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MODULES WITH THE
QUASI-SUMMAND INTERSECTION PROPERTY

ULRICH ALBRECHT AND JUTTA HAUSEN

Given a torsion-free abelian group G, a subgroup A of G is said to be a quasi-
summand of G if nG ^ A@ B ^ G for some subgroup B of G and some positive
integer n. If the intersection of any two quasi-summands of G is a quasi-summand,
then G is said to have the quasi-summand intersection property. This is a gener-
alisation of the summand intersection property of L. Fuchs. In this note, we give
a complete characterisation of the torsion-free abelian groups (in fact, torsion-free
modules over torsion-free rings) with the quasi-summand intersection property. It
is shown that such a characterisation cannot be given via endomorphism rings alone
but must involve the way in which the endomorphism ring acts on the underly-
ing group. For torsion-free groups G of finite rank without proper fully invariant
quasi-summands however, the structure of its quasi-endomorphism ring QiS(G)
suffices: G has the quasi-summand intersection property if and only if the ring
QE(G) is simple or else G is strongly indecomposable.

1. INTRODUCTION

Irving Kaplansky observed that for a free module over a principal ideal domain,
the intersection of any two direct summands is again a direct summand [18]. Problem 9
of Laszlo Fuchs' monograph Infinite Abelian Groups asked for a characterisation of the
abelian groups G which have the summand intersection property (abbreviated by SIP in
[22]), that is, have the property that the intersection of any two direct summands is a di-
rect summand. For modules over arbitrary rings, this problem was considered by George
V. Wilson in [22], and a solution was given by Arnold and Hausen in [5]. As is to be ex-
pected, the summand intersection property is not preserved under quasi-isomorphisms.
That led to some unsatisfactory results: if G is a finite rank torsion-free abelian group
with SIP that has no proper fully invariant direct summands, then G must be a direct
sum of pairwise quasi-isomorphic groups whose common quasi-endomorphism ring is a
division algebra [15]. The converse of this, however, is false. This was one reason to con-
sider the quasi-summand intersection property (q-SIP for short) instead: an .R-module
M has q-SIP if the intersection of any two quasi-summands is a quasi-summand. We
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will show that a torsion-free abelian group G has q-SIP if and only if (i) its endomor-
phism ring E = E(G) has q-SIP as a right module over itself, and (ii) G satisfies a
mild flatness condition as a left ^-module (2.7). A torsion-free ring R has q-SIP as a
right regular module if and only if the ring Q®zR has SIP as a right regular module
(2.3); in particular, if G is flat as left J5-module, the conditions of G having q-SIP,
its endomorphism ring having q-SIP, and its quasi-endomorphism ring having SIP are
all equivalent (2.8). While every completely decomposable torsion-free abelian group
with q-SIP must be flat over its endomorphism ring (3.4), this need not be the case
for torsion-free groups with q-SIP in general (4.3). A finite-rank torsion-free abelian
group G which is quasi-decomposable but without fully invariant quasi-summands has
q-SIP if and only if its quasi-endomorphism ring is a simple ring (3.2). It follows that
modules with q-SIP need not have SIP [15, p.144]. We will show that SIP does not
imply q-SIP either (4.4) so that both properties are independent of each other. Finally,
as was the case with SIP, it is not possible to characterise the q-SIP via endomorphism
rings alone: using a representation theorem due to Faticoni and Goeters [13] we will
show the existence of two torsion-free abelian groups G and H of finite rank with
E{G) ~ E(H) such that G has q-SIP while H does not (4.5). Thus, in addition to the
structure of its endomorphism ring, the way in which the endomorphism ring acts on
the group must enter into the characterisation.

2. MODULES WITH Q - S I P

As usual, Z and Q denote the ring of integers and field of rational numbers,
respectively.

The word ring is used to mean ring with identity. Throughout, R will be a torsion-
free ring (that is, the additive group R+ of R is torsion-free) and M = MR is a unital
right ii-module such that the group (M, +) is torsion-free. Let QR = Q ®% R and
QM — Q®zM. Then QR is an associative Q-algebra [7], QM is aright module over
R as well as a right Qi?-module [9, p.23], and both R and M are naturally embedded
in QR and QM, respectively [9, p.130, 2.3]. We will simplify notation by writing
qa for q <g) a. H K is an iZ-submodule of QM then QK is the Q-subspace of QM
generated by K, that is, the set of all rational multiples of elements in K.

