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Abstract

We determine the order of magnitude of E|
∑

n6x f (n)|2q , where f (n) is a Steinhaus or
Rademacher random multiplicative function, and 0 6 q 6 1. In the Steinhaus case, this is
equivalent to determining the order of limT→∞

1
T

∫ T
0 |
∑

n6x n−i t
|
2q dt .

In particular, we find that E|
∑

n6x f (n)| �
√

x/(log log x)1/4. This proves a conjecture of
Helson that one should have better than squareroot cancellation in the first moment and disproves
counter-conjectures of various other authors. We deduce some consequences for the distribution
and large deviations of

∑
n6x f (n).

The proofs develop a connection between E|
∑

n6x f (n)|2q and the qth moment of a critical,
approximately Gaussian, multiplicative chaos and then establish the required estimates for that.
We include some general introductory discussion about critical multiplicative chaos to help readers
unfamiliar with that area.

2010 Mathematics Subject Classification: 11N37 (primary); 11L40, 11K65, 60G15, 60G57
(secondary)

1. Introduction

Preliminary remark on notation. We will say a number n is y-smooth if all prime
factors of n are 6 y. We will generally use the letter p to denote primes. Unless
mentioned otherwise, the letters c,C will be used to denote positive constants, c
usually being a small constant and C a large one. We write f (x) = O(g(x)) and
f (x)� g(x), both of which mean that there exists C such that | f (x)| 6 Cg(x),
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for all x . In a few places, this notation will be adorned with a subscript parameter
(for example, Oε(·) and�δ), meaning that the implied constant C is allowed to
depend on that parameter. We write f (x) � g(x) to mean that g(x)� f (x)�
g(x), in other words, that cg(x) 6 | f (x)| 6 Cg(x) for some c,C , for all x .

Let ( f (p))p prime be a sequence of independent Steinhaus random variables,
that is, independent random variables distributed uniformly on the unit circle
{|z| = 1}. We define a Steinhaus random multiplicative function f by setting
f (n) :=

∏
pa‖n f (p)a for all natural numbers n (where pa

‖n means that
pa is the highest power of the prime p that divides n, so n =

∏
pa‖n pa).

Thus, f is a random function taking values in the complex unit circle, that is
totally multiplicative. An alternative model is to let ( f (p))p prime be independent
Rademacher random variables, taking values ±1 with probability 1/2 each.
Then we define a Rademacher random multiplicative function f , supported on
squarefree numbers n (that is, numbers n not divisible by any squares of primes)
only, by f (n) :=

∏
p|n f (p).

Random multiplicative functions have attracted quite a lot of attention as
models for functions of number theoretic interest: for example, Rademacher
random multiplicative functions were introduced by Wintner [31] as a model
for the Möbius function µ(n). In the Steinhaus case, for any real q > 0 and any
given x , we have

E

∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣
2q

= lim
T→∞

1
T

∫ T

0

∣∣∣∣∣∑
n6x

n−i t

∣∣∣∣∣
2q

dt

= lim
prime p→∞

1
p − 1

∑
χ mod p

∣∣∣∣∣∑
n6x

χ(n)

∣∣∣∣∣
2q

,

where the final sum is over the p − 1 Dirichlet characters χ mod p. Thus,
questions about moments of a Steinhaus random multiplicative function are
equivalent to questions about the limiting behaviour of the so-called zeta sums
or of character sums.

Since we always have E f (p) = 0 and since numbers have unique prime
factorizations, it is easy to check that the random variables f (n) are orthogonal
(that is, E f (n) f (m) = 1n=m | f (n)|2 for all n,m, where 1 denotes the indicator
function), and so

E

∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣
2

=


∑
n6x

1 = x + O(1) in the Steinhaus case,∑
n6x, n squarefree

1 =
6
π 2

x + O(
√

x) in the Rademacher case.
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With this orthogonality in mind as well as the fact that the f (n) are built from
‘quite a lot’ of independent random variables ( f (p))p prime, there are various
natural questions one might investigate that compare the behaviour of f (n) with
a sequence of completely independent random variables:

(1) Does one have a central limit theorem for
∑

n6x f (n)
√

E|
∑

n6x f (n)|2
?

(2) What is the size of the moments E|
∑

n6x f (n)|2q for general q > 0?

(3) How large are the tail probabilities P(|
∑

n6x f (n)| > λ
√

x) for λ large? In
particular, do they decay rapidly (for example, exponentially) with λ?

(4) Does one have ‘law of the iterated logarithm’ type almost sure bounds for∑
n6x f (n)?

Since the values f (n) have a rather intricate dependence structure, these
problems are probabilistically interesting. There are also number theoretic and
analytic motivations for them. For example, Helson [15] conjectured in the
Steinhaus case that one should have E|

∑
n6x f (n)| = o(

√
x) and observed that

if this is true, then a certain generalization of Nehari’s theorem from harmonic
analysis is false. See Saksman and Seip’s open problems paper [26] for a
functional analysis perspective on Helson’s conjecture and related questions. On
the number theoretic side, it is well known that the Riemann hypothesis is true
if and only if

∑
n6x µ(n) = Oε(x1/2+ε) for all positive ε. In fact, a conjecture

of Gonek based on the distribution of zeros of the Riemann zeta function (see
Ng’s paper [21]) asserts that this sum should be O(

√
x(log log log x)5/4) and

infinitely often as large as that. It would be very interesting to have sharp almost
sure bounds for

∑
n6x f (n) in the Rademacher case, to compare with Gonek’s

conjecture.
In this paper, we will answer the second question for 0 6 q 6 1 and derive

some consequences for the other questions. In a companion paper [12], we
also answer the second question for q > 1 up to factors of size eO(q2). Before
explaining our theorems, we briefly summarize some of the previous literature
on these problems.

Regarding the moments E|
∑

n6x f (n)|2q , when q is a fixed natural number,
one can expand the 2qth power and reduce the expectation calculation to a
number theoretic counting problem. This leads to an asymptotic for the moment
as x → ∞ in both the Steinhaus and Rademacher cases: see the papers of
Harper, Nikeghbali and Radziwiłł [13] and Heap and Lindqvist [14] for such
calculations and further references. We simply note here that the moments are of
the form xq(log x)Θ(q

2) and so grow rapidly with q in a way very unlike a sum
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of independent random variables. When q is not a natural number, there are no
obvious methods available, so much less is known, but Helson [15] conjectured
(in the Steinhaus case) that the first moment should satisfy E|

∑
n6x f (n)| =

o(
√

x) as x → ∞. This seems surprising from a number theoretic perspective
since one rarely expects to achieve better than squareroot cancellation. Exploring
the conjecture, Weber [30] established various results; Bondarenko and Seip [4]
proved a lower bound E|

∑
n6x f (n)| �

√
x/(log x)δ for a certain small explicit

δ > 0; Harper, Nikeghbali and Radziwiłł [13] proved a stronger lower bound
E|
∑

n6x f (n)| �
√

x/(log log x)3+o(1). They also conjectured, in opposition to
Helson’s conjecture, that E|

∑
n6x f (n)|2q

∼ C(q)xq as x →∞ for each fixed
0 6 q 6 1.

Turning to the almost sure behaviour of
∑

n6x f (n), it is known in the
Rademacher case that the sum is almost surely O(

√
x(log log x)2+ε) for each

ε > 0 due to the work of Lau, Tenenbaum and Wu [18]. It is also known that the
sum is almost surely not O(

√
x/(log log x)5/2+ε) due to the work of Harper [10].

This builds on previous works of many people, most notably Halász [9]. These
results are described by Lau, Tenenbaum and Wu as ‘qualitatively matching the
law of iterated logarithm’, so one might expect the proofs to involve Gaussian-
type decay estimates for the tail probabilities P(|

∑
n6x f (n)| > λ

√
x). However,

as far as the author is aware, no bound is known for these probabilities for
moderately sized λ that improves on the Chebychev upper bound �1/λ2. The
Lau–Tenenbaum–Wu almost sure upper bound instead exploits the special fact
that (1/

√
x)
∑

n6x f (n) changes size extremely slowly.
Finally looking at distributional questions, in the Rademacher case, it is

a natural default conjecture that
∑

n6x f (n)
√

E|
∑

n6x f (n)|2
d
→ N (0, 1) as x → ∞, but

Chatterjee (see Section 6 of Hough [16]) conjectured that this should not
hold. Chatterjee’s conjecture was proved by the author [11] using a special
conditioning argument. On the other hand, if one restricts to many natural
subsums, one does have a central limit theorem: see the papers of Chatterjee and
Soundararajan [5], Harper [11] and Hough [16] for examples of such theorems,
proved using Stein’s method, a martingale decomposition and the method of
moments, respectively. It has remained an open question whether

∑
n6x f (n)

√
E|
∑

n6x f (n)|2

has a limit distribution, and if so, what this distribution is.

1.1. Statement of results. We shall prove the following theorems, which
determine the order of magnitude of E|

∑
n6x f (n)|2q for all 0 6 q 6 1, in

both the Steinhaus and Rademacher cases.
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THEOREM 1. If f (n) is a Steinhaus random multiplicative function, then
uniformly for all large x and 0 6 q 6 1, we have

E

∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣
2q

�

(
x

1+ (1− q)
√

log log x

)q

.

THEOREM 2. If f (n) is a Rademacher random multiplicative function, then
uniformly for all large x and 0 6 q 6 1, we have

E

∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣
2q

�

(
x

1+ (1− q)
√

log log x

)q

.

In particular, we find that

E|
∑
n6x

f (n)| �
√

x
(log log x)1/4

,

which proves Helson’s [15] somewhat surprising conjecture that the first moment
should be o(

√
x) and disproves the counter-conjecture of Harper, Nikeghbali and

Radziwiłł [13] (see also Conjecture 1 of Heap and Lindqvist [14]).
Theorem 1 also implies a negative answer to the so-called embedding problem

for Dirichlet polynomials (see Question 2 of [25] or Problem 2.1 of [26]) for all
exponents 0 < 2q < 2. It is easy to check using Riemann–Stieltjes integration
that ∫ 1

0

∣∣∣∣∣∑
n6x

1
n1/2+i t

∣∣∣∣∣
2q

dt =
∫ 1

0

∣∣∣∣ x1/2−i t

1/2− i t
+ O(1)

∣∣∣∣2q

dt � xq,

and Theorem 1 implies that

lim
T→∞

1
2T

∫ T

−T

∣∣∣∣∣∑
n6x

n−i t

∣∣∣∣∣
2q

dt = E

∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣
2q

= o(xq)

for any fixed 0 < q < 1, as x → ∞. Thus, there cannot exist any universal
constant C2q such that∫ 1

0
|P(1/2+ i t)|2q dt 6 C2q lim

T→∞

1
2T

∫ T

−T
|P(i t)|2q dt

for all Dirichlet polynomials P(s), as the Dirichlet polynomials P(s) =
∑

n6x
1
ns

for growing x provide a sequence of counterexamples.
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The proofs of the theorems divide into two parts, which we try to explain now.
There are technical differences between the Steinhaus and Rademacher cases,
but for 0 6 q 6 1, most of the behaviour and key proof ideas are identical; so
we confine this introductory discussion to the Steinhaus case.

The key number theoretic tool for studying multiplicative functions is complex
analysis of the corresponding Euler products and Dirichlet series,

F(s) =
∏
p6x

(
1−

f (p)
ps

)−1

=

∞∑
n=1,

p|n⇒p6x

f (n)
ns

.

This tool is particularly appealing for random multiplicative f (n) because in
the Euler product, the different factors (1 − f (p)

ps )
−1 are independent, whereas

in the sum
∑

n6x f (n), the contributions from the underlying independent f (p)
are entangled with one another in a highly nontrivial way. Thus, the work of
Halász [9] and Harper [10] on almost sure lower bounds for

∑
n6x f (n) relied

on a connection with lower bounds for the Euler product, and the work of
Halász and of Lau, Tenenbaum and Wu [18] on upper bounds can also partially
be understood in that way, though it is not presented like that. But passing
directly from

∑
n6x f (n) to F(s), for example, using Perron’s formula, wastes

logarithmic factors that would be fatal when trying to prove our theorems. Thus,
the first stage of our proofs is to pass from E|

∑
n6x f (n)|2q to a corresponding

expectation involving F(s) in an efficient way. Having done this, the second
stage is to analyse the expectation involving F(s).

More precisely, we first show (very roughly speaking) that

E

∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣
2q

≈ xqE
(

1
log x

∫ 1/2

−1/2
|F(1/2+ i t)|2 dt

)q

. (1)

This is done in a few steps. We show that it suffices to prove a comparable
statement for quantities like E|

∑
n6x,P(n)>

√
x f (n)|2q , where P(n) denotes the

largest prime factor of n. (For the lower bound, this is literally true since
if
∑

n6x,P(n)>
√

x f (n) is large, then with positive conditional probability, the
complete sum will also be large. For the upper bound, one splits the sum into
several pieces depending on the size of P(n), on various ranges, and gives a
separate but similarly shaped upper bound for the expectation of each piece.)
The advantage of these sums is that, by multiplicativity, we can write∑

n6x,P(n)>
√

x

f (n) =
∑

√
x<p6x prime

f (p)
∑

m6x/p

f (m),

and importantly since x/p 6
√

x , the inner sums are independent of
the outer random variables ( f (p))√x<p6x . Now we might expect a sum
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Low moments of random multiplicative functions 7

of independent f (p) weighted by the ‘coefficients’
∑

m6x/p f (m) to
behave, very roughly speaking, like a Gaussian with mean 0 and variance∑
√

x<p6x prime |
∑

m6x/p f (m)|2. If this were the case, we would have

E

∣∣∣∣∣∣
∑

n6x,P(n)>
√

x

f (n)

∣∣∣∣∣∣
2q

≈ E

 ∑
√

x<p6x prime

∣∣∣∣∣∣
∑

m6x/p

f (m)

∣∣∣∣∣∣
2q

,

and this statement follows rigorously from Khintchine’s inequality or, for the
upper bound on our range of q , a suitable application of Hölder’s inequality. Now
we have passed from examining E|

∑
n6x f (n)|2q at a single point x to examining

the average behaviour of sums of f (n) up to various points x/p. Since primes
p are quite well distributed, one can work to replace the sum over primes by a
corresponding integral, and after changing variables, reduce to studying

xq

logq x
E

∫ √x

1

∣∣∣∣∣∑
m6z

f (m)

∣∣∣∣∣
2

dz
z2

q

.

Finally, a version of Parseval’s identity applied to this integral brings us to (1).
As noted above, the foregoing argument has various antecedents that we

should mention. In the work of Harper, Nikeghbali and Radziwiłł [13] on lower
bounds for E|

∑
n6x f (n)|, one follows the same steps as far as the application of

Khintchine’s inequality (although only for the lower bound and for q = 1/2) but
then establishes a connection with F(s) in a different and less efficient way. In
the work of Halász [9] and of Lau, Tenenbaum and Wu [18] on almost sure upper
bounds, one also pulls out the value of f on large primes and ends up dealing
with integral averages of |

∑
n6x f (n)|2, although these arise in a different way

because from the beginning of their problem, one is averaging over a sequence
of x values. Those authors never apply Parseval’s identity, which could easily be
done for the integral expressions they arrive at but would not in itself improve
their results.

Now we try to explain our approach to analysing

xqE
(

1
log x

∫ 1/2

−1/2
|F(1/2+ i t)|2 dt

)q

.

To set the scene, we note that, by Hölder’s inequality,

xqE
(

1
log x

∫ 1/2

−1/2
|F(1/2+ i t)|2 dt

)q

6 xq

(
1

log x

∫ 1/2

−1/2
E|F(1/2+ i t)|2 dt

)q

∀ 0 6 q 6 1.
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A standard calculation shows E|F(1/2+i t)|2 � log x (see (2)), and inserting this
yields the trivial upper bound E|

∑
n6x f (n)|2q

� xq . The major contribution
to this expected size of |F(1/2 + i t)|2 comes from the fairly rare event that
|log|F(1/2+ i t)| − log log x | 6

√
log log x , but if integrating over [−1/2, 1/2]

roughly corresponded to taking log x independent samples of |F(1/2 + i t)|
(because F(s) varies with s on a scale of 1/ log x), one might indeed typically
find a few such values of log |F(1/2 + i t)| with |t | 6 1/2. (This discussion of
E|F(1/2+ i t)|2 is similar to the analysis of the second moment of the Riemann
zeta function and the values of zeta that make the major contribution to it. See
the introduction to Soundararajan’s paper [29], for example.) So the essence of
Theorems 1 and 2 is that, when looking at E( 1

log x

∫ 1/2
−1/2 |F(1/2 + i t)|2 dt)q with

q a little smaller than 1, integrating over [−1/2, 1/2] does not correspond to
taking log x independent samples of |F(1/2 + i t)|, so the above application of
Hölder’s inequality is wasteful.

It turns out that 1
log x

∫ 1/2
−1/2 |F(1/2 + i t)|2 dt is fairly close to (the total mass

of a truncation of) a probabilistic object called critical multiplicative chaos, and
our analysis of it draws on ideas from that field. We shall sketch these ideas now
without assuming familiarity with the area and then remark on connections with
the literature.

There is some dependence between the random products (|F(1/2+i t)|2)|t |61/2

since if t changes slightly, then pi t
= ei t log p only changes slightly. The largest

primes involved in F(1/2 + i t) have size p ≈ x , which is why we expect the
product to change little when t varies by less than 1/ log x . But many primes in
the product are much smaller than x , so at least the subproduct over smaller
primes will remain unchanged over wider t intervals. In fact, to understand
(|F(1/2 + i t)|2)|t |61/2 properly one should think of the product consisting of
log log x blocks or ‘scales’ of primes of comparable logarithmic size, each of
which remains constant on a different t scale.

In view of these nontrivial dependencies amongst the (|F(1/2 + i t)|2)|t |61/2,
there are certain events involving the size of different subproducts of |F(1/2 +
i t)|2 that occur with probability close to 1 but would not do so if the products
behaved independently. Now if G is some event and if we let q ′ = (1+ q)/2, we

have that E
(

1
log x

∫ 1/2
−1/2 |F(1/2+ i t)|2 dt

)q
is

= E
(

1G
1

log x

∫ 1/2

−1/2
|F(1/2+ i t)|2

)q

+E
(

1G fails
1

log x

∫ 1/2

−1/2
|F(1/2+ i t)|2

)q
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6 E

(
1G

1
log x

∫ 1/2

−1/2

∣∣∣∣F (1
2
+ i t

)∣∣∣∣2
)q

+P(G fails)
q′−q

q′

E

(
1

log x

∫ 1/2

−1/2

∣∣∣∣F (1
2
+ i t

)∣∣∣∣2
)q ′


q
q′

,

the second line following by Hölder’s inequality. We may now apply Hölder’s
inequality to the first term, as above, but hope to obtain additional savings
because of the indicator function 1G . In the second term, the prefactor

P(G fails)
q′−q

q′ = P(G fails)
1−q
2q′ can supply a saving if the event G is sufficiently

probable, in particular, if it occurs with probability larger than 1− e−K/(1−q), for
some large K .

It turns out that if G is the event, not just that log |F(1/2+ i t)| 6 log log x +
K/(1 − q), but that all subproducts of F(1/2 + i t) obey a comparable bound
(with log log x replaced by the number of ‘scales’ involved in the subproduct),
then the indicator function 1G produces a saving factor of the shape K

(1−q)
√

log log x
.

Meanwhile, G does occur with probability larger than 1 − e−K/(1−q). This is
essentially the argument that leads to the upper bounds in Theorems 1 and 2.
To make things work, one needs to develop results that allow the estimation
of E1G|F(1/2 + i t)|2 (an analogue of Girsanov’s theorem from the theory of
Gaussian random variables). Some technical work is also required to allow the
estimation of P(G fails) (a discretization argument) and to handle the term
E( 1

log x

∫ 1/2
−1/2 |F(

1
2 + i t)|2)q

′ that emerged from Hölder’s inequality (we use an
iterative procedure, an alternative would be to consider a sequence of different
K values).

The lower bounds in Theorems 1 and 2 are proved by comparing
E 1

log x

∫
L |F(1/2 + i t)|2 dt with E( 1

log x

∫
L |F(1/2 + i t)|2 dt)2, where

L ⊆ [−1/2, 1/2] is a certain random subset chosen so that this second
moment remains roughly the same size as the square of the first moment.
In fact, we essentially choose L as the set of points at which log |F(1/2+ i t)| 6
log log x + 1/(1 − q), and all subproducts of F(1/2 + i t) obey a comparable
bound. The idea here is that when one expands out the second moment, one
needs to estimate terms E|F(1/2+ i t1)|

2
|F(1/2+ i t2)|

2, and, ideally, one wants
the answer to be approximately the product E|F(1/2 + i t1)|

2E|F(1/2 + i t2)|
2.

One cannot achieve exactly this when t1 − t2 is small because of dependencies
between terms in the two products, but by restricting t1, t2 to the set L, one can
ensure E|F(1/2+ i t1)|

2
|F(1/2+ i t2)|

2 only blows up slowly as t1− t2 becomes
small, so one retains control when integrating over t1, t2. The reader might think
of this calculation as the underlying motivation for our choice of G in our upper
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bound proof, as well. The lower bound proofs are conceptually easier than the
upper bounds since we do not need any discretization argument and do not
need to control the contribution from points outside the nice set L. However,
on the probabilistic side, we require a two-dimensional Girsanov-type theorem
allowing us to estimate E1A|F(1/2 + i t1)|

2
|F(1/2 + i t2)|

2 for certain events A
related to the definition of L, and it requires quite a lot of work to set this up
carefully.

Now we make a few remarks about multiplicative chaos: see the survey of
Rhodes and Vargas [23] for more about the field. The theory begins with a
random function h(·) on some space, say the interval [−1/2, 1/2]. We construct
a family of random measures on that space, depending on a parameter γ > 0,
by defining the measure of a subset to be the integral of eγ h(·) over the subset. In
particular, the total measure

∫ 1/2
−1/2 eγ h(t) dt is a random variable. This description

is inaccurate in several respects, notably that h(·) is actually taken as a random
generalized function, and one ‘truncates’ or ‘regularizes’ h on different scales
(depending on a parameter ε, say) to form a genuine random function hε and
then studies the limit behaviour of the random measure as ε → 0. Significant
probabilistic attention is devoted to showing that, for suitable h(·), different
regularization procedures result in the same limit behaviour. The most studied
situation is Gaussian multiplicative chaos, where h(t) is a mean zero Gaussian
generalized function, with (regularized) variance approximately the same for
each t . To obtain a nontrivial behaviour, one needs to rescale eγ h(t) at each t by
its expected value e(1/2)γ

2Eh(t)2 . One also assumes that the collection of h(t), or in
fact their regularizations, has a certain logarithmic kind of covariance structure.

Let us compare with our situation, where we are interested in
∫ 1/2
−1/2 |F(1/2 +

i t)|2 dt =
∫ 1/2
−1/2 e2 log |F(1/2+i t)| dt . We can think of the length x of the random

product F(1/2+ i t) as a regularization parameter, but we are not here interested
in constructing or analysing limit objects, so much as obtaining moment
information about

∫ 1/2
−1/2 e2 log |F(1/2+i t)| dt uniformly in x . Our random function

log |F(1/2+ i t)| =
∑

p6x log |1− f (p)
p1/2+i t |

−1 is not Gaussian but is approximately
Gaussian as it is a sum of many independent components. When we rescale∫ 1/2
−1/2 |F(1/2 + i t)|2 dt by dividing by log x � E|F(1/2 + i t)|2, this directly

corresponds to rescaling eγ h(t) by e(1/2)γ
2Eh(t)2 . It also turns out that the random

variables log |F(1/2+ i t)| have a logarithmic covariance structure. This is why
ideas from the theory of multiplicative chaos are relevant to

∫ 1/2
−1/2 |F(1/2 +

i t)|2 dt .
Now the behaviour of Gaussian multiplicative chaos changes as γ increases.

