
BULL. AUSTRAL. MATH. SOC. 34B10, 35K50, 54H20, 80A25

VOL. 66 (2002) [393-403]

CHAPMAN-JOUGUET DETONATION PROFILE FOR A
QUALITATIVE MODEL

ABDOLRAHMAN RAZANI

In this article, the existence of traveling wave fronts for a one step chemical reaction
with a natural discontinuous reaction rate function is studied. This discontinuity
occurs because of the cold boundary difficulty and implies a discontinuous system of
ordinary differential equations. By some general topological arguments in ordinary
differential equations, the Chapman-Jouguet detonation for exothermic reactions
is shown to exist. In addition, the uniqueness of this wave is considered.

1. INTRODUCTION

The Chapman-Jouguet detonation wave problem for a compressible reacting gas,
with one reactant involved in a single step chemical reaction is studied. For mathemat-
ical reasons we can only handle the case of exothermic, that is, irreversible reactions.
Majda [6] develops a simpler asymptotic model system, valid in the "Mach 1 + e"
regime, which still incorporates substantial interaction of chemical and fluid mechani-
cal phenomena, but has solutions which are easier to analyse.

The model describes the detailed structure and the propagation of a reacting gas
front into a combustible mixture and is as follows:

( 1 1 ) ±T+{f(T)}x-qoZx=PTxx,

Zx =

where K > 0 is a constant, T is the temperature, Z in the mass fraction of unburned
gas (note that the completely unburned gas corresponds to Z — 1 and a totally burned
gas corresponds to Z = 0), and r is a variable proportional to the arc length along
the characteristics. The coordinate x is not the space coordinate but is determined
through the asymptotics as a scaled space-time coordinate representing distance to the
reaction zone (the x -differentiation occurs because Z in (1.1) is convected at the much
slower fluid velocity rather than the much faster reacting shock speed (see [1] or [7] for
details). Finally qo > 0 is the effective heat release from the chemical reaction, and

Received 26th February, 2002

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 SA2.00+0.00.

393

https://doi.org/10.1017/S0004972700040259 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040259


394 A. Razani [2]

/? > 0 is a lumped viscosity-thermal-conductivity coefficient. The function f(T) is a

convex strongly nonlinear function satisfying (see [6])

!£ ()
(1.2) dT

lim f(T) = +00.

For example one may choose f(T) — (aT2)/2, (a > 0) (see [7, p. 1100]). In addition,
we encounter the well known cold boundary difficulty, that is, the unburned state is not
a stationary point of (1.1) since the "reaction rate function" $(T) ^ 0, for T > 0. One
resolution of the cold boundary difficulty can be based on activation energy asymptotics
([10]). However, in our analysis we use the common mathematical idealisation of an
ignition temperature, that is, $ is modified such that

( 0 for T < Tu

(1.3) $(T) \

where 4>i(T) is a smooth positive function and T* a suitable "ignition tempera-
ture" of the reaction. A typical example for $i(T) is the Arrhenius law, $i(T)
= T"7e~(A/r) for some positive constants 7 and A. Notice that $(T) is discontin-
uous at the point T{. A careful discussion of this assumption and its consequences for
detonation and deflegration waves (with one-step chemistry) can be found in [3].

The system (1.1) was proposed by Majda [6] as a model for dynamic combustion,
that is, for the interaction between chemical reactions and compressible fluid dynamics.
He proved the existence of weak and strong detonations and for go independent from
T, assuming a very simple form of <£>(T). His results are described in terms of liberated
energy, qo. That is, for fixed K > 0, he proved that there is a critical liberated
energy, qfiR, such that when q0 > q^11, (1.1) admits a strong detonation combustion
profile; when qo = qQR, (1-1) admits a weak detonation combustion profile. Also
Rosales and Majda [7] investigated the qualitative model (1.1) in a physical context.
Colella, Majda and Roytburd [1] have used fractional step methods based on the use
of a second order Godunov method. They demonstrated that the system (1.1) has
dynamically stable weak detonations which occur in bifurcating wave patterns from
strong detonation initial data. They used system (1.1) both to predict and analyse the
theoretical and numerical phenomena. On the other hand, Li [4] studied the system
(1.1) when P = 0. He established global existence of the solution to the problem and
studied the asymptotic behaviour of the solution. He also proved that the solution
converges to a self-sustaining detonation wave and if the data are small, the solution
decays to zero like an JV-wave. Finally, Liu and Ying [5] studied strong detonation waves
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for (1.1) and proved these waves are nonlinearly stable by using an energy method for
the fluid variable and a pointwise estimate for the reactant.

