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Critical scaling profile for trees and con-
nected subgraphs on the complete graph
Yucheng Liu and Gordon Slade

Abstract. We analyse generating functions for trees and for connected subgraphs on the complete
graph, and identify a single scaling profile which applies for both generating functions in a critical
window. Our motivation comes from the analysis of the finite-size scaling of lattice trees and lat-
tice animals on a high-dimensional discrete torus, for which we conjecture that the identical profile
applies in dimensions 𝑑 ≥ 8.

1 Main results

1.1 Results

The enumeration of trees and connected graphs has a long history. We are motivated
by problems arising in the critical behaviour of branched polymers in equilibrium
statistical mechanics, to consider certain generating functions for the number of trees
and connected subgraphs in the complete graphK𝑉 on𝑉 labelled vertices. The vertices
are labelled as V = {0, . . . , 𝑉 − 1} and the edge set is E = {{𝑥, 𝑦} : 𝑥, 𝑦 ∈ V, 𝑥 ≠ 𝑦}.
Our interest is in the asymptotic behaviour as𝑉 → ∞.

We define one-point functions

𝐺𝑡
𝑉,0 (𝑝) =

∑︁
𝑇∋0

( 𝑝
𝑒𝑉

) |𝑇 |
, 𝐺𝑎

𝑉,0 (𝑝) =
∑︁
𝐴∋0

( 𝑝
𝑒𝑉

) |𝐴|
, (1.1)

where the first sum is over all labelled trees𝑇 inK𝑉 containing the vertex 0, the second
sum is over all labelled connected subgraphs 𝐴 containing 0, and |𝑇 | and |𝐴| denote
the number of edges in 𝑇 and 𝐴. The division of 𝑝 by 𝑒𝑉 is a normalisation to make
𝑝 = 1 correspond to a critical value. We also study the two-point functions

𝐺𝑡
𝑉,01 (𝑝) =

∑︁
𝑇∋0,1

( 𝑝
𝑒𝑉

) |𝑇 |
, 𝐺𝑎

𝑉,01 (𝑝) =
∑︁
𝐴∋0,1

( 𝑝
𝑒𝑉

) |𝐴|
, (1.2)

where the sums now run over trees or connected subgraphs containing the distinct
vertices 0, 1. To avoid repetition, when a formula applies to both trees and connected
subgraphs we often omit the superscripts 𝑡, 𝑎. With this convention, we define the
susceptibility

𝜒𝑉 (𝑝) = 𝐺𝑉,0 (𝑝) + (𝑉 − 1)𝐺𝑉,01 (𝑝). (1.3)
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2 Y. Liu and G. Slade

We are particularly interested in values of 𝑝 in a critical window 𝑝 = 1+ 𝑠𝑉−1/2 around
the critical point, with 𝑠 ∈ R.

We define the profile

𝐼 (𝑠) = 𝑒
√
2𝜋

∫ ∞

0
𝑒−

1
2 𝑥

2+𝑠𝑥 1
√
𝑥
d𝑥 (𝑠 ∈ R). (1.4)

The profile can be rewritten in terms of a Faxén integral [25, p. 332] as 𝐼 (𝑠) =

𝑒𝜋−1/22−5/4Fi( 12 ,
1
4 ;
√
2𝑠), and its asymptotic behaviour is given by [25, Ex. 7.3, p. 84]

to be

𝐼 (𝑠) ∼
{
𝑒 |2𝑠 |−1/2 (𝑠 → −∞)
𝑒𝑠−1/2𝑒𝑠

2/2 (𝑠 → +∞),
(1.5)

where 𝑓 ∼ 𝑔 means lim 𝑓 /𝑔 = 1. Our main result is the following theorem.

Theorem 1.1 For both trees and connected subgraphs, and for all 𝑠 ∈ R, as𝑉 → ∞ we have

𝐺𝑉,01 (1 + 𝑠𝑉−1/2) ∼ 𝑉−3/4𝐼 (𝑠), (1.6)

𝜒𝑉 (1 + 𝑠𝑉−1/2) ∼ 𝑉1/4𝐼 (𝑠). (1.7)

The proof of Theorem 1.1 uses a uniform bound on the one-point function. The
following theorem gives a statement that is more precise than a bound. It involves the
principal branch 𝑊0 of the Lambert function [5], which solves 𝑊0𝑒

𝑊0 = 𝑧 and has
power series

𝑊0 (𝑧) =
∞∑︁
𝑛=1

(−𝑛)𝑛−1
𝑛!

𝑧𝑛. (1.8)

The solution to𝑊0𝑒
𝑊0 = −1/𝑒 is achieved by the particular value𝑊0 (−1/𝑒) = −1.

Theorem 1.2 For both trees and connected subgraphs, for all 𝑠 ≥ 0, and for all sequences 𝑝𝑉
with 𝑝𝑉 ≤ 1 + 𝑠𝑉−1/2 and lim𝑉→∞ 𝑝𝑉 = 𝑝 ∈ [0, 1] ,

lim
𝑉→∞

𝐺𝑉,0 (𝑝𝑉 ) =
∞∑︁
𝑛=1

𝑛𝑛−1

𝑛!