There is a critical value γc (depending, for example, on the dimension
of the space one is working in and on the variance of h(t)) such that
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Low moments of random multiplicative functions 11∫
eγ hε (t)−(1/2)γ 2Ehε (t)2 converges to a nontrivial limit measure as ε → 0 when

γ < γc, but converges to the zero measure when γ = γc. It is natural to
expect such a transition because as γ increases, the dominant contribution
to
∫

eγ hε (t)−(1/2)γ 2Ehε (t)2 comes from larger values of hε(t), so when γ is large
enough, one expects with high probability never to find such values on the whole
range of integration. Number theory readers may again recognize a parallel with
the analysis of moments of the Riemann zeta function. Critical multiplicative
chaos, where γ = γc, is more difficult to analyse than the subcritical case, but
recently Duplantier, Rhodes, Sheffield and Vargas [6] showed in some generality
that if one replaces

∫
eγchε (t)−(1/2)γ 2

c Ehε (t)2 by
∫ √

Ehε(t)2eγchε (t)−(1/2)γ 2
c Ehε (t)2 , this

converges to a nonzero limit measure. In our case, the exponent 2 of |F(1/2+i t)|
corresponds to critical γ (see our earlier discussion about the main contribution
to our integral coming when log |F(1/2 + i t)| ≈ log log x), and we have
E(log |F(1/2 + i t)|)2 � log log x , so the factor

√
Ehε(t)2 directly suggests the

factor
√

log log x in the denominator in Theorems 1 and 2, for q away from 1.
We end with specific connections between our problem and the multiplicative

chaos literature. The most relevant work is a preprint of Saksman and Webb [27],
see also [28], showing a random model for log ζ(1/2+ i t) is well approximated
by a perturbation of a Gaussian random field, so one can apply many results
about Gaussian multiplicative chaos to the multiplicative chaos arising from
that random model as well. The model for log ζ(1/2 + i t) is very close to
log |F(1/2 + i t)| in the Steinhaus case, so it is possible that combining (the
rigorous version of) (1), Saksman and Webb’s approximation and the results of
Duplantier, Rhodes, Sheffield and Vargas [6] about moments of the total measure
of critical Gaussian chaos (which ultimately stem from Kahane’s convexity
inequality and results of Hu and Shi [17] for branching random walk), one
could get another proof of Theorem 1 for q bounded away from 1. It is not
clear whether one could prove the full uniform version of Theorem 1, where
q = q(x) may be close to 1, in this way. In any case, our proofs here are
self-contained. One inspiration for our arguments is a beautiful short paper of
Berestycki [3], proving convergence results for subcritical Gaussian chaos using
Girsanov’s theorem and restricting attention to high probability good events. We
are in the more delicate critical case, in a non-Gaussian setting, and trying to
prove different kinds of results, but several features carry over.

We should also mention the connection between multiplicative chaos and the
maxima of logarithmically correlated random processes, corresponding to h(t)
in our earlier discussion. This interaction is well known to workers in the area
(see Section 6.4 of Rhodes and Vargas [23], for example), and the arguments of
Berestycki [3] build on approaches to analysing the maxima of such processes.
Roughly speaking, one could perhaps say that multiplicative chaos is a bit easier
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to analyse (because exponentiating boosts the role of very large values and
somewhat dilutes the interaction at nearby t), but, on the other hand, one is
interested in proving sharper results about multiplicative chaos (for example,
bounds that are sharp up to constants). See the paper of Arguin, Belius and
Harper [1] for results on the maximum of a random model for log ζ(1/2 + i t),
which again is close to log |F(1/2+ i t)| in the Steinhaus case.

1.2. Some corollaries. The following is an immediate corollary of our
theorems.

COROLLARY 1. If f (n) is a Steinhaus or Rademacher random multiplicative
function, then ∑

n6x f (n)√
E|
∑

n6x f (n)|2
p
→ 0 as x →∞,

where
p
→ denotes convergence in probability.

Proof of Corollary 1. As noted earlier, we have
√
E|
∑

n6x f (n)|2 �
√

x ,

whereas we have E|
∑

n6x f (n)| �
√

x/(log log x)1/4 by Theorem 1 in the

Steinhaus case or Theorem 2 in the Rademacher case. Thus,
∑

n6x f (n)
√

E|
∑

n6x f (n)|2

converges to 0 in L1, which is a stronger statement than convergence to 0 in
probability.

Corollary 1 resolves the question of the limiting distribution of
∑

n6x f (n)
√

E|
∑

n6x f (n)|2
,

which previously has generated quite a lot of discussion, exploration of the
behaviour when one conditions on f (p) on small primes p, and numerical
simulations (see the papers of Chatterjee and Soundararajan [5] and Hough [16],
for example), as well as Harper’s [11] proof that the distribution is not
N (0, 1) in the Rademacher case. One now has an obvious and interesting
follow-up question, namely what is the distribution of the properly renormalized
sum

∑
n6x f (n)

√
x/(log log x)1/4 ? Our arguments here may be a reasonable starting point

for investigating this since they show that matters substantially reduce to
understanding the distribution of 1

log x

∫ 1/2
−1/2 |F(1/2 + i t)|2 dt , which we can

try to access by understanding the distribution of the total mass of critical
multiplicative chaos.
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By Chebychev’s inequality, we immediately have

P

(∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣ > λ
√

x

)
6

E|
∑

n6x f (n)|2

(λ
√

x)2
6

1
λ2
∀ λ > 0.

It is natural to want to improve this, and one might even hope to obtain
exponential decay for large λ by analogy with large deviation estimates for
sums of independent random variables. However, as far as the author is aware,
no improved estimate whatsoever is known for fixed x and moderately large λ
(for λ larger than a suitable power of log x , one gets a better bound by looking,
for example, at the fourth moment E|

∑
n6x f (n)|4). In the following corollary,

we obtain a small improvement of the Chebychev upper bound. We also show,
perhaps surprisingly, that this is close to best possible on a wide range of λ.

COROLLARY 2. Let x be large and let f (n) be a Steinhaus or Rademacher
random multiplicative function. For all λ > 2, we have

P

(∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣ > λ

√
x

(log log x)1/4

)
�

min{log λ,
√

log log x}
λ2

.

In addition, for all 2 6 λ 6 e
√

log log x , we have

P

(∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣ > λ

√
x

(log log x)1/4

)
�

1
λ2(log log x)O(1)

.

The upper bound here is a rather direct corollary of Theorems 1 and 2, and we
shall prove it immediately.

Proof of Corollary 2, upper bound. If λ > e
√

log log x , then the result follows
from Chebychev’s inequality applied to E|

∑
n6x f (n)|2.

For smaller λ, for any q 6 1, we have

P

(∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣ > λ

√
x

(log log x)1/4

)
6

E|
∑

n6x f (n)|2q

(λ
√

x
(log log x)1/4 )

2q

�
1
λ2q

(log log x)q/2

(1+ (1− q)
√

log log x)q
.

If we set q = 1− δ with 0 6 δ 6 1, then the right-hand side is

1
λ2

λ2δ(log log x)q/2

(1+ δ
√

log log x)q
6

1
λ2

λ2δ

δ
=

log λ
λ2

e2δ log λ

δ log λ
.

Choosing δ = 1
2 log λ yields the claimed upper bound.
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Proving the lower bound in Corollary 2 requires some additional ideas, so its
proof is deferred to Section 6. Very roughly speaking, since the value of |F(1/2+
i t)|2 does not change much on t intervals of length 1/ log x and since we have
something like |

∑
n6x f (n)| ≈

√
x( 1

log x

∫ 1/2
−1/2 |F(1/2+ i t)|2 dt)1/2, it will suffice

to prove that

P
(

max
|t |61/2

|F(1/2+ i t)|2 > λ2 log2 x
)

�
1

λ2(log log x)O(1)
∀ 2 6 λ 6 e

√
log log x .

This can be done by approximating the random variables (|F(1/2+ i t)|2)|t |61/2

by the exponentials of certain correlated Gaussian random variables and
applying known results about the maximum of such Gaussians.

It seems another interesting open question to determine the exact magnitude
of the probabilities in Corollary 2. They may be � 1/λ2 for any fixed λ

since Barral, Kupiainen, Nikula, Saksman and Webb [2] have shown that the
limiting total measure of critical multiplicative chaos has upper tails of the shape
� 1/λ, which would suggest tails � 1/λ2 here because of the power 1/2 in
the approximation of |

∑
n6x f (n)| above. On a wide range of λ > e

√
log log x ,

the proof of the lower bound in Corollary 2 still yields a result, of the form
e−(log λ)2/ log log x/(λ2(log log x)O(1)). This order of magnitude may be essentially
the correct answer for λ > e

√
log log x . It is unclear what one should expect as the

correct answer between these ranges.

1.3. Organizational remarks. In Section 2, we make rigorous the statement
that E|

∑
n6x f (n)|2q

≈ xqE( 1
log x

∫ 1/2
−1/2 |F(1/2+i t)|2 dt)q . In Section 3, which is

the longest section, we obtain various probabilistic estimates for E|F(1/2+ i t)|2

and for E1A|F(1/2 + i t)|2, for certain kinds of events A. Section 4 contains
the fairly quick deduction of the upper bound parts of Theorems 1 and 2.
Section 5 includes some further probabilistic estimates, generalizing the work
from Section 3 to two dimensions, and then the deduction of the lower bound
parts of Theorems 1 and 2. Finally, Section 6 proves the lower bound from
Corollary 2, and the appendix gives proofs of two probability results on Gaussian
random walks, deferred from Section 3.

Note that it will suffice to prove Theorems 1 and 2 for 2/3 6 q 6 1. For
the upper bounds, if we know that E|

∑
n6x f (n)|4/3 � x2/3

(log log x)1/3 (the result
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with q = 2/3), then Hölder’s inequality yields

E

∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣
2q

6

E

∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣
4/3
3q/2

�
xq

(log log x)q/2
∀ 0 6 q 6 2/3,

as desired. For the lower bounds, if we know that E|
∑

n6x f (n)|4/3 � x2/3

(log log x)1/3

and that E|
∑

n6x f (n)|3/2 � x3/4

(log log x)3/8 , then, by Hölder’s inequality,

x2/3

(log log x)1/3
� E

∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣
4/3

= E

∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣
q/3

3/2−2q
∣∣∣∣∣∑

n6x

f (n)

∣∣∣∣∣
2−3q

3/2−2q

6

E

∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣
2q
 1

6(3/2−2q)
E

∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣
3/2


4−6q
3(3/2−2q)

�

E

∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣
2q
 1

6(3/2−2q) (
x√

log log x

) 2−3q
3−4q

for all 0 6 q 6 2/3, which implies that E|
∑

n6x f (n)|2q
� ( x√

log log x
)q .

Restricting to 2/3 6 q 6 1 will be a useful simplification in our main arguments,
making various series involving q converge and giving us access to Minkowski’s
inequality in certain places.

We finish with a remark on references. Less standard results that we use are
stated explicitly as results in the text, and we also try to give references in line for
most of the standard material in number theory and probability to help readers
who are less familiar with one area or the other. The books of Gut [8] and of
Montgomery and Vaughan [20] may be consulted as excellent general references
for probabilistic and number theoretic background.

2. The reduction to Euler products

In this section, we shall prove four propositions that make precise and rigorous
the assertion in (1), that E|

∑
n6x f (n)|2q may be bounded by studying integrals

of Euler products.
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2.1. Some lemmas. We begin by recording two fairly straightforward
lemmas we need.

NUMBER THEORY RESULT 1 (see Lemma 2.1 of Lau, Tenenbaum and Wu [18]).
Let 0 < δ < 1, let m > 1 and suppose that max{3, 2m} 6 y 6 z 6 y10 and that
u, v satisfy 1 < u 6 v(1 − y−δ). As usual, let Ω(d) denote the total number of
prime factors of d (counted with multiplicity). Then

∑
u6d6v,

p|d⇒y6p6z

mΩ(d)
�δ

(v − u)m
log y

∏
y6p6z

(
1−

m
p

)−1

.

In particular, for any large x and any k 6 log log x − 5, we have∑
d6x,

p|d⇒xe−(k+1)
6p6xe−k

1� 2−ek x
log x

.

The first statement here is a slight generalization of Lemma 2.1 of Lau,
Tenenbaum and Wu [18] (see also Lemma 3 of Halász [9]), in which the sum
over d was restricted to squarefree numbers. The proof is short, so we give it in
full.

Proof of Number Theory Result 1. Since u > 1, each d in the sum has at least
one prime factor, say q , and this must lie in the interval [y, z]. So we have∑

u6d6v,
p|d⇒y6p6z

mΩ(d) 6 m
∑

y6q6z,
q prime

∑
u/q6d6v/q,
p|d⇒y6p6z

mΩ(d) 6 m
∑

u/z6d6v/y,
p|d⇒y6p6z

mΩ(d)
∑

u/d6q6v/d,
q prime

1.

Now (v − u)/d > y(v − u)/v > y1−δ here, whilst u/d 6 z 6 y10, so the
Brun–Titchmarsh upper bound for primes in intervals is available (see, for
example, Corollary 3.4 of Montgomery and Vaughan [20] or Theorem 3.9 of
Montgomery and Vaughan [20] for a more general statement) and implies that∑

u/d6q6v/d,
q prime

1 �δ (v − u)/(d log y). The first part of the result now follows on

inserting this estimate and noting that

∑
u/z6d6v/y,
p|d⇒y6p6z

mΩ(d)

d
6

∑
d:

p|d⇒y6p6z

mΩ(d)

d
=

∏
y6p6z

(
1−

m
p

)−1

,

the product certainly being well defined in view of our assumption that y > 2m.
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To deduce the second part of the result, we note that∑
d6x,

p|d⇒xe−(k+1)
6p6xe−k

1 6
√

x + 5−ek/2
∑

√
x6d6x,

p|d⇒xe−(k+1)
6p6xe−k

5Ω(d)

since a number d >
√

x with all its prime factors smaller than x e−k must have at
least ek/2 such factors (counted with multiplicity). We can apply the first part of
the result with δ = 1/2, say, and deduce that

5−ek/2
∑

√
x6d6x,

p|d⇒xe−(k+1)
6p6xe−k

5Ω(d) � 5−ek/2 x
log(x e−(k+1)

)

∏
xe−(k+1)6p6xe−k

(
1−

5
p

)−1

� 5−ek/2ek x
log x

� 2−ek x
log x

.

Here the Mertens estimate (see, for example, Theorem 2.7 of Montgomery and
Vaughan [20]) was used to obtain that the product over primes is �1. Since
2−ek x

log x is always larger than
√

x on our range of k, the result follows.

We will need the following version of Parseval’s identity for Dirichlet series.

HARMONIC ANALYSIS RESULT 1 (see (5.26) in Section 5.1 of Montgomery and
Vaughan [20]). Let (an)

∞

n=1 be any sequence of complex numbers, let A(s) :=∑
∞

n=1
an
ns denote the corresponding Dirichlet series and let σc denote its abscissa

of convergence. Then for any σ > max{0, σc}, we have∫
∞

0

|
∑

n6x an|
2

x1+2σ
dx =

1
2π

∫
∞

−∞

∣∣∣∣ A(σ + i t)
σ + i t

∣∣∣∣2 dt.

2.2. Upper bounds: statement of the propositions. We will need a little
notation. Given a random multiplicative function f (n) (either Steinhaus or
Rademacher, depending on the context) and an integer 0 6 k 6 log log x , let
Fk denote the partial Euler product of f (n) over x e−(k+1)-smooth numbers. Thus,
for all complex s with <(s) > 0, we have

Fk(s) =
∏

p6xe−(k+1)

(
1−

f (p)
ps

)−1

=

∞∑
n=1,

n is xe−(k+1)
smooth

f (n)
ns
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in the Steinhaus case, and

Fk(s) =
∏

p6xe−(k+1)

(
1+

f (p)
ps

)
=

∞∑
n=1,

n is xe−(k+1)
smooth

f (n)
ns

in the Rademacher case (the product taking a different form because f (n) is only
supported on squarefree numbers in that case).

PROPOSITION 1. Let f (n) be a Steinhaus random multiplicative function, let x
be large and set K := blog log log xc. Uniformly for all 2/3 6 q 6 1, we have∥∥∥∥∥∑

n6x

f (n)

∥∥∥∥∥
2q

�

√
x

log x

∑
06k6K

∥∥∥∥∥
∫ 1/2

−1/2

∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 dt

∥∥∥∥∥
1/2

q

+

√
x

log x
.

It is perhaps worth emphasizing that ‖ · ‖r := (E| · |r )1/r is a genuine norm
when r > 1 but not for smaller r . Thus, ‖ · ‖2q is a genuine norm on our range
of q (so we may apply Minkowski’s inequality to it as we shall in the proof), but
‖ · ‖q is not and Minkowski’s inequality is not applicable.

PROPOSITION 2. Let f (n) be a Rademacher random multiplicative function, let
x be large and set K := blog log log xc. Uniformly for all 2/3 6 q 6 1, we have∥∥∥∥∥∑

n6x

f (n)

∥∥∥∥∥
2q

�

√
x

log x

∑
06k6K

max
N∈Z

1
(|N | + 1)1/8

×

∥∥∥∥∥
∫ N+1/2

N−1/2

∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 dt

∥∥∥∥∥
1/2

q

+

√
x

log x
.

In these bounds we expect, and it will turn out to be the case, that the main
contribution comes from small k and small N . In the Steinhaus case, for any fixed
t ∈ R, the distribution of the sequence ( f (n)ni t) is the same as the distribution
of ( f (n)), which is why one does not need to deal with translates by N in
the Steinhaus case. This is one of a few differences between Rademacher and
Steinhaus random multiplicative functions that will recur a number of times in
our analysis.
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2.3. Lower bounds: statement of the propositions. For our work on lower
bounds, we again connect the size of ‖

∑
n6x f (n)‖2q with a certain integral

average and thence with random Euler products. Let F denote the partial Euler
product of f (n), either Steinhaus or Rademacher, over x-smooth numbers.
(Thus, F = F−1 if we slightly abuse our earlier notation).

PROPOSITION 3. There exists a large absolute constant C > 0 such that the
following is true. If f (n) is a Steinhaus random multiplicative function and x is
large, then uniformly for all 2/3 6 q 6 1, we have∥∥∥∥∥∑

n6x

f (n)

∥∥∥∥∥
2q

�

√
x

log x

∥∥∥∥∥∥
∫ √x

1

∣∣∣∣∣∑
m6z

f (m)

∣∣∣∣∣
2

dz
z2

∥∥∥∥∥∥
1/2

q

− C
√

x
log x

.

In particular, for any large quantity V , we have that ‖
∑

n6x f (n)‖2q is

�

√
x

log x

∥∥∥∥∥
∫ 1/2

−1/2

∣∣∣∣F (1/2+
4V

log x
+ i t

)∣∣∣∣2 dt

∥∥∥∥∥
1/2

q

−
C
eV

∥∥∥∥∥
∫ 1/2

−1/2

∣∣∣∣F (1/2+
2V

log x
+ i t

)∣∣∣∣2 dt

∥∥∥∥∥
1/2

q

− C

 .
PROPOSITION 4. If f (n) is a Rademacher random multiplicative function, the
first bound in Proposition 3 continues to hold and the second bound may be
replaced by the statement that∥∥∥∥∥∑

n6x

f (n)

∥∥∥∥∥
2q

�

√
x

log x

∥∥∥∥∥
∫ 1/2

−1/2

∣∣∣∣F (1/2+
4V

log x
+ i t

)∣∣∣∣2 dt

∥∥∥∥∥
1/2

q

−
C
eV

max
N∈Z

1
(|N |+1)1/8

∥∥∥∥∥
∫ N+1/2

N−1/2

∣∣∣∣F (1/2+
2V

log x
+ i t

)∣∣∣∣2 dt

∥∥∥∥∥
1/2

q

− C

 .
When we come to apply these propositions, we will choose V to be a

sufficiently large fixed constant that, because of the factor C/eV , the second
subtracted Euler product integral is negligible compared with the first.
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2.4. Proof of Propositions 1 and 2. We begin with Proposition 1. Let
P(n) denote the largest prime factor of n and let Ψ (x, y) := #{n 6 x :
n is y smooth} = #{n 6 x : P(n) 6 y}. Then by Minkowski’s inequality, for all
2/3 6 q 6 1, we have∥∥∥∥∑

n6x

f (n)
∥∥∥∥

2q

6
∑

06k6K

∥∥∥∥ ∑
n6x,

xe−(k+1)
<P(n)6xe−k

f (n)
∥∥∥∥

2q

+

∥∥∥∥ ∑
n6x,

P(n)6xe−(K+1)

f (n)
∥∥∥∥

2q

.

Furthermore, by Hölder’s inequality and a mean square calculation, we have∥∥∥∥ ∑
n6x,

P(n)6xe−(K+1)

f (n)
∥∥∥∥

2q

6

∥∥∥∥ ∑
n6x,

P(n)6xe−(K+1)

f (n)
∥∥∥∥

2

= Ψ (x, x e−(K+1)
)1/2,

and recalling that K := blog log log xc as well as standard estimates for smooth
numbers (see Theorem 7.6 of Montgomery and Vaughan [20], for example), the
above is 6 Ψ (x, x1/ log log x)1/2�

√
x(log x)−c log log log x . This contribution is more

than acceptable.
If we let E(k) denote expectation conditional on the values ( f (p))p6xe−(k+1) and

then use Hölder’s inequality and a conditional mean square calculation, we see
that

∑
06k6K ‖

∑
n6x,

xe−(k+1)
<P(n)6xe−k

f (n)‖2q is

=

∑
06k6K

∥∥∥∥ ∑
1<m6x,

p|m⇒xe−(k+1)
<p6xe−k

f (m)
∑

n6x/m,

n is xe−(k+1)
-smooth

f (n)
∥∥∥∥

2q

=

∑
06k6K

(
EE(k)

∣∣∣∣ ∑
1<m6x,

p|m⇒xe−(k+1)
<p6xe−k

f (m)
∑

n6x/m,

n is xe−(k+1)
-smooth

f (n)
∣∣∣∣2q)1/2q

6
∑

06k6K

(
E
(
E(k)

∣∣∣∣ ∑
1<m6x,

p|m⇒xe−(k+1)
<p6xe−k

f (m)
∑

n6x/m,

n is xe−(k+1)
-smooth

f (n)
∣∣∣∣2)q)1/2q

=

∑
06k6K

∥∥∥∥ ∑
1<m6x,

p|m⇒xe−(k+1)
<p6xe−k

∣∣∣∣ ∑
n6x/m,

n is xe−(k+1)
-smooth

f (n)
∣∣∣∣2∥∥∥∥1/2

q

.
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To proceed further, we want to replace |
∑

n6x/m,

n is xe−(k+1)
-smooth

f (n)|2 in the above

by a smoothed version. Set X = e
√

log x , say, and note that (uniformly for any
2/3 6 q 6 1 and any 0 6 k 6 K) we have

E
( ∑

1<m6x,

p|m⇒xe−(k+1)
<p6xe−k

∣∣∣∣ ∑
n6x/m,

n is xe−(k+1)
-smooth

f (n)
∣∣∣∣2)q

� E
( ∑

1<m6x,

p|m⇒xe−(k+1)
<p6xe−k

X
m

∫ m(1+1/X)

m

∣∣∣∣ ∑
n6x/t,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2 dt

)q

+

+E
( ∑

1<m6x,

p|m⇒xe−(k+1)
<p6xe−k

X
m

∫ m(1+1/X)

m

∣∣∣∣ ∑
x/t<n6x/m,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2 dt

)q

.

Using Hölder’s inequality and a mean square calculation, the second term is at
most ( ∑

1<m6x,

p|m⇒xe−(k+1)
<p6xe−k

X
m

∫ m(1+1/X)

m
E
∣∣∣∣ ∑

x/t<n6x/m,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2 dt

)q

6

( ∑
1<m6x,

p|m⇒xe−(k+1)
<p6xe−k

(
1+

x
m X

))q

.

In particular, using the second part of Number Theory Result 1, we obtain that
the sum ∑

1<m6x,

p|m⇒xe−(k+1)
<p6xe−k

1� 2−ek x
log x

,

and we have ∑
m6x

x
m X
�

x log x
X
� 2−ek x

log x

on our range 0 6 k 6 K as well. So taking 2qth roots and summing over
0 6 k 6 K leads to an acceptable overall contribution �

√
x/ log x in

Proposition 1.
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Meanwhile, by swapping the order of the sum and integral, we see the first
term in the above is

E
(∫ x

xe−(k+1)

∣∣∣∣ ∑
n6x/t,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2 ∑

t/(1+1/X)6m6t,

p|m⇒xe−(k+1)
<p6xe−k

X
m

dt
)q

,

and a standard sieve estimate applied to the sum over m (sieving out by all primes
in [2, t1/10

]\(x e−(k+1)
, x e−k
], say; see, for example, Theorem 3.6 of Montgomery

and Vaughan [20] for a suitable sieve result) shows that this has order at most

E
(∫ x

xe−(k+1)

∣∣∣∣ ∑
n6x/t,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2 dt

log t

)q

= xqE
(∫ x1−e−(k+1)

1

∣∣∣∣ ∑
n6z,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2 dz

z2 log( x
z )

)q

.

To obtain the second expression here, we made a substitution z = x/t in the
integral.

To obtain a satisfactory dependence on k in our final estimations,
we now note that if z 6

√
x , we have log(x/z) � log x , whereas if

√
x < z 6 x1−e−(k+1) , we have log(x/z)� e−k log x . Thus, in any case, we have

log(x/z)� z−2k/ log x log x , so the above is

�
xq

logq x
E
(∫ x1−e−(k+1)

1

∣∣∣∣ ∑
n6z,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2 dz

z2−2k/ log x

)q

.