Now assume the reaction is exothermic. Then the reaction rate function <J>(T)
has the general form (1.3), and /3 > 0. Further, consider the natural form where
the liberated energy q0, depends on T, that is, qo(T). We show the existence of
traveling waves for Chapman-Jouguet detonation by topological arguments in ordinary
differential equations. In addition, the uniqueness of this wave is considered.

The rest of the paper is organised as follows. In Section 2, we introduce the
problem and make some related observations. In Section 3,we shall show the existence
of traveling wave for Chapman-Jouguet detonation.

2. T H E HYPOTHESES AND THE PROBLEM

In this section we first derive a system of ordinary differential equations from (1.1)

and then obtain the rest points of the resulting system. A solution (T(x, r ) , Z(x, r ))

of the system (1.1) is called a traveling wave solution between two states (Tt, Zt)
T and

(Tr, Zr) , if there is a constant s € R, which is called the speed of combustion shock

wave, satisfying "the jump and entropy conditions"; moreover this solution depends

only on the variable £ = x — ST ([8]). This means that a traveling wave solution of

(1.1) has the following form:

(T(X-ST),Z(X-ST))T.

Thus for a traveling wave solution, the system (1.1) reduces to the system of ordinary
differential equations:

- S r 4

The first equation of (2.1) can be integrated once to give:

(2.2) 0Tt-=f(T)-aT-qoZ + C,

where C is the constant of integration. Thus the system (2.1) reduces to the system

(3T(:=f(T)-sT-q0Z + C = g(T,Z),
I2.o)

Zt:= K$(T)Z.

In order for a solution u(f) = (T(£), £(£)) to be a traveling wave solution from

state ui = (Ti,Zi) to state ur = (Tr,Zr) , it should satisfy lim u(£) = uj and
£—»—oo

https://doi.org/10.1017/S0004972700040259 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040259


396 A. Razani [4]

lim u(£) = ur. Thus ui and uT must be two rest points of the system (2.3). Re-

membering this, the problem will be investigated in two steps. First, to find all the
rest points of the system (2.3) and second, to find all solutions of this system which
connect a rest point corresponding to an unburned state to a rest point corresponding
to a burned state as £ increases from —oo to +oo, whenever @ > 0. Now the rest
points are solutions of:

f(T) -sT-q0Z + C = 0,

But <1>(T) = 0 for T < T i ; where Ti is the ignition temperature, and this set is
contained in the region 0 < Z < 1. Thus from the last equation of (2.4), at a rest point
we must have Z = 0 or T < Tt.

CASE 1. Z = 0. From the first equation of (2.4), at a rest point we obtain

(2.5) go(T) = g(T, 0) = f(T) - sT + C = 0.

CASE 2. $(T) = 0. In this case, at the rest point we must have T < Ti. Then the
first equation of (2.4) gives a set of rest points. So by considering the first equation of
(2.4) and substituting Z by m, we have

(2.6) gm(T) = g(T, m) = f(T) - sT - qom + C = 0.

LEMMA 2 . 1 . For all 0 ^ m ^ 1, g'm(T) = 0, for precisely one value of T. This

is a absolute minimum.

PROOF: The lemma follows immediately from

LEMMA 2 . 2 . There is a number Co € R such that for C > Co, the system (2.5)
admits no solutions. For C — Co it admits one solution, and for C < Co it admits two
solutions.

PROOF: This result follows at once from properties (1.2). Q

With respect to Lemma 2.2 for C = Co, we have only one rest point where (TCJ, 0)
represents the Chapman-Jouguet detonation state. In this case, for m = 0, Lemma 2.1
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along with (1.2) show that the equation (2.5) has exactly one solution TCJ . Note that

the wave speed s satisfies

(2.7) a = f'(TCj).