Let C be the ring of all Qi2-endomorphisms of QM. The ring E = ER(M) of
all i2-endomorphisms of M may be regarded as the subring C consisting of all e € £
such that eM ^ M. If K ^ M then EomR(M,K) is a right ideal of E. We let
QHomfl(M, K) be the Q-subspace of C generated by HomR(M, K). In particular, the
quasi-endomorphism ring QE = QER(M) consists of all rational multiples of endomor-
phisms of M.

Given two .R-submodules K and L of QM, the terms "quasi-contained" and
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"quasi-equal" are used in the abelian group sense [14, p.148]: K^L if nK C L for
some natural number n, and K=L if both K^L and L^K. Clearly, if K= L then
QK = QL. Two torsion-free abelian groups G and H are quasi-isomorphic, in symbol
G~H, if they are isomorphic to quasi-equal groups. Furthermore, an .R-submodule K
of QM is a quasi-summand of M if K= n(M) for some idempotent n in QER(M).

If A is an .R-submodule of QM then A is a quasi-summand of M if and only if
M = A @ B for some .R-submodule B of M. Also, if M± K ®L and # ^ A ^ M
then A= K @ (A PI L), and the relation of being a quasi-summand is transitive.

We summarise a few technical results:

LEMMA 2 . 1 . Let S be a torsion-free ring and let iri,iV2 and -K he idempotents

in QS. Then

(1) SHnQS = TTS.
(2) 7riSn7T2S=7rS <=> ivxQS nn2QS = nQS.
(3) If S = ER{M) and ^MHiTiM^ TTM tJien 7riSri7r25= TT5.

PROOF: Easy calculations establish (1) and (2). For (3), note that the hypothesis
implies TTQM = Q(TTIM C\-K2M) = niQM D 7r2QM. Consequently, TT = TTJTT and
TT<55 C irxQSn^QS. If o- 6 n1QSr\n2QS then o-QM C TTQM SO that o- = TTCT e TTQS.

Hence TTQ5 = niQS fl iz2QS. Since 5 is a torsion-free ring, (2) is applicable. D

The following result is essential. It will be used throughout the paper without
necessarily being mentioned. It is the counterpart to the fact that an iZ-module M has
SIP if and only if, given any decomposition M — A © B and any e G Hom^-A, B), the
kernel of e is a direct summand [22, 15].

PROPOSITION 2 . 2 . The R-module M has q-SIP it and only if, given any qua-
si-decomposition M = A@B and any R-homomorphism e : A —•» B, the kernel of t is
a quasi-summand of A.

PROOF: Assume, firstly, that M = A 0 B has q-SIP and let e : A-* B. Consider
T = {a + e(a) | a 6 A}. Then A®B=T®B. By hypothesis, AC\T = kernel(e)
is a quasi-summand of M and, thus, of A. Conversely, assume M satisfies the stated
condition and let 7Tj £ QER(M) be idempotents, i = 1,2. Choose a positive integer n
such that nwi £ ER(M), i = 1,2. Then n^Af ©n(l - -K{)M ^ M ^ 7TiM©(l - n^M,
i = 1,2. Let e = n 2 ( l — 7ri)7T2|7riM. Then e : TTIM —> (1 — TZI)M and one verifies that
kernel(e)=(7riM D TT2M) © (TTJM D (1 — 7r2)M). Since, by hypothesis, the kernel of e
is a quasi-summand of ir\M, so is iv\M D n2M. u

It follows from 2.2 that q-SIP is inherited by quasi-summands.

As in [5], we investigate the quasi-summand intersection property in the case that

M = R:
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PROPOSITION 2 . 3 . The following properties of the torsion-free ring R are
equivalent.

(1) R has q-SIP as a right R-module.
(2) QR has SIP as a right QR-module.

(3) For all idempotent n G QR and all x G (1 - 7r)QR7r, the right ideal xQR

is projective.

PROOF: The equivalence of (2) and (3) is contained in Proposition 3 of [5]; the
equivalence of (1) and (2) follows from 2.1(2) above. D

As in [5], this leads to the discussion of right principal projective rings: a ring R
is said to be right principal projective (or right p.p. [10]) if every principal right ideal
of R is projective as a right .R-module. We obtain at once

COROLLARY 2 . 4 . Let R be a torsion-free ring. If QR is right principal projec-

tive then RR has q-SIP.