Finally, recalling that Fk denotes the partial Euler product of f (n) over x e−(k+1)-
smooth numbers and that 2/3 6 q 6 1, we can apply Harmonic Analysis Result 1
to deduce that the expectation above is

6 E

(∫
∞

−∞

|Fk(
1
2 −

k
log x + i t)|2

|1/2− k
log x + i t |2

dt

)q

6
∑
n∈Z

E

(∫ n+1/2

n−1/2

|Fk(
1
2 −

k
log x + i t)|2

|1/2− k
log x + i t |2

dt

)q

�

∑
n∈Z

1
|n|2q + 1

E

(∫ n+1/2

n−1/2

∣∣∣∣Fk

(
1
2
−

k
log x

+ i t
)∣∣∣∣2 dt

)q

.
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In the Steinhaus case, since the law of the random function f (n) is the same as
the law of f (n)ni t for any fixed t ∈ R, we have

E

(∫ n+1/2

n−1/2

∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 dt

)q

= E

(∫ 1/2

−1/2

∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 dt

)q

∀ n.

Proposition 1 now follows on putting everything together.

The proof of Proposition 2, covering the Rademacher case, is extremely
similar to the Steinhaus case. Indeed, the only nontrivial change comes at the
very end, where (since it is no longer the case that the law of the random function
f (n) is the same as the law of f (n)ni t ) we apply the bound

∑
n∈Z

1
|n|2q + 1

E
(∫ n+1/2

n−1/2
|Fk(1/2−

k
log x

+ i t)|2 dt
)q

� max
N∈Z

1
(|N | + 1)1/4

E
(∫ N+1/2

N−1/2
|Fk(1/2−

k
log x

+ i t)|2 dt
)q

.

Proposition 2 follows on inserting this into the argument and putting everything
together and taking 2qth roots.

2.5. Proof of Propositions 3 and 4. Again we let P(n) denote the largest
prime factor of n, and we introduce an auxiliary Rademacher random variable
ε (independent of everything else). Proceeding similarly as in Section 2.2 of
Harper, Nikeghbali and Radziwiłł [13], we find that if 2/3 6 q 6 1, then

E
∣∣∣∣ ∑

n6x,
P(n)>

√
x

f (n)
∣∣∣∣2q

=
1

22q
E
∣∣∣∣ ∑

n6x,
P(n)>

√
x

f (n)+
∑
n6x,

P(n)6
√

x

f (n)+
∑
n6x,

P(n)>
√

x

f (n)−
∑
n6x,

P(n)6
√

x

f (n)
∣∣∣∣2q

6 E
∣∣∣∣ ∑

n6x,
P(n)>

√
x

f (n)+
∑
n6x,

P(n)6
√

x

f (n)
∣∣∣∣2q

+ E
∣∣∣∣ ∑

n6x,
P(n)>

√
x

f (n)−
∑
n6x,

P(n)6
√

x

f (n)
∣∣∣∣2q
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= 2E
∣∣∣∣ε ∑

n6x,
P(n)>

√
x

f (n)+
∑
n6x,

P(n)6
√

x

f (n)
∣∣∣∣2q

= 2E

∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣
2q

since the law of

ε
∑
n6x,

P(n)>
√

x

f (n) = ε
∑
√

x<p6x

f (p)
∑

m6x/p

f (m)

conditional on the values ( f (p))p6
√

x is the same as the law of
∑

n6x,
P(n)>

√
x

f (n).

We can rewrite this as ∥∥∥∥∑
n6x

f (n)
∥∥∥∥

2q

�

∥∥∥∥ ∑
n6x,

P(n)>
√

x

f (n)
∥∥∥∥

2q

.

Now in the decomposition
∑

n6x,
P(n)>

√
x

f (n) =
∑
√

x<p6x f (p)
∑

m6x/p f (m),

the inner sums are determined by the values ( f (p))p6
√

x , which are independent
of the outer random variables ( f (p))√x<p6x . So conditioning on the values
( f (p))p6

√
x determining the inner sums and applying the lower bound part

of Khintchine’s inequality (see, for example, Lemma 3.8.1 of Gut [8] for
the Rademacher case of this, the Steinhaus case may be proved similarly),
it follows that

E
∣∣∣∣ ∑

n6x,
P(n)>

√
x

f (n)
∣∣∣∣2q

� E
( ∑
√

x<p6x

∣∣∣∣ ∑
m6x/p

f (m)
∣∣∣∣2)q

>
1

logq x
E
( ∑
√

x<p6x

log p
∣∣∣∣ ∑
m6x/p

f (m)
∣∣∣∣2)q

.

Next, there comes a smoothing step, similarly as in our work on upper bounds.
Recall that we let X = e

√
log x . It is easy to check that we always have |a+b|2 >

(1/4)|a|2 −min{|b|2, |a/2|2} > 0, say, and therefore

∑
√

x<p6x

log p

∣∣∣∣∣∣
∑

m6x/p

f (m)

∣∣∣∣∣∣
2

=

∑
√

x<p6x

log p
X
p

∫ p(1+1/X)

p

∣∣∣∣∣∣
∑

m6x/p

f (m)

∣∣∣∣∣∣
2

dt

>
1
4

∑
√

x<p6x

log p
X
p

∫ p(1+1/X)

p

∣∣∣∣∣∣
∑

m6x/t

f (m)

∣∣∣∣∣∣
2

dt
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−

∑
√

x<p6x

log p
X
p

×

∫ p(1+1/X)

p
min


∣∣∣∣∣∣

∑
x/t<m6x/p

f (m)

∣∣∣∣∣∣
2

,
1
4

∣∣∣∣∣∣
∑

m6x/t

f (m)

∣∣∣∣∣∣
2 dt.

Thus, when 2/3 6 q 6 1, we get

E

∣∣∣∣∣∣∣∣
∑
n6x,

P(n)>
√

x

f (n)

∣∣∣∣∣∣∣∣
2q

�
1

logq x
E

1
4

∑
√

x<p6x

log p
X
p

∫ p(1+1/X)

p

∣∣∣∣∣∣
∑

m6x/t

f (m)

∣∣∣∣∣∣
2

dt

q

−
1

logq x
E

 ∑
√

x<p6x

log p
X
p

∫ p(1+1/X)

p

∣∣∣∣∣∣
∑

x/t<m6x/p

f (m)

∣∣∣∣∣∣
2

dt

q

.

To complete the proof of the first part of Proposition 3, we apply Hölder’s
inequality and obtain that

E

 ∑
√

x<p6x

log p
X
p

∫ p(1+1/X)

p

∣∣∣∣∣∣
∑

x/t<m6x/p

f (m)

∣∣∣∣∣∣
2

dt

q

is

6

 ∑
√

x<p6x

log p
X
p

∫ p(1+1/X)

p
E

∣∣∣∣∣∣
∑

x/t<m6x/p

f (m)

∣∣∣∣∣∣
2

dt

q

�

 ∑
√

x<p6x

log p
(

x
pX
+ 1

)q

�

(
x log x

X
+ x

)q

� xq .

Here, the penultimate inequality again uses the standard Chebychev prime
number estimates, namely∑

p6x

log p
p
� log x and

∑
p6x

log p � x .
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We also find that the main term

E

 ∑
√

x<p6x

log p
X
p

∫ p(1+1/X)

p

∣∣∣∣∣∣
∑

m6x/t

f (m)

∣∣∣∣∣∣
2

dt

q

is

= E

∫ x

√
x

∑
t/(1+1/X)<p6t

log p
X
p

∣∣∣∣∣∣
∑

m6x/t

f (m)

∣∣∣∣∣∣
2

dt

q

� E

∫ x

√
x

∣∣∣∣∣∣
∑

m6x/t

f (m)

∣∣∣∣∣∣
2

dt

q

= xqE

∫ √x

1

∣∣∣∣∣∑
m6z

f (m)

∣∣∣∣∣
2

dz
z2

q

.

The first part of Proposition 3 follows on putting all our calculations together.
To deduce the second part of Proposition 3, we simply note that for any large

V and any 2/3 6 q 6 1, we have

E

∫ √x

1

∣∣∣∣∣∑
m6z

f (m)

∣∣∣∣∣
2

dz
z2

q

> E

∫ √x

1

∣∣∣∣∣∣∣
∑
m6z,

x-smooth

f (m)

∣∣∣∣∣∣∣
2

dz
z2+8V/ log x


q

> E

∫ ∞
1

∣∣∣∣∣∣∣
∑
m6z,

x-smooth

f (m)

∣∣∣∣∣∣∣
2

dz
z2+8V/ log x


q

−E

∫ ∞
√

x

∣∣∣∣∣∣∣
∑
m6z,

x-smooth

f (m)

∣∣∣∣∣∣∣
2

dz
z2+8V/ log x


q

> E

∫ ∞
1

∣∣∣∣∣∣∣
∑
m6z,

x-smooth

f (m)

∣∣∣∣∣∣∣
2

dz
z2+8V/ log x


q

−
1

e2V q
E

∫ ∞
1

∣∣∣∣∣∣∣
∑
m6z,

x-smooth

f (m)

∣∣∣∣∣∣∣
2

dz
z2+4V/ log x


q

.
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By Harmonic Analysis Result 1, the first term here is

� E

(∫ 1/2

−1/2

∣∣∣∣F (1/2+
4V

log x
+ i t

)∣∣∣∣2 dt

)q

and the subtracted second term is

� e−2V qE

(∫
∞

−∞

|F(1/2+ 2V
log x + i t)|2

|1/2+ 2V
log x + i t |2

dt

)q

,

which in the Steinhaus case is

� e−2V qE

(∫ 1/2

−1/2

∣∣∣∣F (1/2+
2V

log x
+ i t

)∣∣∣∣2 dt

)q

by ‘translation invariance in law’ (as at the end of the proof of Proposition 1).
Putting everything together, this finishes the proof of Proposition 3.

The arguments in the Rademacher case are, once again, exactly the same until
the final line, where we do not have ‘translation invariance’, so we must upper
bound

E

(∫
∞

−∞

|F(1/2+ 2V
log x + i t)|2

|1/2+ 2V
log x + i t |2

dt

)q

by

max
N∈Z

1
(|N | + 1)1/4

E

(∫ N+1/2

N−1/2

∣∣∣∣F (1/2+
2V

log x
+ i t

)∣∣∣∣2 dt

)q

.

3. Probabilistic calculations

In this section, we collect together various probabilistic calculations that we
wish to isolate in advance of our main proofs. These are of two basic kinds: first,
the estimation of the mean square, and related quantities, for some random Euler
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products; and second, the estimation of the probability of certain events where
the measure is weighted by the mean square of random Euler products. The latter
calculations provide analogues of Girsanov’s theorem in our setting, where the
logarithms of our random products are not actually Gaussian random variables
but only approximately so.

3.1. The mean square of random Euler products.

LEMMA 1. If f is a Steinhaus random multiplicative function, then for any real
t and u, any real 400(1+ u2) 6 x 6 y and any real σ > −1/ log y, we have

E
∏

x<p6y

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−2 ∣∣∣∣1− f (p)
p1/2+σ+i t

∣∣∣∣−iu

= exp

 ∑
x<p6y

1+ iu cos(t log p)− u2/4
p1+2σ

+ T (u)

 ,
where T (u) = Tx,y,σ,t(u) satisfies |T (u)| � 1+|u|3

√
x log x , and its derivative satisfies

|T ′(u)| � 1
√

x log x when |u| 6 1.

Proof of Lemma 1. To simplify the writing of the proof, we temporarily set
Rp(t) := −< log(1− f (p)

p1/2+σ+i t ). Thus, we may rewrite

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−2 ∣∣∣∣1− f (p)
p1/2+σ+i t

∣∣∣∣−iu

= exp{2Rp(0)+ iu Rp(t)}

= 1+
∞∑
j=1

(2Rp(0)+ iu Rp(t)) j

j !
.

Now using the Taylor expansion of the logarithm, we have

Rp(t) =
∞∑

k=1

<( f (p)p−i t)k

kpk(1/2+σ)
=
< f (p)p−i t

p1/2+σ
+ O

(
1

p1+2σ

)
.

In particular, by symmetry, we have E<( f (p)p−i t)k = E< f (p)k = 0 for all
k > 1, and, therefore, ERp(t) = 0. A simple trigonometric calculation
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also shows that E(< f (p))2 = 1/2 and, similarly, E< f (p)< f (p)p−i t
=

cos(t log p)/2. So we have

ERp(t)2 = E
(< f (p)p−i t)2

p1+2σ
+ O

(
1

p3/2+3σ

)
=

1
2p1+2σ

+ O
(

1
p3/2+3σ

)
as well as

ERp(0)Rp(t) = E
(< f (p))(< f (p)p−i t)

p1+2σ
+ O

(
1

p3/2+3σ

)
=

cos(t log p)
2p1+2σ

+ O
(

1
p3/2+3σ

)
.

For j > 3, we can use the trivial bound

|Rp(t) j
| 6

(
∞∑

k=1

1
pk(1/2+σ)

) j

=
1

(p1/2+σ − 1) j
.

Next, we note that for primes y > p > x > 400(1+u2) as in our product, and
for σ > − 1

log y , we have 1
p1/2+σ =

e−σ log p

p1/2 6 e
p1/2 , and, therefore, (2+|u|)/p1/2+σ 6

e/5. So putting things together, for such primes, we have

E
∣∣∣∣1− f (p)

p1/2+σ

∣∣∣∣−2 ∣∣∣∣1− f (p)
p1/2+σ+i t

∣∣∣∣−iu

= 1+
(4ERp(0)2 + 4iuERp(0)Rp(t)− u2ERp(t)2)

2

+E
∞∑
j=3

(2Rp(0)+ iu Rp(t)) j

j !

= 1+
(1+ iu cos(t log p)− u2/4)

p1+2σ
+ O

(
∞∑
j=3

(2+ |u|) j

j !(p1/2+σ − 1) j

)

= 1+
(1+ iu cos(t log p)− u2/4)

p1+2σ
+ Dp(u),

where Dp(u) satisfies |Dp(u)| � 1+|u|3

p3/2+3σ �
1+|u|3

p3/2 and its derivative satisfies
|D′p(u)| �

1
p3/2+3σ �

1
p3/2 for |u| 6 1.
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Finally, note that we may rewrite our conclusions as

E
∣∣∣∣1− f (p)

p1/2+σ

∣∣∣∣−2 ∣∣∣∣1− f (p)
p1/2+σ+i t

∣∣∣∣−iu

= 1+
(1+ iu cos(t log p)− u2/4)

p1+2σ
+ Dp(u)

= exp
{
(1+ iu cos(t log p)− u2/4)

p1+2σ
+ Tp(u)

}
,

where Tp(u) again satisfies |Tp(u)| � 1+|u|3

p3/2 and also |T ′p(u)| �
1

p3/2 for |u| 6 1.
Since f is independent on distinct primes, we then deduce

E
∏

x<p6y

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−2 ∣∣∣∣1− f (p)
p1/2+σ+i t

∣∣∣∣−iu

= exp

 ∑
x<p6y

1+ iu cos(t log p)− u2/4
p1+2σ

+

∑
x<p6y

Tp(u)

 ,
which implies Lemma 1 in view of the standard Chebychev-type estimate∑

p>x 1/p3/2
� 1/(

√
x log x).

We note in particular that, by Lemma 1, for any 400 6 x 6 y and any σ >
−1/ log y and for Steinhaus random multiplicative f , we have

E
∏

x<p6y

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−2

= exp

 ∑
x<p6y

1
p1+2σ

+ O
(

1
√

x log x

) . (2)

Moreover, under the same conditions, the same proof shows that

E
∏

x<p6y

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣2
satisfies this estimate too (note the change of the exponent from −2 to 2).

We will need an analogue of Lemma 1 for the Rademacher case. Both the
formulation and the proof of this are slightly more complicated. This is because
the distribution of a Rademacher random multiplicative function is not invariant
under shifts by ni t and also because f (p)2 ≡ 1 in the Rademacher case and the
Euler products we deal with here have slightly different forms.
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LEMMA 2. If f is a Rademacher random multiplicative function, then for any
real t1, t2 and u, any real 400(1+ u2) 6 x 6 y and any real σ > −1/ log y, we
have

E
∏

x<p6y

∣∣∣∣1+ f (p)
p1/2+σ+i t1

∣∣∣∣2 ∣∣∣∣1+ f (p)
p1/2+σ+i(t1+t2)

∣∣∣∣iu

= exp

 ∑
x<p6y

1+ iuc(t1, t2, p)− (u2/4)(1+ cos(2(t1 + t2) log p))
p1+2σ

+ T (u)

 .
Here, c(t1, t2, p) = 2 cos(t1 log p) cos((t1+t2) log p)−(1/2) cos(2(t1+t2) log p),
and T (u) = Tx,y,σ,t1,t2(u) satisfies |T (u)| � 1+|u|3

√
x log x , and |T ′(u)| � 1

√
x log x when

|u| 6 1.

Proof of Lemma 2. Let us temporarily set Rp(t) := < log(1 + f (p)
p1/2+σ+i t ), so we

may rewrite∣∣∣∣1+ f (p)
p1/2+σ+i t1

∣∣∣∣2 ∣∣∣∣1+ f (p)
p1/2+σ+i(t1+t2)

∣∣∣∣iu = exp{2Rp(t1)+ iu Rp(t1 + t2)}

= 1+
∞∑
j=1

(2Rp(t1)+ iu Rp(t1 + t2))
j

j !
.

Using Taylor expansion (and the fact that f (p) ∈ {±1}), we obtain that

Rp(t) =
∞∑

k=1

(−1)k−1<( f (p)p−i t)k

kpk(1/2+σ)

=
f (p) cos(t log p)

p1/2+σ
−

cos(2t log p)
2p1+2σ

+ O
(

1
p3/2+3σ

)
.

In particular, this implies that

ERp(t) = −
cos(2t log p)

2p1+2σ
+ O

(
1

p3/2+3σ

)
.

We also have

ERp(t)2 =
cos2(t log p)

p1+2σ
+O

(
1

p3/2+3σ

)
=
(1+ cos(2t log p))

2p1+2σ
+O

(
1

p3/2+3σ

)
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as well as

ERp(t1)Rp(t1 + t2) =
cos(t1 log p) cos((t1 + t2) log p)

p1+2σ
+ O

(
1

p3/2+3σ

)
.

For j > 3, we again have |Rp(t) j
| 6 (

∑
∞

k=1
1

pk(1/2+σ) )
j
=

1
(p1/2+σ−1) j .

As in Lemma 1, for primes y > p > x > 400(1 + u2), we have (2 +
|u|)/p1/2+σ 6 e/5, so for such primes, we get

E
∣∣∣∣1+ f (p)

p1/2+σ+i t1

∣∣∣∣2 ∣∣∣∣1+ f (p)
p1/2+σ+i(t1+t2)

∣∣∣∣iu
= 1−

cos(2t1 log p)
p1+2σ

−
(iu/2) cos(2(t1 + t2) log p)

p1+2σ
+ O

(
1+ |u|
p3/2+3σ

)
+
(1+ cos(2t1 log p))+ 2iu cos(t1 log p) cos((t1 + t2) log p)

p1+2σ

−

u2

4 (1+ cos(2(t1 + t2) log p))
p1+2σ

+ O
(

1+ u2

p3/2+3σ

)
+E

∞∑
j=3

(2Rp(t1)+ iu Rp(t1 + t2))
j

j !

= 1+
1+ iuc(t1, t2, p)− (u2/4)(1+ cos(2(t1 + t2) log p))

p1+2σ
+ Dp(u),

where Dp(u) satisfies |Dp(u)| � 1+|u|3

p3/2+3σ �
1+|u|3

p3/2 and its derivative satisfies
|D′p(u)| �

1
p3/2+3σ �

1
p3/2 for |u| 6 1.

From this point, the proof concludes exactly as the proof of Lemma 1.

Again, Lemma 2 implies that for any 400 6 x 6 y and σ > −1/ log y and
real t1, and for Rademacher random multiplicative f , we have

E
∏

x<p6y

∣∣∣∣1+ f (p)
p1/2+σ+i t1

∣∣∣∣2 = exp

 ∑
x<p6y

1
p1+2σ

+ O
(

1
√

x log x

) . (3)

Under these conditions, we can use the same proof to estimate

E
∏

x<p6y

∣∣∣∣1+ f (p)
p1/2+σ+i t1

∣∣∣∣−2
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(note the change of the exponent from 2 to−2), and in the Rademacher case, this
slightly changes the answer: we find

E
∏

x<p6y

∣∣∣∣1+ f (p)
p1/2+σ+i t1

∣∣∣∣−2

= exp

 ∑
x<p6y

1+ 2 cos(2t1 log p)
p1+2σ

+ O
(

1
√

x log x

) . (4)

3.2. Girsanov-type calculations in the Steinhaus case. Let f (n) be a
Steinhaus random multiplicative function and let x be large and −1/100 6 σ 6
1/100, say. Later we will impose some further restrictions on σ . Let us introduce
a new ‘tilted’ probability measure P̃ = P̃x,σ by setting

P̃(A) :=
E1A

∏
p6x1/e

∣∣∣1− f (p)
p1/2+σ

∣∣∣−2

E
∏

p6x1/e

∣∣∣1− f (p)
p1/2+σ

∣∣∣−2

for each event A, where 1 denotes the indicator function. We will also sometimes
write Ẽ to denote expectation (that is, integration) with respect to the measure P̃.
Thus, if G is some random variable, we have

ẼG =
EG

∏
p6x1/e

∣∣∣1− f (p)
p1/2+σ

∣∣∣−2

E
∏

p6x1/e

∣∣∣1− f (p)
p1/2+σ

∣∣∣−2 .

The exact choice of the range of p in the definition of P̃ is not too important
since the independence of the f (p) means that if the event A does not involve a
particular prime, the expectation of that term will factor out and cancel between
the numerator and denominator.

Furthermore, for each l ∈ N ∪ {0}, set

Il(s) :=
∏

xe−(l+2)
<p6xe−(l+1)

(
1−

f (p)
ps

)−1

,

the lth ‘increment’ of the Euler product corresponding to Steinhaus f .
Our goal here is to estimate P̃(A) for certain events A corresponding to

restrictions on partial Euler products. We wish to show that these probabilities
are essentially the same as they would be if the increments log |Il(s)|
were Gaussian. In that case, the very useful Girsanov theorem shows that
the tilted probabilities are themselves Gaussian probabilities for certain shifted
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Gaussians and so can be understood and estimated fairly straightforwardly.
We will achieve all this by combining Lemma 1 (which corresponds to a
characteristic function calculation for the tilted measure P̃) with the Berry–
Esseen theorem on distributional approximation and then develop the necessary
Gaussian estimates. Since we must apply the Berry–Esseen theorem multiple
times and it only supplies an absolute rather than a relative error, we must be
careful to control the sizes of things to make this all work.

Let (l j)
n
j=1 denote a strictly decreasing sequence of nonnegative integers, with

l1 6 log log x − 2, and define a corresponding increasing sequence of real
numbers (x j)

n
j=1 by setting x j := x e−(l j+1)

.

LEMMA 3. Let the situation be as above and suppose that x1 is sufficiently
large (that is, larger than a suitable absolute constant) and that |σ | 6 1/ log xn .
Suppose further that (v j)

n
j=1 is any sequence of real numbers satisfying

|v j | 6 (1/40)
√

log x j + 2 ∀1 6 j 6 n

and (t j)
n
j=1 is any sequence of real numbers.

Then we have

P̃(v j 6 log |Il j (1/2+ σ + i t j)| 6 v j + 1/j 2
∀1 6 j 6 n)

=

(
1+ O

(
1

x1/100
1

))
P(v j 6 N j 6 v j + 1/j 2

∀1 6 j 6 n),

where N j are independent Gaussian random variables with mean∑
x1/e

j <p6x j

cos(t j log p)
p1+2σ

and variance ∑
x1/e

j <p6x j

1
2p1+2σ

.

Proof of Lemma 3. By independence, both the probability on the left and the one
on the right factor as a product over j , so it will suffice to prove that

P̃(v j 6 log |Il j (1/2+ σ + i t j)| 6 v j + 1/j 2)

=

(
1+ O

(
1

x1/100
j

))
P(v j 6 N j 6 v j + 1/j 2) ∀ j 6 n.
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We also note at the outset that, because of our assumption that |σ | 6 1
log xn

6 1
log x j

as well as the standard Mertens estimate for sums over primes (see, for example,
Theorem 2.7 of Montgomery and Vaughan [20]), we have

e−2

(
1+ O

(
1

log x j

))
6

∑
x1/e

j <p6x j

1
p1+2σ

6 e2
∑

x1/e
j <p6x j

1
p

= e2

(
1+ O

(
1

log x j

))
∀1 6 j 6 n.