( 𝑝
𝑒

)𝑛−1
= − 𝑒

𝑝
𝑊0

(
− 𝑝

𝑒

)
. (1.9)

In particular, if 𝑝 = 1 then lim𝑉→∞𝐺𝑉,0 (𝑝𝑉 ) = 𝑒.

Notation: We write 𝑓 ≲ 𝑔 if there is a 𝐶 > 0 such that 𝑓 (𝑥) ≤ 𝐶𝑔(𝑥) for all 𝑥 of
interest.

1.2 Method of proof

To prove (1.6), it suffices to prove (1.7) and (1.9), since when 𝑝 = 1 + 𝑠𝑉−1/2, by
definition of 𝜒𝑉 we then have

𝐺𝑉,01 =
𝜒𝑉 − 𝐺𝑉,0

𝑉 − 1
∼ 𝜒𝑉

𝑉
. (1.10)
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Scaling profile for trees and connected subgraphs 3

1.2.1 Trees
By Cayley’s formula, the number of trees on 𝑛 labelled vertices is 𝑛𝑛−2. By decompos-
ing the sum defining 𝐺𝑡

𝑉,0 (𝑝) according to the number 𝑛 of vertices in the tree, and
by counting the number of ways to choose 𝑛 − 1 vertices other than 0, we have

𝐺𝑡
𝑉,0 (𝑝) =

𝑉∑︁
𝑛=1

(
𝑉 − 1
𝑛 − 1

)
𝑛𝑛−2

( 𝑝
𝑒𝑉

)𝑛−1
. (1.11)

Similarly, by counting the number of ways to choose 𝑛 − 2 vertices other than 0 and
1, we have

𝐺𝑡
𝑉,01 (𝑝) =

𝑉∑︁
𝑛=2

(
𝑉 − 2
𝑛 − 2

)
𝑛𝑛−2

( 𝑝
𝑒𝑉

)𝑛−1
. (1.12)

Since (
𝑉 − 1
𝑛 − 1

)
+ (𝑉 − 1)

(
𝑉 − 2
𝑛 − 2

)
= 𝑛

(
𝑉 − 1
𝑛 − 1

)
, (1.13)

it follows from (1.3) that the susceptibility is given by

𝜒𝑡𝑉 (𝑝) =
𝑉∑︁
𝑛=1

(
𝑉 − 1
𝑛 − 1

)
𝑛𝑛−1

( 𝑝
𝑒𝑉

)𝑛−1
. (1.14)

For trees, we prove Theorems 1.1–1.2 by directly analysing the above series for 𝜒𝑡
𝑉

and𝐺𝑡
𝑉,0. The profile 𝐼 (𝑠) for 𝜒𝑡

𝑉
(1 + 𝑠𝑉−1/2) arises from a Riemann sum limit.

1.2.2 Connected subgraphs
For connected subgraphs, we will show that the contribution to 𝜒𝑎

𝑉
, 𝐺𝑎

𝑉,01 from con-
nected subgraphs with cycles is much smaller than the contribution from trees. Let
𝐶 (𝑛, 𝑛 − 1 + ℓ) denote the number of connected graphs on 𝑛 labelled vertices with
exactly 𝑛−1+ℓ edges, i.e., with ℓ surplus edges. The surplus must be zero for 𝑛 = 1, 2.
For 𝑛 ≥ 3, we define the surplus generating function

𝑆(𝑛, 𝑧) =
∞∑︁
ℓ=1

𝐶 (𝑛, 𝑛 − 1 + ℓ)𝑧ℓ . (1.15)

Note that terms in the above sum are zero unless ℓ ≤
(𝑛
2
)
− (𝑛 − 1), and that the tree

term (ℓ = 0) is absent.
We decompose the sums defining 𝐺𝑎

𝑉,0 and 𝐺𝑎
𝑉,01 according to the number 𝑛 of

vertices in the connected subgraph, and we further distinguish whether or not the
subgraph contains surplus edges. This leads to the decomposition

𝐺𝑎
𝑉,0 (𝑝) = 𝐺𝑡

𝑉,0 (𝑝) + Δ𝑉,0 (𝑝), (1.16)

𝜒𝑎𝑉 (𝑝) = 𝜒𝑡𝑉 (𝑝) + Δ𝑉 (𝑝), (1.17)
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with

Δ𝑉,0 (𝑝) =
𝑉∑︁
𝑛=3

(
𝑉 − 1
𝑛 − 1

)
𝑆

(
𝑛,

𝑝

𝑒𝑉

) ( 𝑝
𝑒𝑉

)𝑛−1
, (1.18)

Δ𝑉 (𝑝) =
𝑉∑︁
𝑛=3

(
𝑉 − 1
𝑛 − 1

)
𝑛𝑆

(
𝑛,

𝑝

𝑒𝑉

) ( 𝑝
𝑒𝑉

)𝑛−1
. (1.19)