In order to apply 2.3 to endomorphism rings, it is desirable to characterise the
principal projective right ideals of quasi-endomorphism rings. The M-socle of an R-
module K is defined to be S\i{K) = ^2{<TM | a G Homfl(M, K)}.

PROPOSITION 2 . 5 . Let E = ER{M), let e G E and let K - kernel(e). The

following conditions are equivalent.

(1) The right ideal eQE is projective.
(2) There exists an idempotent n € QE such that HomR(M,K) = nE.
(3) The M-socle SM(K) of K is a quasi-summand of M.

PROOF: Let e* : QE —> eQE be the left multiplication by e. One verifies that
kernel(e*) — QH.om.R(M,K), and eQE is projective if and only if QHomfl(Af',K) =
•KQE for some idempotent TT g QE. Thus, (2) implies (1). Assume (1). Then we
have QHomfl(M, K) = nQE which implies that, for each a G B.OTO.R(M,K), a — ira.
Hence SM(K) ^ irM. If TO is a nonzero integer with mn G Homfl(M,iir) then mirM ^
SM(K). Thus, (1) implies (3). Assume (3). Then SM(K) = nM with n = n2 G QE.
There exists a positive integer n such that nirM ^ SM(K) ^ K and TISM(K) ^ irM.
Hence nn G Hom.R(M,K) so that nirE ^ Homjj(M,K); for every a G Homii(M,K) ,
naM ^ TISM(K) < T-W which implies a = war G nE. Thus EomR(M,K)= nE as
desired. U

COROLLARY 2 . 6 . The kernel K of an endomorphism e G ER(M) = E is a
quasi-summand of M if and only if the right ideal eQE is projective and K = SM{K) .

We now give a characterisation of the .R-modules M with q-SIP in terms of
their quasi-endomorphism ring. If / is a right ideal of E = ER(M) we let IM =

\f G / } • Clearly, if J is a right ideal of E with 1= J then IM = JM.
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Note that, if K < M, then Homfl(M, K) is a right ideal of ER(M) and the M-socle
SM(K) = EomR(M,K)M.

THEOREM 2 . 7 . The following properties are equivalent for a right R-module M
with endomorphism ring E:

(1) M has q-SIP.
(2) (i) E has q-SIP as a right R-module;

(ii) for all idempotents IT and p in QE, %M C\ pM == (nE D pE)M.
(3) (i) QE has SIP as a right QE-module;

(ii) if M = A @ B and <p G HOVTIR^A, B) then kernel(tp) is quasi-
equal to its A-socle.

(4) If 7T G QE is idempotent and e G (1 — ir)Eir then
(i) the right ideal eQE is projective; and

(ii) the kernel of e\M is equal to its M-socle.

PROOF: The quasi-summands of the right .E-module E are precisely the E-
submodules J of QE of the form J i irE for some idempotent IT G QE. It fol-
lows from 2.1(3) that (1) implies (2). For the reverse implication, let iti be two
idempotents in QE. Then there is 7r = 7r2 G QE with iriE f~l TT2E = irE, and
nM = (irE)M^ (TTI£ n -K2E)M = TTIM D TT2M. Thus (1) and (2) are equivalent; be-
cause of 2.2 and 2.3 they imply (3). Note that e G (1 - ir)QEn with n = n2 G Q^ is
equivalent to M = 4̂ © 5 for some A and B with e(.A) ^ 5 and e(B) = 0. Using 2.2
and 2.5, this implies the equivalence of (1) and (4). Finally, assume (3). Then there
exists an idempotent ir G QE and an e G (1 — ir)QEir such that e\A = <p. By 2.3, the
right ideal eQE is projective so that the M-socle of its kernel is a quasi-summand, by
2.5; hence kernel(y>) is a quasi-summand of A completing the proof. D

We now turn to the conditions (ii) in Theorem 2.7. These are weakened flatness
conditions considered by various authors: Arnold showed that an abelian group A is
flat as a module over its endomorphism ring E if and only if (a) for every e G E the
kernel of e equals its .A-socle, and (b) (/ fl J)A — IA H J A for all finitely generated
right ideals / and J of E [4, Theorem 1.1]. The analogue of this for .R-modules is
contained in [5, Proposition 10]. Ulmer proved that an R-module M is flat over its
endomorphism ring if and only if, given any positive integer n and any homomorphism
<p : M" -» M, the kernel of <p equals its M-socle [21, p.531]. Thus, if M is flat over
ER(M) , the conditions (ii) in 2.7 are automatically satisfied:

COROLLARY 2 . 8 . Suppose that the R-module M is Sat as module over its
endomorphism ring E = ER(M) . Then the following conditions are equivalent.