For Gaussian random variables, it is a standard calculation that the
characteristic function

EeiuN j = E exp

iu
∑

x1/e
j <p6x j

cos(t j log p)
p1+2σ

+ iu

√√√√ ∑
x1/e

j <p6x j

1
2p1+2σ

N (0, 1)


= exp


∑

x1/e
j <p6x j

iu cos(t j log p)− u2/4
p1+2σ

 .
Now for any |u| 6 x1/20

j , Lemma 1 (applied with x, y replaced by x1/e
j and x j )

implies that

Ẽeiu log |Il j (1/2+σ+i t j )|
= exp


∑

x1/e
j <p6x j

iu cos(t j log p)− u2/4
p1+2σ

+ T (u)− T (0)

 .
Combining this with the above calculation and with the estimates for T (u), T ′(u)
in Lemma 1, we get

|Ẽeiu log |Il j (1/2+σ+i t j )|
− EeiuN j | = exp

−u2

4

∑
x1/e

j <p6x j

1
p1+2σ

 |eT (u)−T (0)
− 1|

� exp

−u2

4

∑
x1/e

j <p6x j

1
p1+2σ

 |u| + |u|3√
x1/e

j log x j

.

Then by the Berry–Esseen theorem (see, for example, Lemma 7.6.1 of Gut [8]),
we have

|P̃(v j 6 log |Il j (1/2+ σ + i t j)| 6 v j + 1/j 2)− P(v j 6 N j 6 v j + 1/j 2)|
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�

∫ x1/20
j

−x1/20
j

∣∣∣∣∣ Ẽeiu log |Il j (1/2+σ+i t j )|
− EeiuN j

u

∣∣∣∣∣ du +
1

x1/20
j

�

∫ x1/20
j

−x1/20
j

1+ u2√
x1/e

j log x j

du +
1

x1/20
j

�
1

x1/60
j

.

Finally, since the Gaussian N j has mean O(1) and (as we observed at the
beginning) variance

1
2

∑
x1/e

j <p6x j

1
p1+2σ

>
e−2
+ O(1/ log x j)

2

and since |v j | 6 (1/40)
√

log x j + 2, we have

P(v j 6 N j 6 v j + 1/j 2)� (1/j 2)e−(|v j |+O(1))2/(e−2
+O(1/ log x j ))

�
1

j 2x9/1600
j

�
1

x1/150
j

.

So we may rewrite the error 1/x1/60
j from the Berry–Esseen theorem as

O(P(v j6N j6v j+1/j2)

x1/60−1/150
j

), which is O(P(v j6N j6v j+1/j2)

x1/100
j

).

Using Lemma 3 and a suitable slicing argument, we can obtain a similar
approximation result for the probabilities of slightly more complicated events.

LEMMA 4. Suppose (u j)
n
j=1 and (v j)

n
j=1 are sequences of real numbers

satisfying

−(1/80)
√

log x j 6 u j 6 v j 6 (1/80)
√

log x j ∀1 6 j 6 n,

and otherwise let the situation be as in Lemma 3. Then we have

P

(
u j + 2 6

j∑
m=1

Nm 6 v j − 2 ∀ j 6 n

)

� P̃

(
u j 6

j∑
m=1

log
∣∣∣∣Ilm

(
1
2
+ σ + i tm

)∣∣∣∣ 6 v j ∀ j 6 n

)

� P

(
u j − 2 6

j∑
m=1

Nm 6 v j + 2 ∀ j 6 n

)
,

where the Gaussian random variables Nm are also as in Lemma 3.
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In addition, if the numbers (t j)
n
j=1 satisfy |t j | 6

1
j2/3 log x j

, then we have

P

(
(u j − j)+ O(1) 6

j∑
m=1

Gm 6 (v j − j)− O(1) ∀ j 6 n

)

� P̃

(
u j 6

j∑
m=1

log |Ilm (1/2+ σ + i tm)| 6 v j ∀ j 6 n

)

� P

(
(u j − j)− O(1) 6

j∑
m=1

Gm 6 (v j − j)+ O(1) ∀ j 6 n

)
,

where Gm are independent Gaussian random variables, each having mean 0 and
variance

∑
x1/e

m <p6xm

1
2p1+2σ .

In the second part of Lemma 4, the assumption that |tm | 6
1

m2/3 log xm
for all m

together with our standing assumption |σ | 6 1
log xn

6 1
log xm

implies that

ENm =
∑

x1/e
m <p6xm

cos(tm log p)
p1+2σ

≈

∑
x1/e

m <p6xm

1
p
≈ 1.

Subtracting these means for each m yields the mean zero random variables Gm

and produces the subtracted term− j in the upper and lower bounds of our events.
As we shall see, this subtracted term in the upper bound (coming from ENm ,
which ultimately comes from the ‘tilting’ of our measures) will be at the heart of
everything. It can reduce a sequence of fairly large terms v j ≈ j that one would
expect to impose a very little constraint on our partial sums to a smaller sequence
that does impose a nontrivial constraint.

Proof of Lemma 4. As remarked previously, to prove the first part (involving the
Nm), we shall simply approximate the probability we are interested in by a sum
of probabilities of the form treated in Lemma 3.

More precisely, note that if we have

−(1/80)
√

log x j 6
j∑

m=1

log |Ilm (1/2+ σ + i tm)| 6 (1/80)
√

log x j

and the analogous bounds for the sum up to j − 1, then we must have

| log |Il j (1/2+σ + i t j)‖ 6 (1/80)
√

log x j−1+ (1/80)
√

log x j 6 (1/40)
√

log x j .
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So if we let R1 := {r ∈ Z : |r | 6 (1/40)
√

log x1 + 2} (say) and, more generally,
let R j := {r ∈ (1/j 2)Z : |r | 6 (1/40)

√
log x j + 2}, then in order to have u j 6∑ j

m=1 log |Ilm (1/2+ σ + i tm)| 6 v j for all 1 6 j 6 n, we must have

r j 6 log |Il j (1/2+ σ + i t j)| 6 r j + 1/j 2
∀1 6 j 6 n,

for some r1 ∈ R1, . . . , rn ∈ Rn satisfying

u j −

j∑
m=1

1/m2 6
j∑

m=1

rm 6 v j for all 1 6 j 6 n.

Thus, summing over all possible choices of the r j and applying Lemma 3, we
obtain

P̃(u j 6
j∑

m=1

log |Ilm (1/2+ σ + i tm)| 6 v j ∀1 6 j 6 n)

�

∑
r1∈R1,...,rn∈Rn ,

u j−
∑ j

m=1 1/m26
∑ j

m=1 rm6v j ∀16 j6n

P(r j 6 N j 6 r j + 1/j 2
∀1 6 j 6 n)

6 P

(
u j −

j∑
m=1

1
m2

6
j∑

m=1

Nm 6 v j +

j∑
m=1

1
m2
∀ j

)

6 P

(
u j − 2 6

j∑
m=1

Nm 6 v j + 2 ∀ j 6 n

)
.

This is the desired upper bound, and the proof of the corresponding lower bound
is exactly similar.

To deduce the second part of the lemma, we will use the facts that xm > x em−1

1
and, more generally, xn > x en−m

m , both of which follow from the definition of the
sequence (x j)

n
j=1. The second part of the lemma follows by setting

Gm = Nm − ENm = Nm −
∑

x1/e
m <p6xm

cos(tm log p)
p1+2σ

for all m,

and noting that

∑
x1/e

m <p6xm

cos(tm log p)
p1+2σ

=

∑
x1/e

m <p6xm

1
p1+2σ

+ O

 ∑
x1/e

m <p6xm

(|tm | log p)2

p1+2σ
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=

∑
x1/e

m <p6xm

1
p
+ O

 ∑
x1/e

m <p6xm

|σ | log p + (|tm | log p)2

p


= 1+ O

(
1

log xm
+

log xm

log xn
+

1
m4/3

)
= 1+ O

(
1

en−m
+

1
m4/3

)
,

under our conditions that |σ | 6 1/ log xn and |tm | 6
1

m2/3 log xm
. Here we used the

standard Mertens and Chebychev estimates, namely

∑
x1/e

m <p6xm

1
p
= 1+ O

(
1

log xm

)
and

∑
x1/e

m <p6xm

log p
p
� log xm .

At this point, it will be helpful to examine the kinds of events we shall actually
be interested in for our application and their probabilities in the Gaussian case.

PROBABILITY RESULT 1. Let a and n be large (that is, larger than a suitable
absolute constant) and let G1, . . . ,Gn be independent Gaussian random
variables, each having mean zero and variance between 1/20 and 20 (say).
Then uniformly for any function h( j) satisfying |h( j)| 6 10 log j , we have

P

(
j∑

m=1

Gm 6 a + h( j) ∀1 6 j 6 n

)
� min

{
1,

a
√

n

}
.

Since Probability Result 1 is a purely probabilistic statement about Gaussian
random walks, we postpone its proof to the appendix. We remark that such a
statement with h( j) ≡ 0 is standard. It requires a little more work to obtain
the more general estimate, but it is natural to think such a result should hold
because one typically thinks of random variables fluctuating on the order of their
standard deviation (here �

√
j up to step j), so perturbing an event by a term

much smaller than this should not alter its probability very much. Having a more
general estimate will be very useful later (see, for example, the proof of Key
Proposition 2, in Section 4) because, on taking exponentials, the function h( j)
can supply extra savings of powers of j in various places.

We will also need a small variant of Probability Result 1, where the event
involves a nontrivial but relaxed lower barrier and a slightly tightened upper
barrier as well.
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PROBABILITY RESULT 2. There is a large absolute constant B such that the
following is true. Let a and n be large and let G1, . . . ,Gn be independent
Gaussian random variables, each having mean zero and variance between 1/20
and 20. Then uniformly for any function h( j) satisfying |h( j)| 6 10 log j and
any function g( j) satisfying g( j) 6 −B j, we have

P(g( j) 6
j∑

m=1

Gm 6 min{a, B j} + h( j) ∀1 6 j 6 n) � min
{

1,
a
√

n

}
.

Again, it is natural to think such a result should hold because, if the sum up to j
typically fluctuates on the scale of

√
j , then the sums should be rather insensitive

to a much more relaxed barrier of the shape B j or −B j . We postpone the proof
to the appendix.

By combining Lemma 4 with Probability Results 1 and 2, we can finally
prove the P̃ probability estimate we shall need to obtain Theorem 1. Again, this
requires a little care to ensure the size restrictions on u j , v j in Lemma 4 are
respected when it is applied.

PROPOSITION 5. There is a large natural number B such that the following is
true.

Let n 6 log log x−(B+1) be large and define the decreasing sequence (l j)
n
j=1

of nonnegative integers by l j := blog log xc − (B + 1)− j . Suppose that |σ | 6
1

eB+n+1 and that (t j)
n
j=1 is a sequence of real numbers satisfying |t j | 6

1
j2/3eB+ j+1

for all j .
Then uniformly for any large a and any function h( j) satisfying
|h( j)| 6 10 log j , and with Il(s) denoting the increments of the Euler product
corresponding to a Steinhaus random multiplicative function (as before), we
have

P̃

(
−a − B j 6

j∑
m=1

log |Ilm (1/2+ σ + i tm)| 6 a + j + h( j) ∀ j 6 n

)

� min
{

1,
a
√

n

}
.

Proof of Proposition 5. We note first that log x j = e−(l j+1) log x = eB+ j log x
eblog log xc

here, so our assumptions imply that |σ |6 1/ log xn and that |t j |6 1/( j 2/3 log x j)

for all 1 6 j 6 n. Furthermore, provided B is fixed large enough, then
x1 = x e−(l1+1) will be sufficiently large that Lemmas 3 and 4 may legitimately
be applied.
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We can lower bound the probability we are interested in by

P̃

(
−B j 6

j∑
m=1

log |Ilm (1/2+ σ + i tm)| 6 min{a, B j} + j + h( j) ∀ j 6 n

)
,

and here since log x j > eB+ j , we have B j 6 (1/80)
√

log x j and min{a, B j} +
j + h( j) 6 (1/80)

√
log x j for all 1 6 j 6 n, provided B is fixed large enough.

Thus, Lemma 4 is applicable and yields that our probability is

� P

(
−(B + 1) j + O(1) 6

j∑
m=1

Gm 6 min{a, B j} + h( j)− O(1) ∀ j 6 n

)
,

where G j are independent Gaussians with mean 0 and variance
∑

x1/e
j <p6x j

1
2p1+2σ .

In particular, the variance here is 6 e(2 log x j )/ log xn

2

∑
x1/e

j <p6x j

1
p 6 5, and similarly

the variance is > 1/20, so we can use Probability Result 2 to deduce the desired
lower bound

P

(
−(B + 1) j + O(1) 6

j∑
m=1

Gm 6 min{a, B j} + h( j)− O(1) ∀ j 6 n

)

� min
{

1,
a
√

n

}
.

Obtaining a matching upper bound for our probability will be slightly more
involved, though not too much so. If a >

√
n, then the upper bound is trivial, so

we may assume instead that a <
√

n. If our event occurs, we must have

−(B + 1)a 6
∑
m6a

log |Ilm (1/2+ σ + i tm)| 6 2a + h(bac),

and this will be independent of the behaviour of the summands with m > a. So
we may upper bound the probability we are interested in by

P̃

−3a − h(bac)− B j 6
∑

a<m6 j

log |Ilm (1/2+ σ + i tm)|

6 (B + 2)a + j + h( j) ∀a < j 6 n

 .
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Now the point is that (since log x j > eB+ j ) we have 3a + h(bac) + B j 6
(1/80)

√
log x j and (B+2)a+ j+h( j) 6 (1/80)

√
log x j for j > a, so Lemma 4

is now applicable and we may upper bound our probability by

P

−2a − (B + 1) j − h(bac)− O(1) 6
∑

a<m6 j

Gm

6 (B + 2)a + a + h( j)+ O(1) ∀a < j 6 n

 .
Note here that Lemma 4 is applied with j replaced by j − bac, hence the added
a terms in the upper and lower limits. Finally, Probability Result 1 is applicable,
and since B is an absolute constant and n − a > n −

√
n � n, we obtain our

desired upper bound�min{1, Ba
√

n } � min{1, a
√

n } for the probability.

3.3. Girsanov-type calculations in the Rademacher case. In this section,
we develop an analogue of Proposition 5 to cover Rademacher random
multiplicative functions. The set-up and arguments are very similar as in
the Steinhaus case, broadly speaking, but there is the usual complication that
f (n)ni t no longer has the same law as f (n), and both the formulation and proofs
must be adjusted to address this. One already sees this issue when comparing
the Euler product calculations in Lemma 2 with those in Lemma 1.

Thus, for each t ∈ R, and for large x and −1/100 6 σ 6 1/100, we define a
tilted probability measure P̃Rad

t = P̃Rad
x,σ,t by setting

P̃Rad
t (A) :=

E1A
∏

p6x1/e

∣∣∣1+ f (p)
p1/2+σ+i t

∣∣∣2
E
∏

p6x1/e

∣∣∣1+ f (p)
p1/2+σ+i t

∣∣∣2
for each event A, where f is a Rademacher random multiplicative function.
Again, we will sometimes write ẼRad

t to denote expectation (that is, integration)
with respect to the measure P̃Rad

t .
Now for each l ∈ N ∪ {0}, we set Il(s) :=

∏
xe−(l+2)

<p6xe−(l+1) (1 + f (p)
ps ), the

lth ‘increment’ of the Euler product corresponding to f . There should be no
confusion with the corresponding notation from the Steinhaus case since one
simply takes increments of the appropriate Euler product for the kind of random
multiplicative function one is working with. As before, we let (l j)

n
j=1 denote a

strictly decreasing sequence of nonnegative integers, with l1 6 log log x−2, and
define a corresponding increasing sequence of real numbers (x j)

n
j=1 by setting

x j := x e−(l j+1)
.
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The following result is the Rademacher analogue of Lemma 4. Note that in
Lemma 4, we had t = 0 (although, because of translation invariance in law, this
was not actually a restriction), so the condition on |t j − t | below is analogous to
the condition on |t j | that we had there.

LEMMA 5. Let t ∈ R\{0}, and let the situation be as above.
Suppose that x1 > max{eC/|t |, eC log2

|t |
} is large, that |σ | 6 1/ log xn and that

the numbers (t j)
n
j=1 satisfy |t j − t | 6 1

j2/3 log x j
. Suppose (u j)

n
j=1 and (v j)

n
j=1 are

sequences of real numbers satisfying

−(1/80)
√

log x j 6 u j 6 v j 6 (1/80)
√

log x j ∀1 6 j 6 n.

Then we have

P

(
(u j − j)+ O(1) 6

j∑
m=1

Gm 6 (v j − j)− O(1) ∀ j 6 n

)

� P̃Rad
t

(
u j 6

j∑
m=1

log |Ilm (1/2+ σ + i tm)| 6 v j ∀ j 6 n

)

� P

(
(u j − j)− O(1) 6

j∑
m=1

Gm 6 (v j − j)+ O(1) ∀ j 6 n

)
,

where Gm are independent Gaussian random variables, each having mean 0 and
variance

∑
x1/e

m <p6xm

1+cos(2tm log p)
2p1+2σ .

Proof of Lemma 5. Lemma 2 implies that for any |u| 6 x1/20
j , say, the

characteristic function ẼRad
t eiu log |Il j (1/2+σ+i t j )| is

= exp


∑

x1/e
j <p6x j

iuc(t, t j − t, p)− (u2/4)(1+ cos(2t j log p))
p1+2σ

+ T (u)− T (0)

 ,
where c(t, t j−t, p) = 2 cos(t log p) cos(t j log p)−(1/2) cos(2t j log p). Using a
standard trigonometric identity, together with our assumption on |t j−t |, we have

2 cos(t log p) cos(t j log p) = cos((t + t j) log p)+ cos((t − t j) log p)
= cos((t + t j) log p)+ 1+ O(1/j 4/3).
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As noted in the proof of Lemma 4, we have∑
x1/e

j <p6x j

1
p1+2σ

= 1+ O
(

1
log x j

+
log x j

log xn

)
.

Furthermore, recall we assume that x1 > max{eC/|t |, eC log2
|t |
} is large, which

implies that x1/e
j > x1/e

1 > max{eC/e|t |, e(C/e) log2
|t |
}. In particular, this means that

|t | > C
log x j

, and so t+t j � t and 2t j � t . Thus, a strong form of the prime number
theorem implies that both∑

x1/e
j <p6x j

cos((t + t j) log p)
p1+2σ

,

∑
x1/e

j <p6x j

cos(2t j log p)
p1+2σ

�
1

|t | log x j
�

1
e j |t | log x1

�
1

Ce j
.

See Section 6.1 of Harper [10] for details of such calculations.
Having made these preliminary observations, we can check the proofs of

Lemmas 3 and 4 and see they carry over to the present case. Here the relevant
Gaussian random variables N j will have mean

∑
x1/e

j <p6x j

c(t,t j−t,p)
p1+2σ and variance∑

x1/e
j <p6x j

1+cos(2t j log p)
2p1+2σ (rather than mean

∑
x1/e

j <p6x j

cos(t j log p)
p1+2σ and variance∑

x1/e
j <p6x j

1
2p1+2σ , in the Steinhaus case), but our assumptions on t j , x j and the

above calculations show we still have∑
x1/e

j <p6x j

c(t, t j − t, p)
p1+2σ

= 1+ O
(

1
log x j

+
log x j

log xn
+

1
j 4/3

)

= 1+ O
(

1
en− j
+

1
j 4/3

)
as well as ∑

x1/e
j <p6x j

1+ cos(2t j log p)
2p1+2σ

=

∑
x1/e

j <p6x j

1
2p1+2σ

+ O(1/Ce j).

Thus, the arguments of Lemmas 3 and 4 go through to prove Lemma 5.

Combining Lemma 5 with Probability Results 1 and 2 leads to the following
proposition, which is a Rademacher analogue of Proposition 5.

https://doi.org/10.1017/fmp.2019.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2019.7


Low moments of random multiplicative functions 45

PROPOSITION 6. There is a large natural number B such that the following is
true.

Let t ∈ R\{0} and let D > max{log(1/|t |), 2 log log(1 + |t |)} + (B + 1) be
any natural number. Let n 6 log log x − D be large, and define the decreasing
sequence (l j)

n
j=1 of nonnegative integers by l j := blog log xc − D − j . Suppose

that |σ | 6 1
eD+n and that (t j)

n
j=1 is a real sequence satisfying |t j − t | 6 1

j2/3eD+ j

for all j .
Then uniformly for any large a and any function h( j) satisfying
|h( j)| 6 10 log j , and with Il(s) denoting the increments of the Euler product
corresponding to a Rademacher random multiplicative function (as before), we
have

P̃Rad
t

(
−a − B j 6

j∑
m=1

log |Ilm (1/2+ σ + i tm)| 6 a + j + h( j) ∀ j 6 n

)

� min
{

1,
a
√

n

}
.

Proof of Proposition 6. The only nontrivial change from the proof of
Proposition 5 is that we must verify the extra condition x1 > max{eC/|t |,

eC log2
|t |
} in Lemma 5 (as compared with Lemma 4). However, since

we have log x j = e−(l j+1) log x = eD+ j−1 log x
eblog log xc , in particular, we have

log x1 > eD > eB+1 max{ 1
|t | , log2(1 + |t |)}, so the condition will be satisfied

provided B is fixed large enough in terms of the absolute constant C in
Lemma 5.

4. Proofs of the upper bounds in Theorems 1 and 2

4.1. The upper bound in the Steinhaus case. For each |t | 6 1/2, set
t (−1) = t , and then iteratively for each 0 6 j 6 log log x − 2, define

t ( j) := max
{

u 6 t ( j − 1) :

u =
n

((log x)/e j+1) log((log x)/e j+1)
for some n ∈ Z

}
.

Thus, the points t ( j) form a sequence of approximations to t , in which for each
j , we have
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|t − t ( j)| = t − t ( j) =
j∑

l=0

t (l − 1)− t (l)

6
j∑

l=0

1
((log x)/el+1) log((log x)/el+1)

6
2

((log x)/e j+1) log((log x)/e j+1)
. (5)

With our choice of labelling, these approximations become coarser (that is,
worse) as j increases, but recall that in our labelling, the lengths of our Euler
products F j(s) also go down as j increases, so a coarser approximation will turn
out to be acceptable.

Furthermore, recall that we let Il(s) =
∏

xe−(l+2)
<p6xe−(l+1) (1 − f (p)

ps )
−1, the lth

‘increment’ of the Euler product corresponding to Steinhaus f .
Given this notation, let B be the large fixed natural number from Proposition 5

and let G(k) denote the event that for all |t | 6 1/2 and all k 6 j 6 log log x −
B − 2, we have

(
log x
e j+1

eg(x, j)

)−1

6
blog log xc−B−2∏

l= j

∣∣∣∣Il

(
1/2−

k
log x

+ i t (l)
)∣∣∣∣ 6 log x

e j+1
eg(x, j),

where g(x, j) := C min{
√

log log x, 1
1−q } + 2 log log( log x

e j+1 ) for a large constant
C . Thus, G(k) is the event that our Euler product is not too large or too small on
any ‘scale’ k 6 j 6 log log x− B−2. The fact that one has a different point t (l)
in each part Il of the Euler product is a little inelegant: it would be nice to keep
t itself everywhere, in which case for each j , the product would essentially just
be |F j(1/2− k/ log x + i t)|. But this technical device of varying t slightly, and
thereby discretizing the set of t , will make it easier to prove an important estimate
we shall need (Key Proposition 2). Similarly, the lower bound condition in the
definition of G(k) is really a technical device to make Proposition 5 applicable:
it is the upper bound condition that imposes a significant constraint.

With the above preparations, we can state two key estimates, from which we
will deduce the upper bound part of Theorem 1.

KEY PROPOSITION 1. For all large x and uniformly for 0 6 k 6 K =
blog log log xc and 2/3 6 q 6 1, we have
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E

(
1G(k)

∫ 1/2

−1/2

∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 dt

)q

�

(
log x

ek
C min

{
1,

1

(1− q)
√

log log x

})q

,

where 1 denotes the indicator function.
KEY PROPOSITION 2. For all large x, and uniformly for 0 6 k 6 K =
blog log log xc and 2/3 6 q 6 1, we have

P(G(k) fails)� e−2C min{
√

log log x, 1
1−q }.