Consider now all the critical points of the system (2.3) corresponding to unburned gas

states. These points are described by

g(Tm,m) = 0, Tm^Ti,

where 0 < m ^ 1 and Tj is the ignition temperature which will be obtained later.

By considering the above results the rest points of the system (2.3) are

(2.8) U° ~ CJ:

um0 = (T m ,m) , 0 < m ^ 1, Tm^Ti,

where Tt < TCj •

In the present work it is assumed that the rest point uo, exists.

COROLLARY 2 . 3 . If the rest point UQ, exists, then the rest point umo exists for

some 0 < m ^ 1.

A combustion shock wave between uo and um0 is called a Chapman-Jouguet
detonation wave.

From the mathematical point of view, the existence of Chapman-Jouguet detona-
tion wave corresponds to the existence of a complete orbit of the system (2.3) which
runs from the rest point uo to umo for some 0 < m ^ 1. Such an orbit is called a
traveling wave solution for the system (1.1).

3. T H E EXISTENCE O F C H A P M A N - J O U G U E T DETONATION

The central theme of this section is the existence of a traveling wave for Chapman-
Jouguet detonation. In order to show this, we make some observations related to the
nature of the unstable manifold of the system (2.3) at the rest point uo • Thus we
consider the linearised system of (2.3) at the rest point uo, which can be written as

ii = M0(u-u0),

where

Mo =
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and the entries of the matrix must be considered at the rest point u0. Let h(X) be the

characteristic polynomial of this matrix. Then we get

(3.1) h(X) = [-pU'{Tcj) -s)-\] [K$(TCJ) - A].

From (2.7), we know f'(Tcj) = s. If Ai and A2 are the solutions of h(X) = 0, then at

the rest point UQ, AI = 0 and A2 > 0. Thus the following theorem is proved.

THEOREM 3 . 1 . Let Xk,k = 1,2, be the eigenvalues of the matrix Mo at the

rest point u0 = (TQJ, 0). Then at the rest point uo,Xi = 0 and A2 > 0.

We have the following theorem about the eigenvectors at this rest point.

THEOREM 3 . 2 . Let (2/1,2/2) be an eigenvector corresponding to the positive

eigenvalue A2; then at the rest point uo, either 2/1 > 0 and 2/2 < 0, or the reverse

inequalities hold.

PROOF: The eigenvector (2/1,2/2) must satisfy the following equation at the rest

point uo,
Qo

V

and this means that sgn 2/2 = — sgn t/i • D

In order to show the existence of a traveling wave, we define:

D={ueR2 : 0<Z<l,T< TCJ, g(T, Z)<0}.

Now, note that the rest point uo, is located on dD. Moreover, by Theorem 3.1, the

unstable manifold at UQ , is one dimensional. In addition we have the following lemma

about this manifold.

LEMMA 3 . 3 . Let D be as above, then the unstable manifold at u0 intersects D

on a curve.

P R O O F : AS we have shown before, the linearised system of (2.3) at the rest point

u0 , has the following form:

( 3 2 ) 0T=-qoZ=gu(T,Z),

Z = K$(TCJ)Z = ga(Z).

Let (2/1,2/2) be an eigenvector corresponding to the positive eigenvalue A2

— K<&(TCJ) , at the rest point uo. Now consider the solution:

= (yi, 2/2) V * « + uo,
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of the linear system (3.2). Then u(£) € DCJ , where

DCj = {u e R2 : 0 < Z < 1}.

To see this notice that

(ffuCT, Z), g2,(T, Z))T = M(u - «o) = MYex* = X2Yex^ = (A2yi, X2y2)
Tex*.

By Theorem 3.2, we may assume that yi < 0 and y2 > 0- Since A2 > 0, it follows
from the last equality that (gu(T, Z),g2i(T, Z)) 6 DQJ • This means that the unstable
manifold of (3.2), at the rest point UQ, which is just the line

lies in DCJ for s > 0, and lies in D for s > 0 and small. Thus the unstable manifold
of the system (3.2), at the rest point u0 intersects D o n a curve. D

Now consider the following system of ordinary differential equations:

lo.o)

Z = K$1(T)Z:=g3(T,Z)

where $ i (T) is defined by (1.3). Notice that the above system leads us to a proof of
the existence of a traveling wave for the Chapman-Jouguet detonation wave. The proof
of the next lemma is similar to the proof of [2, Theorem 3.1].