(1) M has q-SIP.
(2) E has q-SIP as a right E-module.
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(3) QE has SIP as a right QE-modvle.
(4) For every idempotent n € QE and every £ 6 ( 1 - ir)E-jr, the right ideal

eQE is projective.

The following result indicates a source for modules with both intersection proper-
ties:

COROLLARY 2 . 9 . Suppose the R-module M is Hat over its endomorphism ring
ER(M) and ER(M) is right principal projective. Then M has both SIP and q-SIP.

PROOF: i?-flat modules with right principal projective endomorphism rings have
SIP [5, Corollary 12]. Since QER(M) is right principal projective if ER(M) is, the
assertion follows from 2.4 and 2.8. D

If M is a module such that Mn has q-SIP for every positive integer n, it does not
follow that each Mn has SIP; this can be seen from the Z-module M = Z © A where
A is any noncyclic subgroup of Q (see 3.6 below and [15, 5.1]). The following result
indicates that modules with q-SIP are more common than modules with SIP:

PROPOSITION 2 . 1 0 . If M is an R-module such that M" has SIP for every
natural number n then Mn has q-SIP for every natural number n.

PROOF: Put E — ER(M) and assume that the Mn has SIP for all positive integers
n. Then, for each positive integer m and every homomorphism <p : Mm —> M, the
kernel of <p is a direct summand and, thus, equals its M-socle. By Ulmer's theorem [21,
p. 531] this implies M is E-flat. Proceed as in [1, p.567, proof of 2.2] to see that E is
right semihereditary. (Indeed, Theorem 2.2 of [15] is valid without the hypothesis that
the module A be indecomposable.) Let k be a positive integer. Since the module Mk

satisfies the hypothesis, too, it follows that Mk is aflat ^(M*)-module and ER^M*)

is right semihereditary, hence right p.p. Apply 2.9. D

3. TORSION-FREE ABELIAN GROUPS WITH Q-SIP

All groups under consideration will be torsion-free and abelian. It was Bjarni
Jonsson who introduced the concept of quasi-isomorphism and showed that in the cat-
egory of finite-rank torsion-free abelian groups with the quasi-homomorphisms as mor-
phisms a Krull-Schmidt theorem is valid [17] (see [14, 92.5]). A group A is strongly

indecomposable if every nonzero quasi-summand of A is quasi-equal to A. Obviously,
every strongly indecomposable group has q-SIP.

Let G be a torsion-free abelian group of finite rank. Then G = Ai @ • • • © An

where each of the Ai is strongly indecomposable. If each Ai is fully invariant in G

(that is, e(Ai)^ Ai for every e € E{G)) then G has q-SIP (see [3, 2.1]). We shall
consider the case that G is without proper fully invariant quasi-summands but not
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strongly indecomposable. Such a group will be shown to have q-SIP if and only if its
endomorphism ring is simple. For the proof of this we need the following result which
is essentially contained in [6]. Note that we do not require the rank to be finite.

PROPOSITION 3 . 1 . Let W be a torsion-free abelian group such that QE(W)
is a semisimple ring. Then the following hold:

(1) HI is a right ideal of E{W) such that QIW = QW then n l w e l for

some natural number n.

(2) For every subgroup L of W, Sw(L) is a quasi-summand of W.
(3) If H is a torsion-free group with Sw{H) = H and e : B —* W is an

epimorphism then the kernel of e is a quasi-summand of E.

PROOF: Assume the hypothesis of (1). Then QI is a right ideal of QE = QE(W)
and the latter is semisimple so that QI = irQE for some idempotent 7r g QE. Hence
QW = irQW which implies 7r = 1 and 1 € QI as desired. For (2), assume L ^ W and
let I = Eom(W,L). Then 7 is a right ideal of E(W) and SW(L) = IW. As before,
the semisimplicity of QE implies the existence of ir — ir2 G QE with QI = irQE. It
follows that a = ira £ nE for all a G / . If n is a nonzero integer with TVK £ / then
U-KE ^ J ^ TTE and hence nirW < IW = SW(L) < nW. In order to prove (3), let
/ = eEom(W,H). Then / is a right ideal of E and H= SW(H) = Eom(W,H)W
which implies W = eH = IW. Part (1) completes the proof. U

THEOREM 3 . 2 . Let G be a torsion-free abelian group of finite rank which is not
strongly indecomposable. The following conditions are equivalent.