Proof of the upper bound in Theorem 1, assuming Key Propositions 1 and 2. If
q satisfies 1 − 1√

log log x
6 q 6 1, then the upper bound we need to prove is

E|
∑

n6x f (n)|2q
� xq , which is trivial in view of Hölder’s inequality and the

estimate E|
∑

n6x f (n)|2 6 x . In view of this and of Proposition 1, the upper
bound in Theorem 1 will follow if we can show that

E

(
ek(1− q)

√
log log x

log x

∫ 1/2

−1/2

∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 dt

)q

� 1,

uniformly for all 0 6 k 6 K = blog log log xc and 2/3 6 q 6 1− 1√
log log x

.

To prove this, for 1/
√

log log x 6 δ 6 1/6 (say), we define

R(δ) = R(δ, k, x)

:= sup
1−2δ6q61−δ

E

(
ek(1− q)

√
log log x

log x

×

∫ 1/2

−1/2

∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 dt

)q

.

We have

E

(∫ 1/2

−1/2

∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 dt

)q

= E

(
1G(k)

∫ 1/2

−1/2

∣∣∣∣Fk

(
1
2
−

k
log x

+ i t
)∣∣∣∣2 dt

)q

+E

(
1G(k) fails

∫ 1/2

−1/2

∣∣∣∣Fk

(
1
2
−

k
log x

+ i t
)∣∣∣∣2 dt

)q

,
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so applying Key Proposition 1 with C a large fixed constant, we obtain

R(δ)� C1−δ
+ sup

1−2δ6q61−δ
E

(
1G(k) fails

ek(1− q)
√

log log x
log x

×

∫ 1/2

−1/2

∣∣∣∣Fk

(
1
2
−

k
log x

+ i t
)∣∣∣∣2 dt

)q

6 C + sup
1−2δ6q61−δ

E

(
1G(k) fails

ek(1− q)
√

log log x
log x

×

∫ 1/2

−1/2

∣∣∣∣Fk

(
1
2
−

k
log x

+ i t
)∣∣∣∣2 dt

)q

.

Next, for each 1 − 2δ 6 q 6 1 − δ, we set q ′ = (1 + q)/2 so that 1 − δ 6
q ′ 6 1− δ/2. Then by Hölder’s inequality with exponents q ′/(q ′ − q) and q ′/q ,
we have

E

(
1G(k) fails

ek(1− q)
√

log log x
log x

∫ 1/2

−1/2

∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 dt

)q

6 (E1G(k) fails)
(q ′−q)/q ′

(
E

(
ek(1− q)

√
log log x

log x

×

∫ 1/2

−1/2

∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 dt

)q ′
q/q ′

� P(G(k) fails)δ/2
(
E

(
ek(1− q ′)

√
log log x

log x

×

∫ 1/2

−1/2

∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 dt

)q ′
q/q ′

.

The point is that, by Key Proposition 2, we have P(G(k) fails) �
e−2C min{

√
log log x, 1

1−q } 6 e−C/δ. So substituting back above, noting that always
q/q ′ 6 1, we deduce the recursive bound

R(δ)� C + e−C/2(1+ R(δ/2))� C + e−C/2 R(δ/2).

Iterating the recursive bound (with C fixed sufficiently large to compensate
for the implicit constant there) and replacing δ by δ/2, δ/4, δ/8, and so on, we
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see that uniformly for 1/
√

log log x 6 δ 6 1/6, we have

R(δ)� 1+ R(1/
√

log log x).

However, using Hölder’s inequality (and using the fact that f (n)ni t has the same
law as f (n) in the Steinhaus case and using (2)), we have trivially that

R(1/
√

log log x)� sup
1−2/
√

log log x6q61−1/
√

log log x

×E

(
ek

log x

∫ 1/2

−1/2

∣∣∣∣Fk

(
1
2
−

k
log x

+ i t
)∣∣∣∣2 dt

)q

6 sup
1−2/
√

log log x6q61−1/
√

log log x

×

(
ek

log x

∫ 1/2

−1/2
E
∣∣∣∣Fk

(
1
2
−

k
log x

+ i t
)∣∣∣∣2 dt

)q

= sup
1−2/
√

log log x6q61−1/
√

log log x

×

(
ek

log x
E
∣∣∣∣Fk

(
1
2
−

k
log x

)∣∣∣∣2
)q

� 1.

Inserting this above implies that R(δ) � 1 for all 1/
√

log log x 6 δ 6 1/6,
which yields our upper bound theorem.

4.2. Proof of Key Proposition 1. By Hölder’s inequality, to prove Key
Proposition 1, it will suffice to show that

E1G(k)

∫ 1/2

−1/2

∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 dt

�
log x

ek
C min

{
1,

1

(1− q)
√

log log x

}
,

uniformly for 0 6 k 6 K = blog log log xc and 2/3 6 q 6 1.
We can upper bound the left-hand side by∫ 1/2

−1/2
E1G(k,t)

∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 dt,
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where G(k, t) denotes the event that(
log x
e j+1

eg(x, j)

)−1

6
blog log xc−B−2∏

l= j

∣∣∣∣Il

(
1/2−

k
log x

+ i t (l)
)∣∣∣∣ 6 log x

e j+1
eg(x, j)

for all k 6 j 6 log log x − B − 2. This is an upper bound because G(k) is the
event that G(k, t) holds for all |t | 6 1/2. Furthermore, since the law of f (n) is
the same as the law of f (n)n−i t , we have

E1G(k,t)

∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 = E1H(k,t)

∣∣∣∣Fk

(
1/2−

k
log x

)∣∣∣∣2 ,
where H(k, t) denotes the event that(

log x
e j+1

eg(x, j)

)−1

6
blog log xc−B−2∏

l= j

∣∣∣∣Il

(
1
2
−

k
log x

+ i(t (l)− t)
)∣∣∣∣ 6 log x

e j+1
eg(x, j)

6 eblog log xc−(B+1)− j eB+1+g(x, j)

for all k 6 j 6 log log x − B − 2.
Now to understand the event H(k, t) further, we can take logarithms

everywhere in the preceding display and reparametrize by replacing l by
blog log xc − (B + 1) − m, where 1 6 m 6 blog log xc − (B + 1) − j . Let us
also recall, using the inequality log(X + Y ) 6 log X + log(1 + Y ) that holds
when X, Y > 1, that

g(x, j) = 2 log log
(

log x
e j+1

)
+ C min

{√
log log x,

1
1− q

}
6 2 log(blog log xc − (B + 1)− j)+ 2 log(B + 2)

+C min
{√

log log x,
1

1− q

}
.

Combining these observations, we see that H(k, t) is an event of the form
treated in Proposition 5, taking n = blog log xc − (B + 1) − k, σ = − k

log x ,
tm = t (blog log xc − (B + 1)− m)− t for all m and

a = C min
{√

log log x,
1

1− q

}
+ (B + 1)+ 2 log(B + 2), h( j) = 2 log j.

We may check that these parameters do satisfy the condition |σ | 6 1
eB+n+1

and (using the approximation bound (5)) that |tm | 6
1

m2/3eB+m+1 for all m.
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So Proposition 5 implies that

E1H(k,t)|Fk(1/2− k
log x )|

2

E|Fk(1/2− k
log x )|

2
= P̃(H(k, t))� min

{
1,

a
√

n

}

� min

{
1,C,

C

(1− q)
√

log log x

}
.

(Here the lower bound we impose on our product corresponds to a lower bound
−(a + j + h( j)) in Proposition 5. This is a more stringent bound than the
barrier−a− B j allowed there, so the Proposition 5 upper bound is certainly still
applicable.) Finally, Key Proposition 1 follows by combining the above display
with the fact that

E
∣∣∣∣Fk

(
1/2−

k
log x

)∣∣∣∣2 = exp

 ∑
p6xe−(k+1)

1
p1−2k/ log x

+ O(1)


= exp

 ∑
p6xe−(k+1)

1
p
+ O

 ∑
p6xe−(k+1)

k log p
p log x

+ 1

� log x
ek

,

which follows from (2) and the Mertens and Chebychev estimates for sums over
primes (see, for example, Theorem 2.7 of Montgomery and Vaughan [20]).

4.3. Proof of Key Proposition 2. By the union bound, we see P(G(k) fails)
is at most

∑
k6 j6log log x−B−2

P

(
blog log xc−B−2∏

l= j

∣∣∣∣Il

(
1
2
−

k
log x

+ i t (l)
)∣∣∣∣

>
log x
e j+1

eg(x, j) for some |t | 6
1
2

)
+

∑
k6 j6log log x−B−2

P

(
blog log xc−B−2∏

l= j

∣∣∣∣Il

(
1
2
−

k
log x

+ i t (l)
)∣∣∣∣−1

>
log x
e j+1

eg(x, j) for some |t | 6
1
2

)
.

Let us temporarily write Σ1, Σ2 to denote these two sums.
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We concentrate on trying to bound Σ1. Because of the definition of t (l), we
see the probability inside the sum is at most as large as with the set |t | 6 1/2
replaced by the set

T (x, j) :=
{

n
((log x)/e j+1) log((log x)/e j+1)

:

|n| 6 ((log x)/e j+1) log((log x)/e j+1)

}
.

Since we are now dealing with a discrete set of points, we can apply the union
bound again to obtain that

Σ1 6
∑

k6 j6log log x−B−2

∑
t ( j)∈T (x, j)

P

(
blog log xc−B−2∏

l= j

∣∣∣∣Il

(
1/2−

k
log x

+ i t (l)
)∣∣∣∣

>
log x
e j+1

eg(x, j)

)
,

and by Chebychev’s inequality, this is all

6
∑

k6 j6log log x−B−2

∑
t ( j)∈T (x, j)

1

(
log x
e j+1 eg(x, j))2

×E
blog log xc−B−2∏

l= j

∣∣∣∣Il

(
1/2−

k
log x

+ i t (l)
)∣∣∣∣2 .

Finally, since f is independent on distinct primes (so the different increments
Il(s) are independent) and (in the Steinhaus case) its law is the same as the law
of f (n)ni t for any fixed t , the above is

=

∑
k6 j6log log x−B−2

∑
t ( j)∈T (x, j)

1

(
log x
e j+1 eg(x, j))2

blog log xc−B−2∏
l= j

E
∣∣∣∣Il

(
1/2−

k
log x

)∣∣∣∣2
�

∑
k6 j6log log x−B−2

e−2g(x, j) log((log x)/e j+1)
log x
e j+1

×

blog log xc−B−2∏
l= j

E
∣∣∣∣Il

(
1/2−

k
log x

)∣∣∣∣2 .
As noted in (2) (and in the proof of Key Proposition 1), Lemma 1 implies that the
product of expectations is� exp{

∑
p6xe−( j+1)

1
p1−2k/ log x } �

log x
e j+1 , and inserting this
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and the fact that g(x, j) := C min{
√

log log x, 1
1−q } + 2 log log( log x

e j+1 ), we obtain

Σ1 �
∑

k6 j6log log x−B−2

e−2C min{
√

log log x, 1
1−q }−3 log log( log x

e j+1 ) � e−2C min{
√

log log x, 1
1−q }.

One can bound Σ2 in exactly the same way since (as remarked following (2))
one has the same estimate for E|Il(1/2− k

log x )|
−2 as for E|Il(1/2− k

log x )|
2. This

completes the proof of Key Proposition 2.

4.4. The upper bound in the Rademacher case. Let x be large and let
0 6 k 6 K = blog log log xc and 2/3 6 q 6 1. We note immediately that,
by Hölder’s inequality, we have∥∥∥∥∥

∫
|t |61/
√

log log x

∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 dt

∥∥∥∥∥
q

6
∫
|t |61/
√

log log x
E
∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 dt

�
log x

ek
√

log log x
.

Here, we used the estimate

E
∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 � exp

 ∑
p6xe−(k+1)

1
p1−2k/ log x

� (log x)/ek,

which follows from (3) and from standard estimates for sums over primes (as in
the proofs of Key Propositions 1 and 2). Similarly, when |N | > (log log x)2, we
have

1
|N |1/4

∥∥∥∥∥
∫ N+1/2

N−1/2

∣∣∣∣Fk

(
1
2
−

k
log x

+ i t
)∣∣∣∣2 dt

∥∥∥∥∥
q

6
1
|N |1/4

∫ N+1/2

N−1/2
E
∣∣∣∣Fk

(
1
2
−

k
log x

+ i t
)∣∣∣∣2 dt

�
log x

ek |N |1/4
�

log x

ek
√

log log x
.
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If we insert these bounds into Proposition 2, we obtain an acceptable contribution
for the Theorem 2 upper bound. Therefore, to finish the proof of that upper bound
using Proposition 2, it will suffice to show that

1
(|N | + 1)q/4

E

∫
|t−N |61/2,
|t |>1/
√

log log x

∣∣∣∣Fk

(
1
2
−

k
log x

+ i t
)∣∣∣∣2 dt

q

�

(
log x

ek
min

{
1,

1

(1− q)
√

log log x

})q

,

uniformly for 0 6 k 6 K = blog log log xc and 2/3 6 q 6 1 and |N | 6
(log log x)2. The preceding reductions, dismissing very small and large t from
consideration, will be convenient when we come to apply Proposition 6.

We will concentrate on the case N = 0 since this will reveal essentially all
the important differences between the Rademacher and Steinhaus arguments.
Thus, for each 1/

√
log log x < |t | 6 1/2, we can define the sequence of

approximations (t ( j))06 j6log log x−2 as we did in the Steinhaus case in Section 4.1
and have the same bounds (5) on |t − t ( j)| as we did there. Let us further
define D(t) := dlog(1/|t |)e + (B + 1), where B is as in Proposition 6. Note
that D(t) � log log log x for 1/

√
log log x < |t | 6 1/2. Then with Il(s) =∏

xe−(l+2)
<p6xe−(l+1) (1 + f (p)

ps ) denoting the lth ‘increment’ of the Rademacher
Euler product, we will let GRad(k, t) denote the event that for all k 6 j 6
log log x − D − 1, we have

(
log x
e j+1

eg(x, j)

)−1

6
blog log xc−D−1∏

l= j

∣∣∣∣Il

(
1/2−

k
log x

+ i t (l)
)∣∣∣∣ 6 log x

e j+1
eg(x, j),

where g(x, j) := C min{
√

log log x, 1
1−q } + 2 log log( log x

e j+1 ) for a large constant
C . Furthermore, we let GRad(k) denote the event that GRad(k, t) holds for all
1/
√

log log x < |t | 6 1/2. Note that this set-up is as close as possible to what
we did in the Steinhaus case, the only real change being the introduction of the
term D(t) to trim down the range of j that we examine, which ensures we will
be able to apply Proposition 6.

Now we have the following two key estimates.

KEY PROPOSITION 3. For all large x, and uniformly for 0 6 k 6 K =
blog log log xc and 2/3 6 q 6 1, we have
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E

(
1GRad(k)

∫
1/
√

log log x<|t |61/2

∣∣∣∣Fk

(
1
2
−

k
log x

+ i t
)∣∣∣∣2 dt

)q

�

(
log x

ek
C min

{
1,

1

(1− q)
√

log log x

})q

,

where 1 denotes the indicator function.

KEY PROPOSITION 4. For all large x, and uniformly for 0 6 k 6 K =
blog log log xc and 2/3 6 q 6 1, we have

P(GRad(k) fails)� e−2C min{
√

log log x, 1
1−q }.

Proof of Key Proposition 3. Almost all the details are the same as in the proof of
Key Proposition 1 from the Steinhaus case. Now we cannot translate the event
GRad(k, t) by shifting t to 0, as we did in the Steinhaus case, but there is no
need to do so because we formulated our tilted probability estimates for P̃Rad

t for
general t ∈ R\{0}. When we apply Proposition 6 to estimate P̃Rad

t (GRad(k, t)),
we must take a = C min{

√
log log x, 1

1−q } + D + 2 log(D + 1), rather than a =

C min{
√

log log x, 1
1−q }+(B+1)+2 log(B+2) (and take n = blog log xc−D−k

and σ = − k
log x and tm = t (blog log xc − D − m) for all m). Then Proposition 6

and (3) imply that

E1GRad(k,t)|Fk

(
1/2−

k
log x

+ i t
)
|
2

� min

{
1,

a√
log log x

}
E
∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2

� C D(t)min

{
1,

1

(1− q)
√

log log x

}
log x

ek
.

Since we have
∫
|t |61/2 D(t) dt �

∫
|t |61/2 log(1/|t |) dt � 1, this bound works

the same as the corresponding bound (without D(t)) from the proof of Key
Proposition 1, and so Key Proposition 3 follows.

Proof of Key Proposition 4. The proof of Key Proposition 4 closely follows that
of Key Proposition 2 from the Steinhaus case, until the final line where Σ2

must be bounded. (Strictly speaking, one needs to be careful when applying the
union bound in the proof because the upper limit blog log xc − D(t) − 1 in the
product now depends on t . However, D(t) is constant on t intervals of the form
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e−(r+1) 6 |t |< e−r , so one can split up first according to which such interval t lies
in.) There we must invoke (4) to estimate each term E|Il(1/2 − k

log x + i t (l))|−2

for k 6 l 6 log log x − D − 1, and the estimate this supplies is

exp

 ∑
xe−(l+2)

<p6xe−(l+1)

1+ 2 cos(2t (l) log p)
p1−2k/ log x

+ O

(
1

√

x e−(l+2)e−(l+2) log x

) ,
which is not identical to the corresponding estimate for E|Il(1/2− k

log x + i t (l))|2

(which would not include the 2 cos(2t (l) log p) term). However, since (using the
approximation bound (5) on |t − t (l)| and the fact that l 6 log log x − D − 1)
we always have |t | � |t (l)| � 1, standard estimates for sums over primes
(as in the proof of Lemma 5) show that∑

xe−(l+2)
<p6xe−(l+1)

2 cos(2t (l) log p)
p1−2k/ log x

�
1

|t |e−l log x
.

Recalling that l 6 log log x − D − 1 and that D = dlog(1/|t |)e + (B + 1), we
see these terms involving 2 cos(2t (l) log p) give a negligible contribution.

Given Key Propositions 3 and 4, exactly the same argument as in the Steinhaus
case in Section 4.1 confirms that, as we wanted,

E

∫
|t |61/2,

|t |>1/
√

log log x

∣∣∣∣Fk

(
1/2−

k
log x

+ i t
)∣∣∣∣2 dt

q

�

(
log x

ek
min

{
1,

1

(1− q)
√

log log x

})q

.

To handle the integral over |t − N | 6 1/2 for general 1 6 |N | 6 (log log x)2,
one follows the same argument as above but with log log x − D − 1 replaced by
log log x − d2 log log 10Ne − (B + 1) − 1, say. This produces an extra factor
log log 10N in the analogue of Key Proposition 3, which is more than cancelled
out by the prefactor 1/(|N | + 1)q/4 attached to the N integral.

5. Proofs of the lower bounds in Theorems 1 and 2

Recall that F(s) denotes the Euler product of f (n) over x-smooth numbers.
In view of Propositions 3 and 4, the lower bound parts of Theorems 1 and 2
will essentially follow if we can prove suitable lower bounds for ‖

∫ 1/2
−1/2|F(1/2+
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4V
log x + i t)|2 dt‖1/2

q , where V is a large constant. (We also need upper bounds for

quantities like ‖
∫ 1/2
−1/2|F(1/2 +

2V
log x + i t)|2 dt‖1/2

q , but those will follow directly
from our work in Section 4.) As described in Section 1, we shall actually seek
a lower bound for ‖

∫
L|F(1/2+

4V
log x + i t)|2 dt‖1/2

q , where L ⊆ [−1/2, 1/2] is a
suitable random subset that makes things work nicely.

When we proved Key Proposition 1 (or the Rademacher version, Key
Proposition 3) during our work on upper bounds, we used Hölder’s inequality
to replace a restricted qth moment by a restricted first moment that we could
estimate. This straightforward procedure is not available for lower bounds.
However, we can write

E
∫
L

∣∣∣∣F (1
2
+

4V
log x

+ i t
)∣∣∣∣2 dt

= E

(∫
L

∣∣∣∣F (1
2
+

4V
log x

+ i t
)∣∣∣∣2 dt

) q
2−q

×

(∫
L

∣∣∣∣F (1
2
+

4V
log x

+ i t
)∣∣∣∣2 dt

) 2(1−q)
(2−q)

,

so applying Hölder’s inequality with exponents 2 − q and (2 − q)/(1 − q), we
obtain that E

∫
L |F(

1
2 +

4V
log x + i t)|2 dt is

6

(
E

(∫
L

∣∣∣∣F (1
2
+

4V
log x

+ i t
)∣∣∣∣2 dt

)q) 1
2−q

×

E

(∫
L

∣∣∣∣F (1
2
+

4V
log x

+ i t
)∣∣∣∣2 dt

)2


1−q
2−q

.

We will be able to lower bound E
∫
L |F(

1
2 +

4V
log x + i t)|2 dt using the Girsanov-

type estimates we already proved in Section 3. The extra ingredient we require
now is an upper bound for the second moment of the integral over L, and to
prove that, we must perform some further probabilistic preparations.

5.1. Further probabilistic calculations. In Lemma 1, we computed the
expectation of the second power of one Steinhaus Euler product times an
imaginary power of a shifted Euler product. We now require a variant of this.
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LEMMA 6. If f is a Steinhaus random multiplicative function, then for any real
t, u, v, any real 400(1+ u2

+ v2) 6 x 6 y and any real σ > −1/ log y, we have

E
∏

x<p6y

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−(2+iu) ∣∣∣∣1− f (p)
p1/2+σ+i t

∣∣∣∣−(2+iv)

= exp

 ∑
x<p6y

(1+ iu/2)2 + (1+ iv/2)2

p1+2σ

+

∑
x<p6y

(2+ iu)(2+ iv) cos(t log p)
2p1+2σ

+ T (u, v)

 ,
where T (u, v) = Tx,y,σ,t(u, v) satisfies |T (u, v)| � 1+|u|3+|v|3

√
x log x and its partial

derivatives satisfy | ∂T (u,v)
∂u | �

1+u2
+v2

√
x log x , | ∂T (u,v)

∂v
| �

1+u2
+v2

√
x log x and | ∂T (u,v)

∂u∂v | �

1+|u|+|v|
√

x log x .

In particular, Lemma 6 implies that for any real t and any 400 6 x 6 y and
any σ > −1/ log y, and for Steinhaus random multiplicative f , we have

E
∏

x<p6y

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−2 ∣∣∣∣1− f (p)
p1/2+σ+i t

∣∣∣∣−2

= exp

 ∑
x<p6y

2+ 2 cos(t log p)
p1+2σ

+ O
(

1
√

x log x

) . (6)

Proof of Lemma 6. The proof is an extension of the proof of Lemma 1. As there,
we temporarily set Rp(t) := −< log(1− f (p)

p1/2+σ+i t ), and then we may rewrite∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−(2+iu) ∣∣∣∣1− f (p)
p1/2+σ+i t

∣∣∣∣−(2+iv)

= exp{(2+ iu)Rp(0)+ (2+ iv)Rp(t)}

= 1+
∞∑
j=1

((2+ iu)Rp(0)+ (2+ iv)Rp(t)) j

j !
.

In the proof of Lemma 1, we used the Taylor expansion of the logarithm to
determine that ERp(t) = 0. We also obtained that

ERp(t)2 =
1

2p1+2σ
+ O

(
1

p3/2+3σ

)
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and

ERp(0)Rp(t) =
cos(t log p)

2p1+2σ
+ O

(
1

p3/2+3σ

)
,

and for j > 3, we have the trivial bound |Rp(t) j
| 6 (

∑
∞

k=1
1

pk(1/2+σ) )
j
=

1
(p1/2+σ−1) j .

Furthermore, we noted there that for primes y > p > x > 400(1 + u2
+ v2)

and for σ > − 1
log y , we have 1

p1/2+σ =
e−σ log p

p1/2 6 e
p1/2 , which now implies that

(4+ |u| + |v|)/p1/2+σ 6 3e/10.
So putting things together, for such primes, we have

E
∣∣∣∣1− f (p)

p1/2+σ

∣∣∣∣−(2+iu) ∣∣∣∣1− f (p)
p1/2+σ+i t

∣∣∣∣−(2+iv)

= 1+
(2+iu)2ERp(0)2+2(2+ iu)(2+iv)ERp(0)Rp(t)+(2+ iv)2ERp(t)2

2

+E
∞∑
j=3

((2+ iu)Rp(0)+ (2+ iv)Rp(t)) j

j !

= 1+
(1+ iu

2 )
2
+ (1+ iv

2 )
2

p1+2σ
+
(2+ iu)(2+ iv) cos(t log p)

2p1+2σ

+ O

(
∞∑
j=3

(4+ |u| + |v|) j

j !(p1/2+σ − 1) j

)

= 1+
(1+ iu/2)2 + (1+ iv/2)2

p1+2σ

+
(2+ iu)(2+ iv) cos(t log p)

2p1+2σ
+ Dp(u, v),

where Dp(u, v) satisfies |Dp(u, v)| � 1+|u|3+|v|3

p3/2+3σ �
1+|u|3+|v|3

p3/2 , and its partial

derivatives satisfy | ∂Dp(u,v)
∂u | �

1+u2
+v2

p3/2 , | ∂Dp(u,v)
∂v
| �

1+u2
+v2

p3/2 and | ∂Dp(u,v)
∂u∂v | �

1+|u|+|v|
p3/2 .
The conclusion of Lemma 6 now follows as in the proof of Lemma 1, using the

independence of f on distinct primes and the standard Chebychev-type estimate∑
p>x 1/p3/2

� 1/(
√

x log x).

