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Gallium-oxide in its monoclinic phase (β-Ga2O3) is a very promising material in high power electronic 

devices and photodetectors due to its wide bandgap (~4.8 eV) and a potentially high breakdown field (~8 

MV.cm
-1

) [1]. Interestingly, alloying β-Ga2O3 with aluminum-oxide (Al2O3) to form a β-(AlxGa1-x)2O3 

semiconductor offers new opportunities as it broadens device design possibilities and enhances the 

electronic properties as it is expected to cover even larger deep ultraviolet region and electronics with 

even higher critical field strength. Moreover, in β-(AlxGa1-x)2O3/β-Ga2O3 heterostructures, a two-

dimensional electron gas can be achieved through modulation doping with high channel mobilities at room 

temperatures and even reported higher mobilities at low temperatures [2]. One of the main parameters that 

drives the Drude electron mobility in a crystal is the effective mass and its experimental determination 

and variation in β-(AlxGa1-x)2O3/β-Ga2O3 heterostructures is yet to be explored. 

In this study we report the measurement of the dielectric constant and direct measurements of electron 

effective mass across a β-(Al0.2Ga0.8)2O3/β-Ga2O3 interface using monochromated electron energy-loss 

spectroscopy combined through Kramers-Kronig analysis. In addition, this study further investigates the 

defects present at the interface and how they can affect electron mobility. 

Figure 1.a shows a HAADF-STEM image of the β-(Al0.2Ga0.8)2O3/β-Ga2O3 interface within multiple 

EELS point scans (yellow dots) from which low loss EELS spectra were utilized to measure the variation 

of the plasmon energy peaks. Figure 1.b shows plasmon peak energy variations across the interface that 

have been extracted from the EELS point scans. A plasmon peak shift of about 100 meV was observed, 

suggesting an electron accumulation along the interface.  Moreover, using Kramers-Kronigs calculations, 

a decreasing mean value of the effective mass is observed as we move from β-(Al0.2Ga0.8)2O3 to β-Ga2O3 

substrate which is in good agreement with the predictions in the literature [3]. We observe a local dip of 

the effective mass in the vicinity of the interface suggesting a higher electron mobility locally at the 

interface. 

This work provides direct calculations of the electron effective mass variation in β-(Al0.2Ga0.8)2O3/β-

Ga2O3 heterostructures, meaningful for the understanding of electron channel mobility in AlGaO/GaO 

based devices. 
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Figure 1. (a) HAADF-STEM image of the β-(Al0.2Ga0.8)2O3/β-Ga2O3 interface within multiple EELS 

point scans (yellow dots) from which low loss EELS spectra were utilized to measure the variation of the 

plasmon energy peaks. (b) Plasmon shift variation across the β-(Al0.2Ga0.8)2O3/β-Ga2O3 interface 

obtained by fitting the plasmon peaks extracted from the EELS point scans as shown in the insert. 
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