(1) G has q-SIP and contains no proper fully invariant quasi-summands.
(2) G ~ An for some positive integer n and some group A such that QE(A)

is a division algebra.

(3) The quasi-endomorphism ring QE(G) is a simple (Artinian) ring.

(4) For every natural number m, the group Gm has q-SIP and contains no
proper fully invariant quasi-summands.

PROOF: It suffices to show that the first three conditions are equivalent. In or-
der to show that (1) implies (2), assume, by way of contradiction, that G is quasi-
decomposable but not of the stated form. Since the quasi-summand intersection prop-
erty is inherited by quasi-summands, we may assume that G = Ai © • • • © An with each
A{ strongly indecomposable, Ai and Aj not quasi-isomorphic for i ^ j and n ^ 2.
By hypothesis, for each i there exists a j ^ i such that Hom(.A;, Aj) ^ 0 so that
Ai "—» Aj, by 2.2. Since there are only finitely many i we must have A^ •—> Aj •—» Ak
for some indices k and j with k ^ j . It follows from [3, 6.2(d)] that Ak^Aj which
is a contradiction. Thus, all the Ai are pairwise quasi-isomorphic and every nonzero
ip £ Hom(j4i, Aj) is monic. This implies that every nonzero endomorphism of Ai is a
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monomorphism and QE(A{) is a division algebra [3, 6.1] as claimed. The equivalence
of (2) and (3) is due to Reid [19]. Assume the validity of (3), let G = B 0 K and
let e : B —> K be a nonzero homomorhism. Note that G ~ An with A strongly in-
decomposable, and Jonsson's theorem implies B ~ Ap and K ~ A9 for some positive
integers p and q [14, 92.5]. By Reid's result, both B and K have simple quasi-
endomorphism rings. Let L = eB. Then L — SH(L)= SA{L)= SK{L). Applying
3.1(2) with W = K we conclude that L is a quasi-summand of K. Hence, L ~ Am

for some positive integer m. It follows that SL{B) = SA{B) = H and that QE(L) is
a simple ring, too. Aplying 3.1(3) with W = L completes the proof. D

We now characterise the almost completely decomposable groups with q-SIP. The
first step toward this goal is the following lemma. The type of a rank-one group X is
denoted by t{X).

LEMMA 3 . 3 . Let A, B and C be rank-one groups such that t(A) ^ i{C) and
t(B) ^ t(C), and let G = A®B®C. IfG has q-SIP then t(A) and t(B) are comparable.

PROOF: Pick nonzero homomorphisms a : A —» C and (5 : B —* C and define
e : A@B ^ C by e(a,b) = a(a) - /3(b). Let X = a(A) n @{B). Then X is a rank-
one group and t(X) is a lower bound of t(A) and t(B). Furthermore, kernel{e) =
{(a~1(a;),/3~1(a;))|z 6 X} ~ X, and kernel(e) is a quasi-summand of A® B, by 2.2.
Thus, X ~ A or X ~ B as desired. D

The completely decomposable groups G that are flat as modules over their endo-
morphism rings have been characterised by Arnold [4] and Richman and Walker [20]:
if T denotes the set of types of the rank-one summands of G then G is a flat E(G)-
module if and only if T has the property that any two of its elements that have an
upper bound in T must also have a lower bound in T. Combining this with our results
we obtain

THEOREM 3 . 4 . A completely decomposable torsion-free group G has q-SIP if
and only if (i) its endomorphism ring E = E(G) has q-SIP as a right regular module
and (ii) G is Sat as a left E-module.