We remark that in our applications of Lemma 1, we took the shift t to
be rather small so that cos(t log p) ≈ 1. In this setting, the expression∑

x<p6y
1+iu cos(t log p)−u2/4

p1+2σ from Lemma 1 is approximately the expression
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x<p6y

(1+iu/2)2

p1+2σ in Lemma 6. When we come to apply Lemma 6, we will
take the shift t there to be somewhat large compared with x so that the sum∑

x<p6y
(2+iu)(2+iv) cos(t log p)

2p1+2σ is small. The important point is that this regime
corresponds to the product and the shifted product in Lemma 6 behaving fairly
independently.

Next, we want to adapt the Girsanov-type calculations from Section 3.2 to a
‘tilted’ probability measure weighted by two Euler products. Thus, for each t ∈ R
and for large x and −1/100 6 σ 6 1/100, let us define a probability measure
P̃St,(2)

t = P̃St,(2)
x,σ,t by setting

P̃St,(2)
t (A) :=

E1A
∏

p6x1/e

∣∣∣1− f (p)
p1/2+σ

∣∣∣−2 ∣∣∣1− f (p)
p1/2+σ+i t

∣∣∣−2

E
∏

p6x1/e

∣∣∣1− f (p)
p1/2+σ

∣∣∣−2 ∣∣∣1− f (p)
p1/2+σ+i t

∣∣∣−2

for each event A, where f is a Steinhaus random multiplicative function. We
write ẼSt,(2)

t to denote expectation with respect to this measure. The superscript
(2) in this notation reflects the fact that we are weighting by two products and is
designed to be distinctive from the notation used in the one product Rademacher
case in Section 3.3.

As in the one-dimensional case, the exact range of p in the definition of the
measure P̃St,(2)

t does not matter too much because if the event A does not involve
a particular prime, then the expectation of that part of the products will factor
out and cancel between the numerator and denominator. We emphasize this point
because, in our later calculations, we will extract various parts of the products
and we must be clear that our results about P̃St,(2)

t (A) will still be applicable, for
appropriate A.

As before, we shall let (l j)
n
j=1 denote a strictly decreasing sequence of

nonnegative integers, with l1 6 log log x − 2, and define a corresponding
increasing sequence of real numbers (x j)

n
j=1 by setting x j := x e−(l j+1)

. And for
each l ∈ N∪{0}, we set Il(s) :=

∏
xe−(l+2)

<p6xe−(l+1) (1− f (p)
ps )

−1, the lth increment
of the Euler product corresponding to Steinhaus f .

Using Lemma 6 (which will serve as a two-dimensional characteristic function
calculation under the measure P̃St,(2)

t ) and a two-dimensional version of the
Berry–Esseen inequality, we can prove the following result, which the reader
may compare with the one-dimensional case in Lemma 3.

LEMMA 7. Let the situation be as above, with the restriction that |t | 6 1.
Suppose that x1 > eC/|t |2 is sufficiently large and that |σ | 6 1/ log xn . Suppose
further that (u j)

n
j=1 and (v j)

n
j=1 are any sequences of real numbers satisfying

|u j |, |v j | 6 (1/40)(log x j)
1/4
+ 2 ∀1 6 j 6 n.
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Then we have

P̃St,(2)
t

(
u j 6 log

∣∣∣∣Il j

(
1
2
+ σ

)∣∣∣∣ 6 u j +
1
j 2
,

v j 6 log
∣∣∣∣Il j

(
1
2
+ σ + i t

)∣∣∣∣ 6 v j +
1
j 2
,∀ j 6 n

)
=

(
1+ O

(
1

x1/100
1

))

×P
(

u j 6 N 1
j 6 u j +

1
j 2
, and v j 6 N 2

j 6 v j +
1
j 2
,∀1 6 j 6 n

)
,

where (N 1
j , N 2

j )
n
j=1 is a sequence of independent bivariate Gaussian random

vectors, and the components N 1
j , N 2

j have mean
∑

x1/e
j <p6x j

1+cos(t log p)
p1+2σ , variance∑

x1/e
j <p6x j

1
2p1+2σ and covariance

∑
x1/e

j <p6x j

cos(t log p)
2p1+2σ .

Furthermore, we also have the alternative estimate

P̃St,(2)
t

(
u j 6 log

∣∣∣∣Il j

(
1
2
+ σ

)∣∣∣∣ 6 u j +
1
j 2
,

v j 6 log
∣∣∣∣Il j

(
1
2
+ σ + i t

)∣∣∣∣ 6 v j +
1
j 2
, ∀ j 6 n

)
=

(
1+ O

(
1
√

C

))
P
(

u j 6 N 1
j 6 u j +

1
j 2
∀ j 6 n

)
·P
(
v j 6 N 2

j 6 v j +
1
j 2
∀ j 6 n

)
,

in other words, we may replace the covariance of N 1
j , N 2

j by zero.

We should perhaps comment on some of the assumptions in Lemma 7, as
compared with Lemmas 3 and 5. Note that the allowed range of u j , v j here is
a multiple of (log x j)

1/4, as opposed to our previous
√

log x j . The assumption
that x1 > eC/|t |2 is also stronger than previous assumptions of the shape x1 >
eC/|t |. These conditions are used to deduce the second part of Lemma 7, that we
may treat N 1

j and N 2
j as independent. Some tradeoff between the conditions is

possible, so if one restricted u j , v j further one could allow x1 to be smaller. But
in our application, we will set things up so both conditions are anyway satisfied
with room to spare.

Proof of Lemma 7. By independence, both the probability on the left and the
ones on the right factor as a product over j . So, bearing in mind that we have
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x j > x e j−1

1 for all j , it will suffice to prove the equalities

P̃St,(2)
t

(
u j 6 log

∣∣∣∣Il j

(
1
2
+ σ

)∣∣∣∣ 6 u j +
1
j 2
,

and v j 6 log
∣∣∣∣Il j

(
1
2
+ σ + i t

)∣∣∣∣ 6 v j +
1
j 2

)
=

(
1+ O

(
1

x1/100
j

))

×P
(

u j 6 N 1
j 6 u j +

1
j 2
, and v j 6 N 2

j 6 v j +
1
j 2

)
=

(
1+ O

(
1
√

Ce j

))
×P

(
u j 6 N 1

j 6 u j +
1
j 2

)
· P
(
v j 6 N 2

j 6 v j +
1
j 2

)
for all 1 6 j 6 n.

By two applications of Lemma 6, for any |u|, |v| 6 x1/10
j (say), the

characteristic function ẼSt,(2)
t eiu log |Il j (1/2+σ)|+iv log |Il j (1/2+σ+i t)| is

= exp


∑

x1/e
j <p6x j

iu − u2

4 + iv − v2

4

p1+2σ

+

∑
x1/e

j <p6x j

(2iu + 2iv − uv) cos(t log p)
2p1+2σ

+ T (u, v)− T (0, 0)

 .
Without the error term T (u, v) − T (0, 0), a standard calculation shows that
this would be the characteristic function of the pair (N 1

j , N 2
j ), where N 1

j ,

N 2
j are Gaussian random variables each having mean

∑
x1/e

j <p6x j

1+cos(t log p)
p1+2σ

and variance
∑

x1/e
j <p6x j

1
2p1+2σ , and with covariance EN 1

j N 2
j − EN 1

j EN 2
j =∑

x1/e
j <p6x j

cos(t log p)
2p1+2σ . Before proceeding further, we record a few calculations we

will use later. First, under our conditions |t | 6 1 and x j > x1 > eC/|t |2 (in fact, it
would suffice to have x1 > eC/|t | at this stage) and |σ | 6 1/ log xn , we have by
standard prime number estimates (as in the proofs of Lemmas 4 and 5) that∑

x1/e
j <p6x j

cos(t log p)
p1+2σ

�
1

|t | log x j
�

1
e j |t | log x1

�
1

Ce j
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as well as∑
x1/e

j <p6x j

1
p1+2σ

= 1+ O
(

1
log x j

+
log x j

log xn

)
= 1+ O(C−1e− j

+ e−(n− j)).

Second, by Lemma 6 the ‘error’ terms T (u, v) in our characteristic functions
satisfy |T (u, v)−T (0, 0)| � 1+|u|3+|v|3√

x1/e
j log x j

as well as |T (u, 0)−T (0, 0)| � |u|+|u|3√
x1/e

j log x j

and |T (0, v)− T (0, 0)| � |v|+|v|3√
x1/e

j log x j
, and

|T (u, v)− T (u, 0)− T (0, v)+ T (0, 0)| =
∣∣∣∣∫ u

0

∫ v

0

∂T (u, v)
∂u∂v

du dv
∣∣∣∣

�
|u||v|(1+ |u| + |v|)√

x1/e
j log x j

.

Now by the two-dimensional Berry–Esseen inequality (see Sadikova’s
paper [24]), we have∣∣∣∣P̃St,(2)

t

(
u j 6 log

∣∣∣∣Il j

(
1
2
+ σ

)∣∣∣∣ 6 u j +
1
j 2
,

and v j 6 log
∣∣∣∣Il j

(
1
2
+ σ + i t

)∣∣∣∣ 6 v j +
1
j 2

)
−P

(
u j 6 N 1

j 6 u j +
1
j 2
, and v j 6 N 2

j 6 v j +
1
j 2

)∣∣∣∣
�

∫ x1/50
j

−x1/50
j

∫ x1/50
j

−x1/50
j

∣∣∣∣∆(u, v)uv

∣∣∣∣ du dv

+

∫ x1/50
j

−x1/50
j

∣∣∣∣∣ ẼSt,(2)
t eiu log |Il j (1/2+σ)| − EeiuN 1

j

u

∣∣∣∣∣ du

+

∫ x1/50
j

−x1/50
j

∣∣∣∣∣ ẼSt,(2)
t eiv log |Il j (1/2+σ+i t)|

− EeivN 2
j

v

∣∣∣∣∣ dv +
1

x1/50
j

,

where

∆(u, v) := ẼSt,(2)
t eiu log |Il j (1/2+σ)|+iv log |Il j (1/2+σ+i t)|

− EeiuN 1
j+ivN 2

j

−ẼSt,(2)
t eiu log |Il j (1/2+σ)|ẼSt,(2)

t eiv log |Il j (1/2+σ+i t)|
+ EeiuN 1

j EeivN 2
j .

Our general expression for the two-dimensional characteristic function (now
with v = 0) implies that ẼSt,(2)

t eiu log |Il j (1/2+σ)| is equal to eT (u,0)−T (0,0)EeiuN 1
j ,
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so the second integral here is

6
∫ x1/50

j

−x1/50
j

∣∣∣∣eT (u,0)−T (0,0)
− 1

u

∣∣∣∣ du �
1√

x1/e
j log x j

∫ x1/50
j

−x1/50
j

(1+ u2) du �
1

x1/50
j

,

and the third integral may be bounded exactly similarly. To bound the first
(double) integral, we split into the ranges |uv| 6 1 and |uv| > 1. On the latter
range, to bound ∆(u, v), we can simply use that (by Lemma 6, as noted earlier
in the proof)

ẼSt,(2)
t eiu log |Il j (1/2+σ)|+iv log |Il j (1/2+σ+i t)|

− EeiuN 1
j+ivN 2

j

= EeiuN 1
j+ivN 2

j (eT (u,v)−T (0,0)
− 1)

�
1+ |u|3 + |v|3√

x1/e
j log x j

and similarly that

ẼSt,(2)
t eiu log |Il j (1/2+σ)|ẼSt,(2)

t eiv log |Il j (1/2+σ+i t)|
− EeiuN 1

j EeivN 2
j

= EeiuN 1
j EeivN 2

j (eT (u,0)−T (0,0)+T (0,v)−T (0,0)
− 1)�

1+ |u|3 + |v|3√
x1/e

j log x j

.

To handle the more delicate range where |uv| 6 1, we note that

∆(u, v) = EeiuN 1
j EeivN 2

j

×

(
e
−uv

∑
x1/e

j <p6x j

cos(t log p)
2p1+2σ +T (u,v)−T (0,0)

− e
−uv

∑
x1/e

j <p6x j

cos(t log p)
2p1+2σ

− eT (u,0)−T (0,0)+T (0,v)−T (0,0)
+ 1

)
.

We can write eT (u,0)−T (0,0)+T (0,v)−T (0,0)
= eT (u,v)−T (0,0)e−(T (u,v)−T (u,0)−T (0,v)+T (0,0)),

which is = eT (u,v)−T (0,0)
+ O( |u||v|(1+|u|+|v|)√

x1/e
j log x j

), using our earlier estimation that

|T (u, v)− T (u, 0)− T (0, v)+ T (0, 0)| �
|u||v|(1+ |u| + |v|)√

x1/e
j log x j

.

So when |uv| 6 1, we have that |∆(u, v)| has order at most
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|eT (u,v)−T (0,0)
− 1‖e

−uv
∑

x1/e
j <p6x j

cos(t log p)
2p1+2σ

− 1| +
|uv|(1+ |u| + |v|)√

x1/e
j log x j

� |eT (u,v)−T (0,0)
− 1‖uv| +

|uv|(1+ |u| + |v|)√
x1/e

j log x j

�
|uv|(1+ |u|3 + |v|3)√

x1/e
j log x j

,

and we obtain overall that∫ x1/50
j

−x1/50
j

∫ x1/50
j

−x1/50
j

∣∣∣∣∆(u, v)uv

∣∣∣∣ du dv �
x1/10

j√
x1/e

j log x j

�
1

x1/20
j

�
1

x1/50
j

.

To finish the proof, let us (for concision) temporarily set

µ j =
∑

x1/e
j <p6x j

1+ cos(t log p)
p1+2σ

,

σ j :=

√√√√ ∑
x1/e

j <p6x j

1
2p1+2σ

and

r j =

∑
x1/e

j <p6x j

cos(t log p)
2p1+2σ∑

x1/e
j <p6x j

1
2p1+2σ

,

and recall we calculated earlier that σ j � 1 andµ j � 1 and r j � 1/(|t | log x j)�

1/C . Then we may note that

P
(

u j 6 N 1
j 6 u j +

1
j 2
, and v j 6 N 2

j 6 v j +
1
j 2

)
= P

(
u j − µ j

σ j
6

N 1
j − µ j

σ j
6

u j + 1/j 2
− µ j

σ j
,

and
v j − µ j

σ j
6

N 2
j − µ j

σ j
6
v j + 1/j 2

− µ j

σ j

)

=

∫ (u j−µ j+1/j2)/σ j

(u j−µ j )/σ j

∫ (v j−µ j+1/j2)/σ j

(v j−µ j )/σ j

1

2π
√

1− r 2
j

e−(x
2
−2r j xy+y2)/2(1−r2

j ) dx dy.

In particular, since we have |u j |, |v j | 6 (log x j)
1/4, we see this probability is

�
1
j4 e−O(

√
log x j ). Thus, as in the one-dimensional case in Lemma 3, we may
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replace the absolute error term 1/x1/50
j from the Berry–Esseen theorem by a

multiplier 1 + O(1/x1/100
j ), say. This gives the first estimate in Lemma 7. To

obtain the second estimate in Lemma 7, we simply note that

e−(x
2
−2r j xy+y2)/2(1−r2

j )

2π
√

1− r 2
j

=
e−(x

2
+y2)/2

2π
√

1− r 2
j

eO(r j
√

log x j )

=
e−(x

2
+y2)/2

2π

(
1+ O

(
1

|t |
√

log x j

))
,

and here 1
|t |
√

log x j
�

1

|t |
√

e j log x1
�

1
√

Ce j because of our assumption that x1 >

eC/|t |2 .

Now we can swiftly deduce the following result, which is what we shall need
for our lower bound proof and is a two-dimensional analogue of Proposition 5.

PROPOSITION 7. There is a large natural number B such that the following is
true.

Let t ∈ R satisfy |t | 6 1 and let D > 2 log(1/|t |) + (B + 1) be any natural
number. Let n 6 log log x − D be large, and define the decreasing sequence
(l j)

n
j=1 of nonnegative integers by l j := blog log xc − D − j . Suppose also that

|σ | 6 1
eD+n .

Then uniformly for any large a and any function h( j) satisfying
|h( j)| 6 10 log j , and with Il(s) denoting the increments of the Euler product
corresponding to a Steinhaus random multiplicative function (as before), we
have

P̃St,(2)
t

(
−a − B j 6

j∑
m=1

log
∣∣∣∣Ilm

(
1
2
+ σ

)∣∣∣∣ , j∑
m=1

log
∣∣∣∣Ilm

(
1
2
+ σ + i t

)∣∣∣∣
6 a + j + h( j) ∀ j 6 n

)

� min
{

1,
a
√

n

}2

.

Proof of Proposition 7. Under the hypotheses of Proposition 7, we have

log x1 = e−(l1+1) log x >
eB+1

|t |2
and |σ | 6

1
eD+n

6
eln+1

log x
=

1
log xn

.
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This means the hypotheses of Lemma 7 will be satisfied, provided the constant
B is fixed sufficiently large.

So using Lemma 7, together with a slicing argument exactly as in
the deduction of Lemma 4, we may show the following: provided that
−(1/80)(log x j)

1/4 6 u j 6 v j 6 (1/80)(log x j)
1/4 for all 1 6 j 6 n, we have

P̃St,(2)
t

(
u j 6

j∑
m=1

log
∣∣∣∣Ilm

(
1
2
+ σ

)∣∣∣∣ , j∑
m=1

log
∣∣∣∣Ilm

(
1
2
+ σ + i t

)∣∣∣∣
6 v j , ∀1 6 j 6 n

)

� P

(
u j − j + O(1) 6

j∑
m=1

Gm 6 v j − j + O(1) ∀1 6 j 6 n

)2

,

where (Gm)
j
m=1 are a sequence of independent Gaussian random variables,

each having mean zero and variance
∑

x1/e
m <p6xm

1
2p1+2σ . The conclusion

of Proposition 7 now follows exactly as in the one-dimensional case in
Proposition 5.

5.2. The lower bound in the Steinhaus case. Let B be the large fixed natural
number from Proposition 5 (which we may assume, without loss of generality,
is the same as the number B from Proposition 7). For each t ∈ R, let L(t) =
L x,q,V (t) denote the event that

(
log x
e j+1

)−B

e−min{
√

log log x,1/(1−q)} 6
blog log xc−B−2∏

l= j

∣∣∣∣Il

(
1/2+

4V
log x

+ i t
)∣∣∣∣

6
log x
e j+1

emin{
√

log log x,1/(1−q)}−2 log log( log x
e j+1 )

for all blog V c+3 6 j 6 log log x−B−2. Here the quantity V will ultimately be
fixed as another large constant, but initially, we allow any 1 6 V 6 (log x)1/100,
say. Let L denote the random subset of points |t | 6 1/2 at which L(t) occurs.

The following is the key restricted second moment estimate that we shall need.

KEY PROPOSITION 5. With the foregoing notation and uniformly for all large
x and 2/3 6 q 6 1 and 1 6 V 6 (log x)1/100, we have
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E

(∫
L

∣∣∣∣F (1/2+
4V

log x
+ i t

)∣∣∣∣2 dt

)2

� e2 min{
√

log log x,1/(1−q)}

(
log x

V (1+ (1− q)
√

log log x)

)2

.

We remark that the factor e2 min{
√

log log x,1/(1−q)} here, which may look rather
alarming, will in fact be harmless because, when raised to the power 1 − q ,
it becomes �1. This should become clear imminently when we deduce the
Theorem 1 lower bound.

Proof of the lower bound in Theorem 1, assuming Key Proposition 5. As
argued at the beginning of Section 5, Hölder’s inequality implies that

E

(∫
L

∣∣∣∣F (1/2+
4V

log x
+ i t

)∣∣∣∣2 dt

)q

>

(
E
∫
L |F(1/2+

4V
log x + i t)|2 dt

)2−q

(
E
(∫

L |F(1/2+
4V

log x + i t)|2 dt
)2
)1−q .

In the Steinhaus case, translation invariance in law implies that we have a
simplified expression for the numerator, namely(∫ 1/2

−1/2
E1L(t)

∣∣∣∣F (1/2+
4V

log x
+ i t

)∣∣∣∣2 dt

)2−q

=

(
E1L(0)

∣∣∣∣F (1/2+
4V

log x

)∣∣∣∣2
)2−q

=

(
P̃(L(0)) · E

∣∣∣∣F (1/2+
4V

log x

)∣∣∣∣2
)2−q

.

We can apply Proposition 5 from Section 3.2 here, taking n = blog log xc −
(B + 1) − (blog V c + 3) and σ = 4V

log x and t j ≡ 0, and a = min{
√

log log x,
1/(1 − q)} + O(1) and h( j) = −2 log j . Using also (2) and the standard
Mertens prime number estimates, which imply that E|F(1/2 + 4V

log x )|
2 is

� exp{
∑

p6x
1

p1+8V/ log x } = exp{
∑

p6x1/V
1

p1+8V/ log x + O(1)} � (log x)/V , we
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deduce our numerator is

�

(
1

1+ (1− q)
√

log log x
E
∣∣∣∣F (1/2+

4V
log x

)∣∣∣∣2
)2−q

�

(
log x

V (1+ (1− q)
√

log log x)

)2−q

.

Inserting the estimate from Key Proposition 5 to upper bound the denominator,
and taking 2qth roots, we deduce overall that∥∥∥∥∥

∫ 1/2

−1/2

∣∣∣∣F (1/2+
4V

log x
+ i t

)∣∣∣∣2 dt

∥∥∥∥∥
1/2

q

�

√
log x

V (1+ (1− q)
√

log log x)
.

Meanwhile, if we argue as we did in Section 4.1 when proving the upper bound
part of Theorem 1 (specifically when handling Fk(s) with k = blog V c), we have∥∥∥∥∥

∫ 1/2

−1/2

∣∣∣∣F (1/2+
2V

log x
+ i t

)∣∣∣∣2 dt

∥∥∥∥∥
1/2

q

�

√
log x

V (1+ (1− q)
√

log log x)
.

Substituting these two bounds into Proposition 3 and choosing V to be a
sufficiently large fixed constant that the term C/eV there kills off the effect of
the implicit constants, we obtain (with V now fixed)∥∥∥∥∥∑

n6x

f (n)

∥∥∥∥∥
2q

�

√
x

V (1+ (1− q)
√

log log x)
�

√
x

1+ (1− q)
√

log log x
.

This is the lower bound claimed in Theorem 1.

Proof of Key Proposition 5. Expanding out and recalling the definition of L, we
find E(

∫
L |F(1/2+

4V
log x + i t)|2 dt)2 is

=

∫ 1/2

−1/2

∫ 1/2

−1/2
E1L(t)

∣∣∣∣F (1/2+
4V

log x
+ i t

)∣∣∣∣2
× 1L(s)

∣∣∣∣F (1/2+
4V

log x
+ is

)∣∣∣∣2 ds dt.

In the Steinhaus case, we can use translation invariance in law to simplify this
by shifting t to 0 and replacing s by s − t . This yields that
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E

(∫
L

∣∣∣∣F (1/2+
4V

log x
+ i t

)∣∣∣∣2 dt

)2

6
∫ 1

−1
E1L(0)

∣∣∣∣F (1/2+
4V

log x

)∣∣∣∣2 1L(t)

∣∣∣∣F (1/2+
4V

log x
+ i t

)∣∣∣∣2 dt.

Now the point here is that given a shift of size t in the integral, we expect the
parts of the two Euler products on primes roughly 6 e1/|t | (or on primes 6 x , if
|t | < 1/ log x) to behave in almost the same way and the parts on larger primes to
behave almost independently. So let us temporarily set M := max{blog V c + 3,
blog(|t | log x)c}. Then our strategy is to use the fact that, by definition of L(t),
when the event L(t) occurs, we have

blog log xc−B−2∏
l=M

∣∣∣∣Il

(
1
2
+

4V
log x

+ i t
)∣∣∣∣2

�

(
min

{
log x

V (log log x)2
,

1
|t | log2(2/|t |)

}
emin{
√

log log x, 1
1−q }

)2

, (7)

and then use our probabilistic estimates to bound the remaining part

E1L(0)

∣∣∣∣F (1/2+
4V

log x

)∣∣∣∣2 1L(t)

|F(1/2+ 4V
log x + i t)|2∏

blog log xc−B−2
l=M |Il(1/2+ 4V

log x + i t)|2
(8)

of the integrand.
It turns out that when |t | 6 1/(log x)1/3, say (so in particular log(2/|t |) �

log log x), we can afford to take a crude approach thanks to the saving
1/(log log x)4 in the minimum in (7), and now throw away the indicator
functions 1L(0), 1L(t) from (8). Having done this, using the independence of f (p)
on distinct primes, we find (8) is

6 E
blog log xc−B−2∏

l=M

∣∣∣∣Il

(
1/2+

4V
log x

)∣∣∣∣2
×E

|F(1/2+ 4V
log x )|

2
|F(1/2+ 4V

log x + i t)|2∏
blog log xc−B−2
l=M |Il(1/2+ 4V

log x )|
2|Il(1/2+ 4V

log x + i t)|2
.

