mathematical approach made use of the reciprocal theorem of
Stokes flow combined with a complex variable solution of a ‘dragging problem’ which
greatly facilitated the evaluation of some integral expressions.

We demonstrated a Hamiltonian structure of the two-dimensional reduced dynamical
system. With this symmetry, we found that the relative equilibria cannot be sources
or sinks, but are always centres or saddles. As a result, the treadmiller is sensitive
to external perturbations, which contrasts with the stable swimming of a spherical
squirmer near a wall with constant separation from it (Ishimoto & Gaffney 2013).
Stable swimming is only possible when the Hamiltonian symmetry is broken (such
as in the case where weak fluid viscoelasticity is included (Yazdi et al. 2015)).
Wall potential forces, included in numerical studies (Ishikawa & Pedley 2007;
Spagnolie & Lauga 2012; Ishimoto & Gaffney 2016), give rise to an additional
velocity perpendicular to the wall given by

V ′ext =
1
Fy

(
−
∂φ

∂y

)
, (7.1)

where Fy is the perpendicular drag in the Jeffery–Onishi problem (3.23) and φ(y) is
the external potential. This additional velocity breaks the Hamiltonian structure, and
thus stable unidirectional swimming near the wall is possible, which may indicate
that the swimmer behaviour depends on details of the swimmer–wall interactions, as
examined for a spherical squirmer (Lintuvuori et al. 2016). A gravitational potential
can also be considered in the same manner, and the dynamics of a microswimmer
with density offset such as green algae may be more stable (Drescher et al. 2010).

We studied the detailed motion of the treadmiller with the lowest two modes.
Without a shear flow, as the swimmer parameter β increases, two types of periodic
orbit appear, associated with the bifurcation of relative equilibria of the reduced
system. It is found that the swimming direction of oscillatory motion along the
wall is determined by the sign of the Hamiltonian. When the shear is applied, the
upstream oscillatory migration near the wall disappears at a critical shear strength. In
contrast, the downstream oscillatory migration can be realized up to arbitrarily large
shear strength, which indicates that shear flow can confine the swimmer near the wall
with its orientation aligned. These results indicate that a simple shear near a wall can
be used as a means to guide microswimmers with a particular swimming gait. They
might also be useful in designing a microrobot (e.g. for drug-delivery) that would
work in a vessel or an organ where a background flow is present.
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