PROOF: Sufficiency of (i) and (ii) follows from 2.8. For the converse, let G =
0 i g ; X,- with each Xi of rank one and type t<, let T = {U}i£i, and suppose G has
q-SIP. By 2.7, so does EE and, for any three pairwise distinct i,j,k in / , so does
Xi © Xj ®Xk. By 3.3 and [20, Theorem 4], G is E-flat. •

We have a similar result for almost completely decomposable groups:

THEOREM 3 . 5 . An abnost completely decomposable torsion-free group G has
q-SIP if and only if (i) its endomorphism ring E — E(G) has q-SIP as a right regular
module and (ii) G is quasi-equal to a group B which is flat as a left E(B)-module.
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PROOF: Combine 3.4 and 2.3. D

For almost completely decomposable groups of finite rank the quasi-summand in-
tersection property can be characterised by the set of types of the quasi-summands:

THEOREM 3 . 6 . Let {-Xij-JLj be a family of torsion-free rank-one groups Xi of
type U, let T = { U | i = 1, . . . , n }, and let G == Xi © • • • © Xn with endomorphism
ring E = E{G). Then G has q-SIP if and only if any two types in T which have an
upper bound in T are comparable.

PROOF: By 3.3, the stated condition is necessary for T. Conversely, assume T
is as stated but G fails to have q-SIP. Choose a counterexample, G, of minimal rank.
Following Bowman and Rangaswamy [8], define an equivalence relation on T by letting
a ~ T if there exist Ti,...,Tm £ T such that a = TI,T = r m , and T< and T;+I are
comparable for i = 1,. . . ,m — 1. If G[t] = @te[t] -̂ » then each G[«] is fully invariant
in G and G is quasi-equal to the direct sum of the G[t] • By minimality, G = G[t]
and any two types in T are equivalent. Let a G T be a minimal element. As in [15,
p.147], the hypothesis on T implies that a ^ t for all t 6 T. Let H = (&t.=aXi
and F = (Bi>aXj. Then G= H © F and F is fully invariant in G. Since G
is a counterexample, G has a quasi-decomposition G= A @ B for which there is a
homomorphism e : A —* B such that K = kernel(e) is no quasi-summand of A;
among all such decompositions choose one in which A has minimal rank, p. Note that
F = (Ffi A) ® ( F n B) [3, 2.1]. By Jonssen's result, A= Ai @ • • • @ Ap with each
Ak — Xi for some i; in addition, the minimality of the rank of A implies that each
restriction map e\Aj is monic, j = l , . . . , p . If A ^ F then F == A © (F fl B) and
e(A) ^ FnB so that if is a quasi-summand of A since F has a rank smaller than the
rank of G. Consequently, we may assume that t(Ai) = a. Put W = ©f=2-4.j. Since
W®B has a rank that is smaller than the rank of G, W@B has q-SIP so that KC\W
is a quasi-summand of W. Again, the minimality of the rank of A implies that t\W
is monic. Hence e(A) = e(Ai) + e(W) with e(Ai) ~ Ai and e(W) ~ W\ Suppose
e(Ai)r\e(W) = 0. Then e is monic which is impossible. Consequently, e(Ai)r\e(W) ^ 0
and e(Ai) PI e(VF) has rank one. Since t(x) ^ a — t(Ai) for all x £ G, it follows that
<(Ai) = <(e(Ai)) = t{e(Ai) ne(W)). Hence me{A1) ^ e[W) for some positive integer
m [3, 6.1] which implies e(A) = e{W). But then A= W + K = W © K and the proof
is completed. D

We note that 3.6 does not hold for groups of infinite rank: if F is a free group of
infinite rank and A is any torsion-free group of rank one which is not isomorphic to Z
then G = F © A does not have q-SIP even though the set T = {t(Z),t(A)} is linearly
ordered.
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4. EXAMPLES

By 2.7, the quasi-summand intersection property of the module implies that of its
endomorphism ring. The converse of this is not true. In fact, we can make a stronger
statement (see 2.4):

EXAMPLE 4 . 1 . There exists a torsion-tree abelian group G of rank three with-
out q-SIP whose quasi-endomorphism ring QE(G) is right principal projective.

PROOF: Let R be the set of all rationals with denominator a power of 2, let 5
be the set of all rationals with denominator a power of three, and let T = R + 5 as
a subset of Q. Then R, S and T are additive groups as well as subrings of Q. Let
G - R®S®T. It follows from 3.3 that G does not have q-SIP. Furthermore

/ B O O
QE(G) ~ Q I 0 5 0

\T T T

which is easily verified to be right principal projective as desired. D

According to 2.7, a module with q-SIP satisfies some mild flatness conditions over
its endomorphism ring. These conditions by themselves do not imply q-SIP, in fact,
even .E-flatness does not imply q-SIP:

EXAMPLE 4 . 2 . There exists a torsion-free abelian group A of rank four which
is flat as a module over its endomorphism ring but does not have q-SIP.