Now using (6), the second expectation here is equal to

exp

 ∑
p6xe−(blog log xc−B)

2+ 2 cos(t log p)
p1+8V/ log x

+

∑
xe−(M+1)

<p6x

2+ 2 cos(t log p)
p1+8V/ log x

+ O(1)

 ,
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and remembering that B is a fixed constant and using standard Mertens and
Chebychev-type estimates for sums over primes, this is

� exp

 ∑
min{x1/V ,e1/|t |}<p6x

2+ 2 cos(t log p)
p1+8V/ log x


� exp

 ∑
min{x1/V ,e1/|t |}<p6x1/V

2+ 2 cos(t log p)
p

 .
Again, since we may assume here that p > e1/|t |, standard estimates
for sums over primes (as in the proof of Lemma 5) show the overall
contribution from the cos(t log p) sum is �1, so we finally have a bound
� exp{

∑
min{x1/V ,e1/|t |}<p6x1/V

2
p } � (max{1, |t | log x

V })
2. Meanwhile, (2) implies

that the first expectation E
∏
blog log xc−B−2
l=M |Il(1/2 + 4V

log x )|
2 is equal to

exp{
∑

p6min{x1/V ,e1/|t |}
1

p1+8V/ log x + O(1)} � min{ log x
V , 1

|t | }. So putting together
(7) with our above upper bounds for (8), we obtain

∫
|t |61/(log x)1/3

E1L(0)

∣∣∣∣F (1/2+
4V

log x

)∣∣∣∣2 1L(t)

∣∣∣∣F (1/2+
4V

log x
+ i t

)∣∣∣∣2 dt

�
e2 min{
√

log log x,1/(1−q)}

(log log x)4

×

∫
|t |61/(log x)1/3

(
min

{
log x

V
,

1
|t |

})3 (
max

{
1,
|t | log x

V

})2

dt

�
e2 min{
√

log log x, 1
1−q } log2 x

V 2(log log x)4

∫
|t |61/(log x)1/3

min
{

log x
V

,
1
|t |

}
dt

�
e2 min{
√

log log x, 1
1−q } log2 x

V 2(log log x)3
,

which is more than acceptable for Key Proposition 5.
To handle the contribution from 1/(log x)1/3 < |t | 6 1, we follow the same

approach but need to deal with the indicator functions 1L(0), 1L(t) in (8) more
carefully because our saving 1/ log4(2/|t |) from the minimum in (7) is no longer
so great. We temporarily set D = D(t) = d2 log(1/|t |)e+(B+1) so that B+1 6
D 6 (2/3) log log x + B + O(1) and eD

�
eB

|t |2 �
1
|t |2 . If the event L(0) occurs

then, comparing the definition of L(0)with j = blog log xc−D and with general
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j (and recalling that B is an absolute constant), we must in particular have(
log x
e j+1

)−B

e−2 min{
√

log log x, 1
1−q }|t |2 log2

(
2
|t |

)
�

blog log xc−D−1∏
l= j

∣∣∣∣Il

(
1
2
+

4V
log x

)∣∣∣∣
�

log x
e j+1

e−2 log log( log x
e j+1 )

e2 min{
√

log log x,1/(1−q)}

|t |2B

for all blog V c + 3 6 j 6 log log x − D − 1. Similarly, if the event L(t) occurs,
then we must have the same bounds with |Il(1/2+ 4V

log x )| replaced by |Il(1/2+
4V

log x + i t)|.
Let us write R(t) for the event that one has these bounds for both |Il(1/2 +

4V
log x )| and |Il(1/2 + 4V

log x + i t)|. Then for 1/(log x)1/3 < |t | 6 1, we can upper
bound (8) by

E1R(t)

∣∣∣∣F (1/2+
4V

log x

)∣∣∣∣2 |F(1/2+ 4V
log x + i t)|2∏

blog log xc−B−2
l=blog(|t | log x)c |Il(1/2+ 4V

log x + i t)|2
.

Now, here we have log log x − D − 1 < blog(|t | log x)c. Since f (p) is
independent on distinct primes, and so the event R(t) is independent of∏
blog log xc−B−2
l=blog(|t | log x)c |Il(1/2 + 4V

log x )|
2, we may pull E

∏
blog log xc−B−2
l=blog(|t | log x)c |Il(1/2 + 4V

log x )|
2

out from the product |F(1/2 + 4V
log x )|

2 above and use (2) to show it is =
exp{

∑
p6e1/|t |

1
p1+8V/ log x + O(1)} � 1/|t |. So employing our tilted probability

notation from Section 5.1, we have that (8) is

� (1/|t |)E1R(t)

|F(1/2+ 4V
log x )|

2∏
blog log xc−B−2
l=blog(|t | log x)c |Il(1/2+ 4V

log x )|
2

×

|F(1/2+ 4V
log x + i t)|2∏

blog log xc−B−2
l=blog(|t | log x)c |Il(1/2+ 4V

log x + i t)|2

=
1
|t |

P̃St,(2)
t (R(t))E

|F(1/2+ 4V
log x )|

2∏
blog log xc−B−2
l=blog(|t | log x)c |Il(1/2+ 4V

log x )|
2

×

|F(1/2+ 4V
log x + i t)|2∏

blog log xc−B−2
l=blog(|t | log x)c |Il(1/2+ 4V

log x + i t)|2
.

We may deploy Proposition 7 to bound P̃St,(2)
t (R(t)), taking n = blog log xc −

D − (blog V c + 3)� log log x , σ = 4V
log x , a = 2 min{

√
log log x, 1/(1− q)} +
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O(log(2/|t |)) and h( j) = −2 log j , and obtaining that

P̃St,(2)
t (R(t))�

(
1

1+ (1− q)
√

log log x
+

log(2/|t |)√
log log x

)2

�
log2(2/|t |)

(1+ (1− q)
√

log log x)2
.

Furthermore, as we did earlier when |t | 6 1/ log1/3 x , we may use (6) and
standard prime number estimates to obtain that the expectation in the preceding
display is�( |t | log x

V )2.
Finally, putting together (7) with the above upper bounds for (8) yields that∫

1/(log x)1/3<|t |61
E1L(0)

∣∣∣∣F (1/2+
4V

log x

)∣∣∣∣2 1L(t)

∣∣∣∣F (1/2+
4V

log x
+ i t

)∣∣∣∣2 dt

�
e2 min{
√

log log x,1/(1−q)}

(1+ (1− q)
√

log log x)2

×

∫
1/(log x)1/3<|t |61

(
1

|t | log2(2/|t |)

)2 log2(2/|t |)
|t |

(
|t | log x

V

)2

dt

�
e2 min{
√

log log x,1/(1−q)} log2 x

V 2(1+ (1− q)
√

log log x)2

∫
1/(log x)1/3<|t |61

1
|t | log2(2/|t |)

dt

�
e2 min{
√

log log x, 1
1−q } log2 x

V 2(1+ (1− q)
√

log log x)2
.

Because of the factor log2(2/|t |) (which we remark descends from the term
−2 log log( log x

e j+1 ) in the original definition of the set L), the integral over t here
was�1 and we obtain the upper bound claimed in Key Proposition 5.

5.3. The lower bound in the Rademacher case. As in our upper bound
arguments, there is not too much difference between the Rademacher and
Steinhaus cases, except the former is more notationally complicated because we
no longer have ‘translation invariance in law’ of the Euler products. We will only
sketch the changes that are needed to deduce the Rademacher lower bound.

In place of Lemma 6, in the Rademacher case, one needs to compute

E
∏

x<p6y

∣∣∣∣1+ f (p)
p1/2+σ+i t1

∣∣∣∣2+iu ∣∣∣∣1+ f (p)
p1/2+σ+i(t1+t2)

∣∣∣∣2+iv

,
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where t1, t2, u, v are real. If one does this (proceeding as in the proofs of
Lemmas 2 and 6), one obtains an expression that is, up to error terms, the
exponential of∑

x<p6y

(
(1+ iu/2)2 + (1+ iv/2)2

p1+2σ
+
(2+ iu)(2+ iv) cos(t1 log p) cos((t1 + t2) log p)

p1+2σ

+
((2+ iu)2/2− (2+ iu)) cos(2t1 log p)+ ((2+ iv)2/2− (2+ iv)) cos(2(t1 + t2) log p)

2p1+2σ

)
,

which can be simplified a little by observing it is

=

∑
x<p6y

(
(1+ iu/2)2 + (1+ iv/2)2

p1+2σ
+
(2+ iu)(2+ iv) cos(t2 log p)

2p1+2σ

+
(2+ iu)(iu/2) cos(2t1 log p)+ (2+ iv)(iv/2) cos(2(t1 + t2) log p)

2p1+2σ

+
(2+ iu)(2+ iv) cos((2t1 + t2) log p)

2p1+2σ

)
.

Note that the first two fractions here are precisely analogous to the Steinhaus
case in Lemma 6, whereas the second two terms are new.

For each real t , we can define the event L(t) = L x,q,V (t) exactly as in the
Steinhaus case, but now we let L be the random subset of points t ∈ [1/3,
1/2] (rather than [−1/2, 1/2]) at which L(t) occurs. The point of this change
is that we will then always have t1, t1+ t2 ∈ [1/3, 1/2], and therefore 2/3 6 2t1,

2(t1 + t2), 2t1 + t2 6 1, in our calculations. This means that the two new
terms in the Rademacher characteristic functions will only cause negligible
changes in mean, variance and covariance as compared with the Steinhaus
case (because

∑
x<p6y

cos(2t1 log p)
p1+2σ ,

∑
x<p6y

cos(2(t1+t2) log p)
p1+2σ ,

∑
x<p6y

cos((2t1+t2) log p)
p1+2σ

all exhibit significant cancellation, indeed they are all�1/ log x , say). Once one
is in this situation, the Rademacher lower bound follows simply by imitating the
arguments from the Steinhaus case.

6. Proof of Corollary 2, lower bound

In this section, we shall prove our last remaining result that for all 2 6 λ 6

e
√

log log x , we have

P

(∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣ > λ

√
x

(log log x)1/4

)
�

1
λ2(log log x)O(1)

.

The proof is almost the same in the Steinhaus and Rademacher cases, but for
definiteness, let us first think of f (n) as a Steinhaus random multiplicative
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function. As before, F(s) will denote the Euler product of f (n) over x-smooth
numbers. The proof will consist of three main steps: we will prove that it will
suffice to establish a suitable lower bound for P(

∫ 1/2
−1/2 |F(1/2+

log log x
log x +i t)|2 dt >

β log x); then we will show it will actually suffice to prove a corresponding lower
bound for a discrete maximum of |F(1/2 + log log x

log x + i t)|2 (roughly speaking);
finally, we will deduce that from some existing results on maxima of random
processes.

Let Ê denote expectation conditional on the values ( f (p))p6
√

x and let P̂
denote the corresponding conditional probability. Thus, if we let P(n) denote
the largest prime factor of n, then Ê|

∑
n6x,

P(n)>
√

x
f (n)| is a function of the random

variables ( f (p))p6
√

x , and in fact we have

Ê

∣∣∣∣∣∣∣∣
∑
n6x,

P(n)>
√

x

f (n)

∣∣∣∣∣∣∣∣ = Ê

∣∣∣∣∣∣
∑
√

x<p6x

f (p)
∑

m6x/p

f (m)

∣∣∣∣∣∣ �
√√√√√ ∑
√

x<p6x

∣∣∣∣∣∣
∑

m6x/p

f (m)

∣∣∣∣∣∣
2

,

by Khintchine’s inequality (as in the proof of Proposition 3).

LEMMA 8. Let f (n) be a Steinhaus or Rademacher random multiplicative
function, and let A denote the event that

∣∣∣∣∣∑
n6x

f (n)

∣∣∣∣∣ > (1/2)Ê

∣∣∣∣∣∣∣∣
∑
n6x,

P(n)>
√

x

f (n)

∣∣∣∣∣∣∣∣ .
Then for any realization of ( f (p))p6

√
x , we have the uniform lower bound

P̂(A)� 1.

Once we have proved Lemma 8, to prove the lower bound in Corollary 2, it
will suffice to show that

P


√√√√√ ∑
√

x<p6x

∣∣∣∣∣∣
∑

m6x/p

f (m)

∣∣∣∣∣∣
2

> λ

√
x

(log log x)1/4


�

1
λ2(log log x)O(1)

∀ 2 6 λ 6 e
√

log log x
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or, equivalently, that

P

 ∑
√

x<p6x

∣∣∣∣∣∣
∑

m6x/p

f (m)

∣∣∣∣∣∣
2

> βx

� 1
β(log log x)O(1)

∀ 2 6 β 6 e2
√

log log x .

(9)
(Strictly speaking, since β here corresponds to λ2

√
log log x

the range for β in (9)

should be 4√
log log x

6 β 6 e2
√

log log x
√

log log x
. However, by adjusting the O(1) exponents

suitably, it will certainly suffice, once we have Lemma 8, to prove (9).)

Proof of Lemma 8. To establish that P̂(A) � 1 for any realization of
( f (p))p6

√
x , note that (as in the proof of Proposition 3) we have∑

n6x

f (n) =
∑
n6x,

P(n)6
√

x

f (n)+
∑
n6x,

P(n)>
√

x

f (n) d
=

∑
n6x,

P(n)6
√

x

f (n)+ ε
∑
n6x,

P(n)>
√

x

f (n),

where ε is an auxiliary Rademacher random variable independent of everything
else and d

= denotes equality in distribution. By the triangle inequality, we have

2

∣∣∣∣∣∣∣∣
∑
n6x,

P(n)>
√

x

f (n)

∣∣∣∣∣∣∣∣ 6
∣∣∣∣∣∣∣∣
∑
n6x,

P(n)6
√

x

f (n)+
∑
n6x,

P(n)>
√

x

f (n)

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∑
n6x,

P(n)6
√

x

f (n)−
∑
n6x,

P(n)>
√

x

f (n)

∣∣∣∣∣∣∣∣ ,
so for at least one of the values ±1 of ε, we must have |

∑
n6x,

P(n)6
√

x
f (n) +

ε
∑

n6x,
P(n)>

√
x

f (n)| > |
∑

n6x,
P(n)>

√
x

f (n)|. So if we let B denote the event that

∣∣∣∣∣∣∣∣
∑
n6x,

P(n)>
√

x

f (n)

∣∣∣∣∣∣∣∣ > (1/2)Ê

∣∣∣∣∣∣∣∣
∑
n6x,

P(n)>
√

x

f (n)

∣∣∣∣∣∣∣∣ ,
then we have P̂(A) > (1/2)P̂(B). Meanwhile, we can lower bound P̂(B) in
a standard (Paley–Zygmund type) way using the Cauchy–Schwarz inequality,
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noting that

P̂(B) >
(Ê1B|

∑
n6x,

P(n)>
√

x
f (n)|)2

Ê|
∑

n6x,
P(n)>

√
x

f (n)|2

=

(Ê|
∑

n6x,
P(n)>

√
x

f (n)| − Ê1B fails|
∑

n6x,
P(n)>

√
x

f (n)|)2

Ê|
∑

n6x,
P(n)>

√
x

f (n)|2

�

(Ê|
∑

n6x,
P(n)>

√
x

f (n)|)2

Ê|
∑

n6x,
P(n)>

√
x

f (n)|2
.

Writing
∑

n6x,
P(n)>

√
x

f (n) =
∑
√

x<p6x f (p)
∑

m6x/p f (m) and applying

Khintchine’s inequality again, we obtain that the conditional expectation
(squared) in the numerator and the conditional expectation in the denominator
have the same order. So we have shown P̂(A) > (1/2)P̂(B) � 1, as we
wanted.

To establish (9), we again begin similarly as in the proof of Proposition 3,
noting (with X = e

√
log x ) that

∑
√

x<p6x

∣∣∑
m6x/p f (m)

∣∣2 is

>
∑
√

x<p6x

log p
log x

∣∣∣∣∣∣
∑

m6x/p

f (m)

∣∣∣∣∣∣
2

=
1

log x

∑
√

x<p6x

log p
X
p

∫ p(1+1/X)

p

∣∣∣∣∣∣
∑

m6x/p

f (m)

∣∣∣∣∣∣
2

dt

>
1

log x

∑
√

x<p6x

log p
X
p

∫ p(1+1/X)

p

1
2

∣∣∣∣∣∣
∑

m6x/t

f (m)

∣∣∣∣∣∣
2

dt

−
1

log x

∑
√

x<p6x

log p
X
p

∫ p(1+1/X)

p

∣∣∣∣∣∣
∑

x/t<m6x/p

f (m)

∣∣∣∣∣∣
2

dt.

The subtracted term here satisfies the first moment bound

1
log x

∑
√

x<p6x

log p
X
p

∫ p(1+1/X)

p
E

∣∣∣∣∣∣
∑

x/t<m6x/p

f (m)

∣∣∣∣∣∣
2

dt
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�
1

log x

∑
√

x<p6x

log p
X
p

∫ p(1+1/X)

p

(
x

pX
+ 1

)
dt

=
1

log x

∑
√

x<p6x

log p
(

x
pX
+ 1

)
�

x
log x

,

so by Markov’s inequality, the probability it is larger than x/
√

log x is� 1√
log x

.

Since x/
√

log x is negligible compared with the term βx in (9) and 1√
log x

is

negligible compared with our target probability lower bound 1
β(log log x)O(1) , we

may ignore this subtracted term. Meanwhile, still broadly following the proof
of Proposition 3, we have that

1
log x

∑
√

x<p6x

log p
X
p

∫ p(1+1/X)

p

∣∣∣∣∣∣
∑

m6x/t

f (m)

∣∣∣∣∣∣
2

dt

�
1

log x

∫ x

√
x

∣∣∣∣∣∣
∑

m6x/t

f (m)

∣∣∣∣∣∣
2

dt

=
x

log x

∫ √x

1

∣∣∣∣∣∑
m6z

f (m)

∣∣∣∣∣
2

dz
z2

>
x

log x

∫ √x

1

∣∣∣∣∣∣∣
∑
m6z,

m is x smooth

f (m)

∣∣∣∣∣∣∣
2

dz
z2+2 log log x/ log x

.

We would like to complete the integral to the range
∫
∞

1 , so we can apply
Harmonic Analysis Result 1 and have a lower bound � x

log x

∫ 1/2
−1/2 |F(1/2 +

log log x
log x + i t)|2 dt , where F is the Euler product of f (n) over x-smooth numbers.

It turns out that the shift (log log x)/ log x that we introduced makes it acceptable
to perform this completion, as we have the first moment bound

x
log x

∫
∞

√
x
E

∣∣∣∣∣∣∣
∑
m6z,

x smooth

f (m)

∣∣∣∣∣∣∣
2

dz
z2+2 log log x/ log x

6
x

log x

∫
∞

√
x

dz
z1+2 log log x/ log x

�
x

log x log log x
,
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so by Markov’s inequality,
∫
∞
√

x is negligible as in our discussion of the subtracted
term above.

Reviewing the arguments in the previous paragraph, we see that we have
established the following reduction.

LEMMA 9. To prove (9) (and therefore the lower bound in Corollary 2), it will
suffice to show that

P

(∫ 1/2

−1/2

∣∣∣∣F (1/2+
log log x

log x
+ i t

)∣∣∣∣2 dt > β log x

)

�
1

β(log log x)O(1)
∀ 2 6 β 6 e2

√
log log x . (10)

Now to prove (10), our arguments begin to differ from what we have done
previously. We would like to say that the integral is essentially the same
as
∑
|k|6 log x−1

2

1
log x |F(1/2 +

log log x
log x + i k

log x )|
2, so we could lower bound the

probability on the left by the probability that the maximum of the |F(1/2 +
log log x

log x + i k
log x )|

2 is �β log2 x . It seems technically tricky to establish an
approximation quite like that, but since we only want a lower bound and since
the exponential function is convex, we can exploit Jensen’s inequality, obtaining
that

∫ 1/2

−1/2

∣∣∣∣F (1
2
+

log log x
log x

+ i t
)∣∣∣∣2

>
∑

|k|6 log x−1
2

∫ 1
2 log x

−
1

2 log x

∣∣∣∣F (1
2
+

log log x
log x

+ i
k

log x
+ i t

)∣∣∣∣2 dt

=
1

log x

∑
|k|6 log x−1

2

(
log x

∫ 1
2 log x

−
1

2 log x

exp
{
2 log

∣∣∣∣F(1/2+
log log x

log x
+ i

k
log x

+ i t
)∣∣∣∣} dt

)

>
1

log x

∑
|k|6 log x−1

2

exp

{
2 log x

∫ 1
2 log x

−
1

2 log x

log
∣∣∣∣F(1/2+

log log x
log x

+ i
k

log x
+ i t

)∣∣∣∣ dt

}
.

The exponential in the sum here will behave, for our purposes, in exactly the
same way as |F(1/2+ log log x

log x + i k
log x )|

2, but we may calculate precisely that (in
the Steinhaus case) it is
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exp

−2 log x
∫ 1

2 log x

−
1

2 log x

∑
p6x

< log

(
1−

f (p)

p1/2+ log log x
log x +i k

log x +i t

)
dt


= exp

2
∑
p6x

log x
∫ 1

2 log x

−
1

2 log x

(
<

f (p)p−i k
log x −i t

p1/2+ log log x
log x

+<
( f (p)p−i k

log x −i t
)2

2p1+ 2 log log x
log x

+O
(

1
p3/2

))
dt

 .
We can simplify this expression a bit further by noting in the second term that

log x
∫ 1

2 log x

−
1

2 log x

e−2i t log p dt = log x
∫ 1

2 log x

−
1

2 log x

(1+ O(|t | log p)) dt

= 1+ O((log p)/ log x)

and that
∑

p6x
log p

p
1+ 2 log log x

log x log x
6
∑

p6x
log p
p log x = O(1) by Chebychev’s estimate, as

is
∑

p6x
1

p3/2 . Thus, the exponential is

= exp

2

∑
p6x

log x
∫ 1

2 log x

−
1

2 log x

<
f (p)p−i k

log x −i t

p1/2+ log log x
log x

dt +
∑
p6x

<
( f (p)p−i k

log x )2

2p1+ 2 log log x
log x

+O(1)

 ,
and to prove (10) (and therefore also (9)), it will suffice to show that

P

 max
|k|6 log x−1

2

∑
p6x

log x
∫ 1

2 log x

−
1

2 log x

<
f (p)p−

ik
log x −i t

p1/2+ log log x
log x

+

∑
p6x

<
( f (p)p−

ik
log x )2

2p1+ 2 log log x
log x


>

logβ
2
+ log log x


�

1
β(log log x)O(1)

∀ 2 6 β 6 e2
√

log log x .

As a final simplification, we shall tweak things a little so that we can ignore
the nuisance second sum and the contribution from small primes. Let us note that∣∣∣∣∣∣

∑
p6log10 x

( f (p)p−i k
log x )2

p1+ 2 log log x
log x

∣∣∣∣∣∣ 6
∑

p6log10 x

1
p
= log log log x + O(1)

by the Mertens estimate, and

E

∣∣∣∣∣∣
∑

log10 x<p6x

( f (p)p−i k
log x )2

p1+ 2 log log x
log x

∣∣∣∣∣∣
2

=

∑
log10 x<p6x

1

p2+ 4 log log x
log x

�
1

log10 x
,
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so we have

P

 max
|k|6 log x−1

2

∣∣∣∣∣∣
∑

log10 x<p6x

<
( f (p)p−i k

log x )2

2p1+ 2 log log x
log x

∣∣∣∣∣∣ > 1

� 1/ log9 x

by the union bound and Chebychev’s inequality. Thus, since 1/ log9 x is
negligible compared with our target probability lower bound 1

β(log log x)O(1) and
since replacing logβ

2 + log log x by logβ
2 + log log log x + O(1) + log log x

(essentially replacing β by βe2 log log log x+O(1)) does not change the form of that

lower bound, we can omit the second sum
∑

p6x <
( f (p)p

−i k
log x )2

2p
1+ 2 log log x

log x
entirely when

trying to prove the lower bound above. Furthermore, since the contributions from
different primes are independent, and for any given k, the symmetry of the f (p)
implies that

P

 ∑
p6log10 x

log x
∫ 1

2 log x

−
1

2 log x

<
f (p)p−i k

log x −i t

p1/2+ log log x
log x

dt > 0

 = 1/2,

we are free to omit the part of the first sum over primes p 6 log10 x (say) as well.
Thus, we have established the following.