LEMMA 3 . 4 . Let D be as above. Then there is a unique orbit of the system

(3.3) which lies in D, its a-limit set is UQ, aiid this orbit intersects the set A = {u
€ D : g(T, Z) < 0, T < TCJ, and Z = l } . Along this orbit, T(f) is decreasing and

Z{£) is increasing.

P R O O F : The proof is organised in the following steps.

S T E P 1. The system (3.3) is gradient like with respect to h(u) = Z in D, and is locally
Lipschitz in a neighbourhood of D.

S T E P 2. Note that D is homeomorphic to the parabola {X € R2 : x\ < x2,0 < x2 < 1}
and so {u € D : h(u) = c} corresponds to the set {X € R2 : x\ < x2,x2 = c} for
c € [0,1] under the homeomorphism.

S T E P 3. The UQ is the only rest point of (3.3) which is in { u € f l : h(u) = 0 } .

S T E P 4. Let E - {u e dD : h(u) < 1 } . For p € ~E - {uo},p.£ G D for small positive
£ and p.(, # dD for small |f| ^ 0. To see this, let u' e {u 6 dD : 0 < Z < 1} . Then
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g(u') = 0 or T = TCJ • Now, suppose g{u') — 0. If we differentiate g(T, Z) along the

orbits of (3.3) we obtain:

dg{u) _ fdf(T)
<% - \ dT s {qoh

Hence

and

Thus the flow come in ~D on #(u') = 0 and T = TCj.

S T E P 5. Let F = dD - E = {u e dD : Z = 1}. For p € F.p.t £ Z> for £ > 0 and

small. To see this, differentiate Z along the orbits of (3.3) we obtain

f , = «*(T)Z|fcl > 0,
s lz=i

Thus the flow goes out of D on Z = 1.

S T E P 6. From the Steps 1-5, there is a point p G F such that p.£ £ D for £ < 0 and
lim p.£ = u 0 .

P R O O F OF S T E P 6: Suppose such a point p does not exist. Then for each y e F

there is a £ < 0 such that y.£ ^ Z>. Then, by Step 4, there is f(y) < 0 such that
y.(£(y),0) C D, y.£(y) € S and y.(f( j / ) -£i) 0 I? for some ex > 0. Now define
if> : F —v E, by </?(y) = y-£(y). It follows, from continuity of y.£ with respect to
the initial condition y, that £(y) and (f>(y) are continuous. Now we shall show that
(p : F —» <£>Ĉ ) is a homeomorphism. By definition, ?̂ is one to one. So it suffices to
show that, if V is open in F then <p(V) is open in p(F) • If V is open in F, then
F \ V is compact in F. Hence <p(F\V) is closed. Thus <p(V) is open in <p(F) •

Now we show that tp : F —t E is onto. To see this, note that <p(dF) — dE and
ip(F) — int E, where int E means interior of E with respect to dD. Since F is open in
dD, by the Brouwer Theorem on the Invariance of Domain ([9]), <p(F) must be open
in dD. Thus it must be open in mtE with respect to dD. On the other hand, we have
tp(F) = v(F) n intE and <p(F) is closed in E. Hence y(F) must be closed in intl?.
Since p(F) ^ <p, it follows that <p(F) = intE. Also for y € 9 F , we have <p(y) = y. It

then follows that <p : F —> E is onto. This means that there is a point yo E F with

https://doi.org/10.1017/S0004972700040259 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040259


[9] Chapman-Jouguet Detonation 401

£(j/o) < 0 such that j/o-C(z/o) = "o- This is impossible as UQ is a rest point of (3.3).
Therefore there is a point p G D such that p.£ is defined for all £ ^ 0 and lying in D
for £ < 0. The a-limit set of p.£ must be uo, as the flow is gradient-like and UQ is the
only rest point of (3.3) in D. This completes the proof of the claim.

Thus by the last step, there must be an orbit of the system (3.3) lying in D, starting
at a point on the surface Z — 1 and running to the point u0 as £ —> —00. Finally
from the system (3.3) and the set D it follows that along this orbit Z(£) and T(£) are
increasing and decreasing respectively. D

Let u(£),£ € ( -00, £0] be the orbit which is given by the above lemma. Then
u(£0) € {u € D : Z = 1} and lim u(£) — UQ. We have the following lemma about the

£-•-00

orbit u(£).