PROOF: Let A = Z © G where G is the group of 4.1. Since G does not have
q-SIP, neither does A. By [20, Theorem 4], A is flat over its endomorphism ring. D

Conversely, modules with q-SIP need not be flat. In order to provide an example
we will use recent results on the representation of rings as endomorphism rings. Since
Corner's celebrated theorem that every countable reduced torsion-free ring is the endo-
morphism ring of a countable reduced torsion-free group [11], significant progress has
been made on this subject. Recently, a more delicate question has been considered:
given a ring R and some module-theoretic property N, is there a group G such that
E{G) ~ R and, in addition, the left i?(G)-module G has property N"? Faticoni and
Goeters [13] and Albrecht [2] considered this problem for Af being the property "flat".
Every finite-rank torsion-free abelian group with right semihereditary endomorphism
ring must be .E-flat [6], [16]; but if R is a reduced torsion-free ring of finite rank which
is not semihereditary, R can be realised as the endomorphism ring of a finite-rank
torsion-free group which is not flat over its endomorphism ring [13, 3.11]. In contrast,
both Corner's construction and the Dugas-Gobel construction [12] lead to J5-flat groups
[13, 2].
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EXAMPLE 4 . 3 . There exists a torsion-free abeiian group A which has q-SIP but
is not flat as a left E(A)-module.

PROOF: Consider the subring R — Z © 2iZ of the field of complex numbers,
i = y/—l. It is well known that R is not semihereditary. By [13] there exists an
abeiian group A with E(A) ~ R which is not flat as a left i5(.A)-module. Since
QR = Q(i) is a field, A is strongly indecomposable. U

Examples of finite-rank torsion-free groups that fail to have SIP but do have q-SIP
exist in abundance (see for example [15, p.144]). Modules with SIP that do not have
q-SIP are less common. We have

EXAMPLE 4 . 4 . There exists a torsion-free abeiian group A of Unite rank which

has SIP but not q-SIP.

K x 0 \ 1

I | x,y 6 Z > . Its additive group
V XJ J

is free of rank two, and QTZ is a commutative local ring with unique maximal ideal
/ 0 0 \

3 — I _ ) • Thus, the regular module QTZ is indecomposable. One verifies that J
equals the annihilator ideal of the matrix T = I J G QTZ. Let M = M2(TZ) be

the ring of 2 x 2-matrices over TZ, and consider its subring 5 = Z • \M + 2M. Then
iS == M, and their additive groups are free of finite rank. There exists a torsion-free
abeiian group A of finite rank such that E(A) ~ <S and A is flat over its endomorphism
ring [13, 2]. The quasi-endomorphism ring of A is isomorphic to QM — Mi{QTZ).
We claim that A has SIP but not q-SIP. For the latter, it suffices to show that the

regular module QM fails to have SIP (2.7). Let TT = ( j G QM and let $ :

•KQM -> (1 - ir)QM be the left multiplication by the matrix ( j G QM. One

(3 3\
verifies that the kernel of $ equals K. = ( I which is not a direct summand of

the QM-module irQM = ( J . By [15,1.4], QM fails to have SIP as a right

regular module. The proof is completed once we show 5 has no nontrivial idempotents.
Assume p = p2 G 5 . Then p = n • 1 + la for some a (E. M and an integer n G {0,1}.
Computation yields 0 = n( l — n) • 1 = 4a2 + {An — 2)a. It follows that, for both values
of n, a = ±2a 2 so that a has infinite 2-height in M. By the freeness of M we must
have a = 0 which shows p is trivial. This completes the proof. D

We now show that the quasi-summand intersection property of a module cannot
be characterised by its endomorphism (or its quasi-endomorphism) ring alone:

EXAMPLE 4 . 5 . There exist two Z-modules with isomorphic endomorphism
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rings one of which has q-SIP while the other one does not.

PROOF: Let G be the group in Example 4.1 and let E be its endomorphism
ring. Then G does not have the quasi-summand intersection property while EE does.
Clearly, E is a countable reduced torsion-free ring. By [13], Corner's construction in
[11] realises E as the endomorphism ring of a torsion-free group H such that H is flat
as a left .E(.H>module. Since E(H) ~E,it follows from 2.8 that H has q-SIP. D
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