LEMMA 10. Let f (n) be a Steinhaus random multiplicative function. To prove
(10) (and therefore the lower bound in Corollary 2), it will suffice to show that

P

 max
|k|6 log x−1

2

 ∑
log10 x<p6x

log x
∫ 1

2 log x

−
1

2 log x

<
f (p)p−i k

log x −i t

p1/2+ log log x
log x

dt

 >
logβ

2
+ log log x


�

1
β(log log x)O(1)

∀ 2 6 β 6 e2
√

log log x . (11)

The lower bound (11) is the form in which we shall complete our proof. The
idea is that the random sums corresponding to different k should behave, for
the purpose of these tail probabilities, roughly like log x independent random
variables each having a N (0, (1/2) log log x) distribution, and, therefore, the
probability that their maximum is larger than logβ

2 + log log x should be roughly

log x · P
(

N (0, (1/2) log log x) >
logβ

2
+ log log x

)
� log x ·

e−(
logβ

2 +log log x)2/ log log x√
log log x

�
1

β
√

log log x
,

on our range of β.
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To prove this, using a multivariate central limit theorem (for example,
Theorem 2.1 of Reinert and Röllin [22], applied with the same kind of
exchangeable pair construction as in Appendix B of Harper [10]), we may
replace the collection of sums ∑

log10 x<p6x

log x
∫ 1

2 log x

−
1

2 log x

<
f (p)p−i k

log x −i t

p1/2+ log log x
log x

dt


|k|6 log x−1

2

in (11) by a collection of Gaussian random variables (X (k))
|k|6 log x−1

2
with

the same means, variances and covariances. (More precisely, the multivariate
central limit theorem allows us to lower bound our probability in (11) by the
corresponding Gaussian probability, with logβ

2 + log log x replaced by logβ
2 + 1+

log log x , and up to an error term saving a power of log x which is therefore
negligible compared with 1

β(log log x)O(1) .) Furthermore, the mean is clearly 0 for
each k, and for any j and k, the covariance is

E

 ∑
log10 x<p6x

log x
∫ 1

2 log x

−
1

2 log x

<
f (p)p−i k

log x −i t

p1/2+ log log x
log x


×

 ∑
log10 x<p6x

log x
∫ 1

2 log x

−
1

2 log x

<
f (p)p−i j

log x −i t

p1/2+ log log x
log x


=

∑
log10 x<p6x

E(log x
∫ 1

2 log x

−
1

2 log x
< f (p)p−i k

log x −i t dt)(log x
∫ 1

2 log x

−
1

2 log x
< f (p)p−i j

log x −i t dt)

p1+ 2 log log x
log x

=

∑
log10 x<p6x

E(log x
∫ 1

2 log x

−
1

2 log x
< f (p)p−i t dt)(log x

∫ 1
2 log x

−
1

2 log x
< f (p)p−i ( j−k)

log x −i t dt)

p1+ 2 log log x
log x

since in the Steinhaus case, f (p)p−ik/ log x has the same distribution as f (p).
Note that this means that the covariance is a function of j − k (and x) only,
in other words, our random variables are stationary. Furthermore, using that
E(< f (p)p−i t1)(< f (p)p−i ( j−k)

log x −i t2) is

(1/2) cos
((

j − k
log x

+ (t2 − t1)

)
log p

)
= (1/2) cos

(
j − k
log x

log p
)
+ O(|t1 − t2| log p),
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we find the covariance is

∑
log10 x<p6x

log2 x
∫ 1

2 log x

−
1

2 log x

∫ 1
2 log x

−
1

2 log x
cos(( j−k

log x + (t2 − t1)) log p)

2p1+ 2 log log x
log x

=

∑
log10 x<p6x

cos( ( j−k) log p
log x )

2p1+ 2 log log x
log x

+ O(1).

Here the final equality also used Chebychev’s bound
∑

p6x
log p

p � log x .
Later, we will also need to know that the covariance is a decreasing function

of | j − k|, on a suitable range of | j − k|. To establish this, we just note that if we
differentiate,

d
dh

∑
log10 x<p6x

log2 x
∫ ∫

cos((h + (t2 − t1)) log p)

2p1+ 2 log log x
log x

= −

∑
log10 x<p6x

log p log2 x
∫ ∫

sin((h + (t2 − t1)) log p)

2p1+ 2 log log x
log x

,

then

−

∑
log10 x<p6x

log p sin(h log p)

p1+ 2 log log x
log x

= =

∑
p

log p

p1+ 2 log log x
log x +ih

+ O(log log x)

= −=
ζ ′

ζ

(
1+

2 log log x
log x

+ ih
)
+ O(log log x),

where ζ(s) denotes the Riemann zeta function. In particular, if |h| is small, then
it is known that

−
ζ ′

ζ

(
1+

2 log log x
log x

+ ih
)
=

1
(2 log log x)/ log x + ih

+ O(1).

See Theorem 6.7 of Montgomery and Vaughan [20], for example. So provided
(log log x)/ log x 6 h 6 1/(500 log log x), say, the derivative will be negative.
This translates into a range log log x 6 | j − k| 6 (log x)/(500 log log x).

Now tidying up a bit, the contribution to the covariance sum from primes
p > x1/ log log x is

�
log log x

log x

∑
p6x

log p

p1+ 2 log log x
log x

,
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and using a Chebychev-type prime number estimate again this is

�
log log x

log x

∑
n6x

1

n1+ 2 log log x
log x

� 1.

When p 6 x1/ log log x , writing 1

p
1+ 2 log log x

log x
=

1+O((log p log log x)/ log x)
p and applying the

Chebychev bound ∑
p6x1/ log log x

log p
p
�

log x
log log x

,

we see that we can replace 1

p
1+ 2 log log x

log x
by 1

p in our expression for the covariance.

Thus, when | j − k| 6 log log x, and in particular for the variance where j = k,
we get that

EX ( j)X (k) =
∑

log10 x<p6x1/ log log x

1+ O(( ( j−k) log p
log x )2)

2p
+ O(1)

=

∑
log10 x<p6x1/ log log x

1
2p
+ O(1)

= (1/2)(log log x − 2 log log log x)+ O(1),

using the Mertens estimate for
∑

1/p. Similarly, when log log x < | j − k| 6
(log x)/10 log log x , say, then standard prime number estimates (see the proof of
Lemma 5 or Section 6.1 of Harper [10]) imply that

∑
x1/| j−k|<p6x1/ log log x

cos( ( j−k) log p
log x )

2p
� 1,

so the covariance

EX ( j)X (k) =
∑

log10 x<p6x1/| j−k|

1+ O(( ( j−k) log p
log x )2)

2p
+ O(1)

= (1/2)(log log x − log | j − k| − log log log x)+ O(1).

Collecting everything together, we see that for any large parameter E ∈ N, the
probability on the left-hand side of (11) is

P

(
max

|k|6 log x−1
2

X (k) >
logβ

2
+ log log x

)
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> P

 max
| j |6 log x

1000E(log log x)2

X ( j Eblog log xc)√
EX ( j Eblog log xc)2

> u

 ,
where u = u(β, x) is given by

u :=
(1/2) logβ + log log x√
EX ( j Eblog log xc)2

=
(1/2) logβ + log log x√

(1/2)(log log x − 2 log log log x)+ O(1)
>
√

2 log log x .

Recall here that EX ( j Eblog log xc)2 is the same for all j and E because our
random variables are stationary, so u(β, x) does not depend on j, E . We also
always have u(β, x)�

√
log log x , on our range 2 6 β 6 e2

√
log log x .

We will choose the parameter E and explain the reason for introducing
it, shortly. We can ease notation by setting Z( j) := X ( j Eblog log xc)/√
EX ( j Eblog log xc)2. Then the Z( j) are mean zero, variance one, stationary

Gaussian random variables whose covariance function r(m) := EZ( j)Z( j +m)
satisfies

0 6 r(m) =
log log x − log(m Eblog log xc)− log log log x + O(1)

log log x − 2 log log log x + O(1)

6 1−
(2 log(m E)+ O(1))

u2
,

for all 1 6 m 6 (log x)/(500E(log log x)2).
At this point, having seen that r(m) is nonnegative and decreasing on

our range of m, we can use Theorem 1 of Harper [10], obtaining that
P(max

| j |6 log x
1000E(log log x)2

Z( j) > u) is

�
log x

E(log log x)2
e−u2/2

u

√
1− r(1)
u2r(1)

×

∏
16m6 log x

500E(log log x)2

Φ

(
u
√

1− r(m)
(

1+ O
(

1
u2(1− r(m))

)))

�

√
log E
E

log x
(log log x)7/2

e−u2/2

×

∏
16m6 log x

500E(log log x)2

Φ

(√
u2(1− r(m))

(
1+ O

(
1

u2(1− r(m))

)))
,
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where Φ denotes the standard normal cumulative distribution function. Here
we see, by writing (1/2) logβ + log log x = (1/2) logβ + 2 log log log x +
(log log x − 2 log log log x), that

e−u2/2
= exp

{
−

((1/2) logβ + log log x)2

log log x − 2 log log log x + O(1)

}
�

1
β log x(log log x)2

.

And by our previous calculations, together with the fact that

Φ(t) = 1−
∫
∞

t

e−x2/2

√
2π

dx = 1− O

(
e−t2/2

t

)
for t > 1,

the product over m is

>
∏

m6 log x
500E(log log x)2

Φ

(√
2 log(m E)

(
1+ O

(
1

log(m E)

)))

=

∏
m6 log x

500E(log log x)2

(
1− O

(
1

m E
√

log(m E)

))
.

Now this product is = exp{−
∑

m6 log x
500E(log log x)2

O( 1
m E
√

log(m E)
)}, so if we choose

E =
√

log log x , say, then the sum is uniformly bounded and so the product is
�1. This is the step where the spacing parameter E is important to obtain a
good bound. Putting everything together again, we have shown that the left-hand
side of (11) is

�

√
log E
E

log x
(log log x)7/2

·
1

β log x(log log x)2
=

1
β(log log x)O(1)

,

as we wanted.
The Rademacher case is exactly the same as the Steinhaus case as far as

(10) and the subsequent application of Jensen’s inequality. At that point, things
change a little because the Rademacher Euler product is slightly different than
the Steinhaus one, and specifically in place of the term

2
∑
p6x

log x
∫ 1

2 log x

−
1

2 log x

<
( f (p)p−i k

log x −i t
)2

2p1+ 2 log log x
log x

dt,

one has the negative of that term, and because f (p)2 ≡ 1 in the Rademacher
case, that becomes the deterministic quantity

−

∑
p6x

log x
∫ 1

2 log x

−
1

2 log x

<
p−2i k

log x −2i t

p1+ 2 log log x
log x

dt.
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But this is simply

− log x
∫ 1

2 log x

−
1

2 log x

< log ζ
(

1+
2 log log x

log x
+ i

2k
log x

+ 2i t
)

dt + O(1),

and if one restricts attention to the range 9(log x)/20 6 k 6 (log x)/2, then
standard estimates for the zeta function (see Theorem 6.7 of Montgomery and
Vaughan [20]) show this is all�1, so may be discarded. Moreover, the restriction
to the range 9(log x)/20 6 k 6 (log x)/2 makes no essential difference to the
subsequent arguments since rather than looking at points j Eblog log xc with
| j | 6 log x

1000E(log log x)2 , one can simply look at points of the form 9(log x)/20 +
j Eblog log xc.

In the calculation of covariances that follows (11), one runs into the usual
complication in the Rademacher case that the distribution of f (n)ni t is not the
same as the distribution of f (n). Here this means that the covariances are not
perfectly stationary, that is, they are a function of j and k rather than only a
function of j − k. However, they are almost (that is, up to error terms) a function
of j − k and, in fact, exactly the same function one gets in the Steinhaus case,
so one can adapt the analysis accordingly. Rather than giving further details, we
refer the interested reader to Sections 6.1–6.2 of Harper [10] for an example of
such an argument in an extremely similar context (basically the same as here
except that only a special choice of u, slightly smaller than

√
2 log log x , is

considered).
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Appendix A. Proofs of the Probability Results

We prove the results on Gaussian random walks that we stated in Section 3.

A.1. Proof of Probability Result 1. We shall prove that for large a, we have

P

(
j∑

m=1

Gm 6 a + 10 log j ∀1 6 j 6 n

)
� min

{
1,

a
√

n

}
,

which implies the upper bound part of Probability Result 1. The proof of the
lower bound is very similar, replacing a + 10 log j by a − 10 log j and proving
a lower bound�min{1, a

√
n } for the probability.

We may assume that
√

n > a, otherwise the upper bound is trivial (and the
lower bound follows immediately from (A1)). We shall temporarily adopt the
convention that log0 n = n, and then for k ∈ N, let logk n := log(logk−1 n) denote
the k-fold iterated logarithm.

We shall need the following results:

(A1) constant barrier case: under the hypotheses of Probability Result 1, for any
c > 1, we have P(

∑ j
m=1 Gm 6 c ∀1 6 j 6 n) � min{1, c

√
n }.

(A2) under the hypotheses of Probability Result 1, for any b and any c > 1, we
have P(max j6n

∑ j
m=1 Gm ∈ [b, b + c])� c/

√
n.

The result (A1) is standard, but, annoyingly, it seems difficult to find a
reference when the Gm have unequal (though comparable) variances. The
continuous time analogue, with (

∑ j
m=1 Gm)16 j6n replaced by a Brownian

motion on the time interval [0,
∑n

m=1 EG2
m], is completely standard (see, for

example, Section 13.4 of Grimmett and Stirzaker [7]) and implies the lower
bound in (A1) because if Brownian motion stays below c on the continuous
interval, it certainly does so at the discrete points corresponding to

∑ j
m=1 Gm .

For the upper bound, it suffices to handle the case c = 1 since we can group
the Gm into subsums of variance ≈ c2 (replacing n by n/c2) and then multiply
through by 1/c. This case follows as in the proof of Lemma 5.1.8 of Lawler and
Limic [19].

To deduce (A2), we can let J = J (b) denote the smallest 1 6 j 6 n at which∑ j
m=1 Gm > b, if such j exists, and then P(max j6n

∑ j
m=1 Gm ∈ [b, b + c]) is

=

∑
k6n/2

P

(
max
j6n

j∑
m=1

Gm∈[b, b + c], and J = k

)
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+P

(
max
j6n

j∑
m=1

Gm ∈ [b, b + c], and J >
n
2

)

6
∑

k6n/2

P(J = k)P

(
j∑

m=k+1

Gm 6 c ∀k + 1 6 j 6 n

)

+P

(
max

n/2< j6n

j∑
m=1

Gm ∈ [b, b + c]

)
since the random variables (Gm)

n
m=k+1 are independent of the event {J = k}. By

result (A1), the first sums here are�
∑

k6n/2 P(J = k)c/
√

n 6 c/
√

n. And if we
let M := maxn/2< j6n

∑
n/2<m6 j Gm , then we have P(maxn/2< j6n

∑ j
m=1 Gm ∈ [b,

b+c]) = P(
∑

m6n/2 Gm ∈ [b−M, b−M+c]). Since
∑

m6n/2 Gm is a Gaussian
random variable with variance � n, that is independent of M , the probability it
lies in the interval [b − M, b − M + c] is also�c/

√
n.

Using (A1) and (A2), we can prove the following lemma, from which the
upper bound part of Probability Result 1 will quickly follow.

PROBABILITY LEMMA 1. In the setting of Probability Result 1, and with the
above conventions, the following is true. Uniformly for any k ∈ N∪{0} such that
the k-fold iterated logarithm logk n > a/1000, we have

P

(
j∑

m=1

Gm 6 a + 10 log j ∀1 6 j 6 n

)

= P

(
j∑

m=1

Gm 6 a + 10 log(min{ j, log20
k n}) ∀1 6 j 6 n

)

+ O

(
1
√

n

k∑
i=1

1
log2

i n

)
.

Proof of Probability Lemma 1. We shall prove the lemma by induction on k, for
each given a. The conclusion of the lemma is trivial for k = 0. (And, incidentally,
since we assume that

√
n > a, we certainly do have log0 n = n > a/1000.)

For the inductive step, suppose that the condition logk+1 n > a/1000 is
satisfied and that we have already established the lemma at the ‘level’ k. Let

Sk+1 :=
∑

m6log20
k+1 n

Gm, and let s2
k+1 :=

∑
m6log20

k+1 n

EG2
m � log20

k+1 n
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denote its variance. Then conditioning on the behaviour of Sk+1, we can write
P(
∑ j

m=1 Gm 6 a + 10 log(min{ j, log20
k n}) ∀ j 6 n) as

1
√

2πsk+1

×

∫
∞

−∞

e
−

u2

2s2
k+1 P

(
j∑

m=1

Gm 6 a + 10 log(min{ j, log20
k n}) ∀ j 6 n | Sk+1 = u

)
du

=
1

√
2πsk+1

×

∫
∞

−∞

e
−

u2

2s2
k+1 P

(
j∑

m=1

Gm 6 a + 10 log j ∀1 6 j 6 log20
k+1 n | Sk+1 = u

)
·

·P

 ∑
log20

k+1 n<m6 j

Gm 6 a + 10 log(min{ j, log20
k n})− u ∀ log20

k+1 n < j 6 n

 du,

where we used the independence of
∑

log20
k+1 n<m6 j Gm and

∑
m6log20

k+1 n Gm to
remove the conditioning on Sk+1 from the final probability here.

Now we may restrict the integration to the range (−∞, a+200 logk+2 n] since
if u is larger, then the first conditional probability is zero because Sk+1 would
be too large. Meanwhile, in the part of the integral where − log4

k+1 n 6 u 6
a + 200 logk+2 n, we can trivially upper bound the integrand by

e
−

u2

2s2
k+1 P

 ∑
log20

k+1 n<m6 j

Gm 6 a + 10 log(min{ j, log20
k n})+ log4

k+1 n

∀ log20
k+1 n < j 6 n

 ,
which is

� e
−

u2

2s2
k+1 (a + log4

k+1 n)/
√

n � e
−

u2

2s2
k+1

log4
k+1 n
√

n

by result (A1) and the fact that logk+1 n > a/1000. So the total contribution from
this part of the integral is

�
1

√
2πsk+1

∫ a+200 logk+2 n

− log4
k+1 n

e
−

u2

2s2
k+1

log4
k+1 n
√

n
du
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�
(a + log4

k+1 n)
sk+1

log4
k+1 n
√

n
�

1
√

n log2
k+1 n

.

This may be absorbed into the ‘big Oh’ term in the statement of the lemma.
Finally, when u 6 − log4

k+1 n in the integral, we have

P

 ∑
log20

k+1 n<m6 j

Gm 6 a + 10 log(min{ j, log20
k n})− u ∀ log20

k+1 n < j 6 n


= P

 ∑
log20

k+1 n<m6 j

Gm 6 a + 10 log(log20
k+1 n)− u ∀ log20

k+1 n < j 6 n


+O

(
logk+1 n
√

n

)
,

by result (A2) applied with b = a+10 log(log20
k+1 n)−u and c = 10(log(log20

k n)−
log(log20

k+1 n))� logk+1 n. Now we may trivially rewrite the preceding line as

P

 ∑
log20

k+1 n<m6 j

Gm 6 a + 10 log(min{ j, log20
k+1 n})− u ∀ log20

k+1 n < j 6 n


+ O

(
logk+1 n
√

n

)
,

and the crucial point is that, by result (A1) and the fact that u 6 − log4
k+1 n, the

probability here is�(log4
k+1 n)/

√
n, so we can replace the absolute error term

O( logk+1 n
√

n ) by a multiplicative factor 1+ O(1/ log3
k+1 n).

Putting everything back together, essentially reversing the above argument, we
have shown that

P

(
j∑

m=1

Gm 6 a + 10 log(min{ j, log20
k n}) ∀ j 6 n

)

=

(
1+ O

(
1

log3
k+1 n

))

×P

(
j∑

m=1

Gm 6 a + 10 log(min{ j, log20
k+1 n}) ∀ j 6 n

)

+ O

(
1

√
n log2

k+1 n

)
.
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Finally, using result (A1), we have

1
log3

k+1 n
P

(
j∑

m=1

Gm 6 a + 10 log(min{ j, log20
k+1 n}) ∀ j 6 n

)

�
a + logk+2 n
√

n log3
k+1 n

�
1

√
n log2

k+1 n
,

which gives an acceptable error term and completes our induction.

Proof of Probability Result 1, upper bound. We apply Probability Lemma 1
with k chosen as large as possible so that logk n > a/1000 but logk+1 n < a/1000.
This yields that P(

∑ j
m=1 Gm 6 a + 10 log j ∀1 6 j 6 n) is

6 P

(
j∑

m=1

Gm 6 a + 200 logk+1 n ∀1 6 j 6 n

)
+ O

(
1
√

n

k∑
i=1

1
log2

i n

)

� P

(
j∑

m=1

Gm 6 2a ∀1 6 j 6 n

)
+

1
√

n
�

a
√

n
,

by (A1).

A.2. Proof of Probability Result 2. The upper bound part of Probability
Result 2 follows immediately from Probability Result 1.

To prove the lower bound part of the result, recalling that g( j) 6 −B j and
h( j) > −10 log j , we see that P(g( j) 6

∑ j
m=1 Gm 6 min{a, B j} + h( j) ∀1 6

j 6 n) is

> P

(
−B j 6

j∑
m=1

Gm 6 min{a, B j} + h( j) ∀1 6 j 6 n

)

> P

(
j∑

m=1

Gm 6 a + h( j) ∀1 6 j 6 n

)

−

n∑
k=1

P

(
j∑

m=1

Gm 6 a + h( j) ∀1 6 j 6 n, and
k∑

m=1

Gm 6 −Bk

)

−

n∑
k=1

P

(
j∑

m=1

Gm 6 a + h( j) ∀1 6 j 6 n, and
k∑

m=1

Gm > Bk − 10 log k

)
.
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By Probability Result 1, the first term here is �min{1, a
√

n }, and we will show
that the sum of the subtracted terms is smaller than this, provided B is fixed large
enough.

Indeed, since (1/20)k 6
∑k

m=1 EG2
m 6 20k, if we condition on

∑k
m=1 Gm , we

see P(
∑ j

m=1 Gm 6 a + h( j) ∀1 6 j 6 n, and
∑k

m=1 Gm 6 −Bk) is

�
1
√

k

∫
−Bk

−∞

e−u2/40kP

(
j∑

m=1

Gm 6 a + h( j) ∀1 6 j 6 n |
k∑

m=1

Gm = u

)
du

6
1
√

k

∫
−Bk

−∞

e−u2/40kP

(
j∑

m=k+1

Gm 6 a + h( j)− u ∀k + 1 6 j 6 n

)
du.

By Probability Result 1, provided that k 6 n/2 (so that n − (k + 1)� n) this is
all

�
1
√

k

∫
−Bk

−∞

e−u2/40k min
{

1,
a + |u|
√

n

}
du

� min
{

1,
a
√

n

}
1
√

k

∫
−Bk

−∞

e−u2/40k
|u| du

� min
{

1,
a
√

n

}
√

ke−B2k/40.

If k > n/2, we can upper bound the probability in the integral trivially by 1 and
just use the fact that

1
√

k

∫
−Bk

−∞

e−u2/40k du � e−B2k/40
� e−B2n/80.

Summing over 1 6 k 6 n, the contribution from all these terms will indeed be
small compared with min{1, a

√
n }, provided B is fixed large enough.

Similarly, we have

P

(
j∑

m=1

Gm 6 a + h( j) ∀1 6 j 6 n, and
k∑

m=1

Gm > Bk − 10 log k

)

�
1
√

k

∫ a+h(k)

Bk−10 log k
e−u2/40kP

(
j∑

m=1

Gm 6 a + h( j) ∀1 6 j 6 n |
k∑

m=1

Gm = u

)
du

6
1
√

k

∫ a+h(k)

Bk−10 log k
e−u2/40kP

(
j∑

m=k+1

Gm 6 a + h( j)−Bk+10 log k ∀k+16 j6n

)
du,
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which is�min{1, a
√

n }e
−(Bk−10 log k)2/40k when k 6 n/2 and is�e−(Bk−10 log k)2/40k

�

e−B2n/100 (say) when k > n/2. Again summing over 1 6 k 6 n, the contribution
from all these terms will be negligible compared with min{1, a

√
n } if B is large

enough.
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