LEMMA 3 . 5 . Let u(£) be as above. Then there is 0 < Z < 1, such that for

Kp small enough, the orbit u(£) meets the line T = Ti} at u(£) = (Ti,Z), for some

ee(-oo,4o)-
PROOF: Let u0 be as (2.8). Choose the line P : T - TCj = 0, where TCj is the

first component of UQ . Let (Tj, Zj) be the unique solution of the equation

9(u) = 0, T = Tt.

Then we obtain Zi = (l/qQ)(f(Ti) - sTi + C). Also from Tm < T{ < TCj, it follows
that 0 < Zi < 1, and {u € D : g(u) = 0,Zj < Z < l} C {u 6 D : T ^ T,}. Now
consider the line P' : T - T{ = 0. Since um0 6 {u € £>: (T - 7}) < 0} , we can choose
^ < Zo < 1 such that

{u 6 D : #(u) = 0, Zo < Z < l} C {u 6 D : T - Tt < 0}.

Let £>o = {u € I>: T{ < T < TCJ, Zo < Z < 1} and 6 = maxg(u). Then 6 < 0.

Now suppose the orbit u(£),£ € ( -co,£0], does not meet the set {u e D : T

= Ti, 0 < Z < 1}. Let £1 < £0 be the solution of the equation Z(£) = Z o , where Z(f)
is the second component of u(£). Since dT/d£ — (l/@)g(u) < 0, T is decreasing along
the orbit u(£), and it follows that u(£) remains in Do for £1 < £ < £0 • Now along the
orbit u(£) in £>o we must have:

_dT_ 1 / dT
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where I/a - max $i{T)Z. Let To = T(£o)- Then Tj <T0, if u(f) does not meet Tj.

Therefore

-T0 = - f ° -U

/•Co i

/ -r(-ff(u))de

which is impossible for K/3 small enough. Thus there is a £ g (-oo, £0) such that the

orbit u(£) meets the line T = 7* at the point U{ — (Ti,Zi) , where % = Ti, and

Zi = z(l). D
From now on we assume that K/3 is small enough, or the orbit u(£) meets the line

T = Ti at the point zli = ( T i , Z i )
r , where fj = 7}, and Z< = Z(g). We call the

point Ui the ignition point. According to Lemma 3.4, this point for Chapman-Jouguet

detonation is unique.

Now we have our main theorem as follows.

THEOREM 3 . 6 . Suppose that the system (2.3) admits the rest points UQ and
umo, for some 0 < m ̂  1. If K/3 is small enough, then there is a unique orbit of the
system (2.3) which runs from uo to umo, for some 0 < m ̂  1.

P R O O F : In the region T <Tit the last equation of (2.3) becomes Z = 0. Thus, in
this region, along the orbits of this system Z(£) is constant. Here we let Z(£) = Zi,
where Zi is the second component of Uj, (the ignition point). On the surface Z = Zi,

the system (2.3) reduces to the following one dimensional system of equations in the
region T ̂  Ti:

(3.4) l3T = f(T)-sT-q0Zi + C~F(T).

Now consider the region D' = {T &R: F(T) < 0, T < 7*} . Notice that T = I* € 3D'.

Also it is trivial to see that any orbit of (3.4) initiating at a point on dD'n{T : T = Ti}

approaches the unique rest point of the system (3.4) which is located in the region
T < Ti, as f tends to +oo. We denote this rest point by Tt.
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Again consider the ignition point ui = (T{, Zi). By the above argument, there

is a unique orbit of the system (2.3), say u ( 0 = (T(O,£(O)>f < £ < +oo, with

S( | ) = (%,%), Z(£) = Zi, for f ^ £, and lim S(O = (2;, Z{). Along this orbit

is increasing and Z(£) is constant. This orbit lies in D, the domain which is used
in the proof of Lemma 3.4.

Now define,
5(0f « (

I « (
Then u(£) is a complete orbit of the system (2.3) lying in D and runs from u0 to um0

for some 0 < m $C 1. This completes the proof. D
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