Given Theorems 1.1–1.2 for trees, we prove Theorems 1.1–1.2 for connected sub-
graphs by showing that, for all 𝑠 ∈ R,

lim
𝑉→∞

Δ𝑉,0 (1 + 𝑠𝑉−1/2) = 0, (1.20)

lim
𝑉→∞

𝑉−1/4Δ𝑉 (1 + 𝑠𝑉−1/2) = 0. (1.21)

The proof is more subtle than for trees and requires estimates on the surplus gener-
ating function. As we discuss later, a precise but cumbrous asymptotic formula for
𝐶 (𝑛, 𝑛 + 𝑘) is given in [3, Corollary 1]. We use that formula to prove the following
useful explicit bound. By convention, 𝑘 𝑘 = 1 when 𝑘 = 0.

Proposition 1.3 Let 𝑛 ≥ 3 and 𝑁 =
(𝑛
2
)
. For 0 ≤ 𝑘 ≤ 𝑛, we have

𝐶 (𝑛, 𝑛 + 𝑘) ≲
(
𝑁

𝑛 + 𝑘

) (
2
𝑒

)𝑛 (
𝑒𝑛

𝑘

) 𝑘/2
. (1.22)

Proposition 1.3 is most useful when the surplus ℓ = 𝑘+1 is small but of order 𝑛. This
is a delicate region when controlling the surplus generating function, and the precise
constant 𝑒 in the last factor of (1.22) is important. For a larger surplus, we simply
bound 𝐶 (𝑛, 𝑛 + 𝑘) by the total number of graphs (connected or not) on 𝑛 vertices
with 𝑛 + 𝑘 edges, which is

( 𝑁
𝑛+𝑘

)
. Together, these bounds provide enough control on

𝑆(𝑛, 𝑝/(𝑒𝑉)) to prove (1.20)–(1.21).

1.3 Motivation

Theorem 1.1 is motivated by a broader emerging theory of finite-size scaling in sta-
tistical mechanical models above their upper critical dimensions. The theory involves
a family of profiles expressed in terms of the functions

𝐼𝑘 (𝑠) =
∫ ∞

0
𝑥𝑘𝑒−

1
4 𝑥

4− 1
2 𝑠𝑥

2
d𝑥 (𝑠 ∈ R, 𝑘 > −1). (1.23)

A change of variables transforms the profile 𝐼 of (1.4) into 𝐼 (𝑠) =

𝑒21/4𝜋−1/2𝐼0 (−
√
2𝑠). The general theory is described in [21] with references to

the extensive physics and mathematics literature.
Given an integer 𝑑 ≥ 2, infinite-volume models can be formulated on a transitive

graphG = (Z𝑑 ,E), whose edge setEhas a finite number of edges containing the origin
and is invariant under the symmetries of Z𝑑 . Above an upper critical dimension 𝑑c, for
many models it has been proven that the critical exponents that describe the critical
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Scaling profile for trees and connected subgraphs 5

behaviour are the same as the corresponding exponents when the model is formu-
lated on a regular tree or on the complete graph. The tree and complete graph settings
are easy to analyse. Finite-volume models (with periodic boundary conditions) can
instead be formulated on a discrete torus G𝑟 = (T𝑑

𝑟 ,E𝑟 ) of period 𝑟 . At and above the
upper critical dimension, the torus models are known or conjectured to have critical
behaviour analogous to that seen on the complete graph, with an interesting “plateau”
phenomenon involving a universal profile which is often expressed in terms of 𝐼𝑘 .
The value of 𝑘 depends on the model. Dimensions 𝑑 < 𝑑c are conjectured to exhibit
different scaling, with no plateau or profile.
Lattice trees and lattice animals: A lattice animal is a finite connected subgraph of
G, and a lattice tree is an acyclic lattice animal. The critical behaviour of lattice trees
and lattice animals is at least as difficult as is the case for the notoriously difficult
self-avoiding walk. Despite significant interest from chemists and physicists for over
half a century, due to applications to branched polymers [15], the critical behaviour
is understood mathematically only in dimensions 𝑑 > 𝑑c = 8. For 𝑑 > 8, it has
been proved using the lace expansion that for sufficiently large edge sets E (or for
nearest-neighbour edges with 𝑑 sufficiently large), lattice trees and lattice animals at
the critical point both have the same behaviour as a critical branching process [4, 6,
12, 13].

For 𝑥 ∈ Z𝑑 , let 𝑐𝑚 (𝑥) denote the number of lattice trees or lattice animals contain-
ing 0, 𝑥 and having exactly 𝑚 bonds. The one-point functions, two-point functions,
and susceptibilities are defined by

𝑔(𝑧) =
∞∑︁

𝑚=0

𝑐𝑚 (0)𝑧𝑚, 𝐺𝑧 (𝑥) =
∞∑︁

𝑚=0

𝑐𝑚 (𝑥)𝑧𝑚, 𝜒(𝑧) =
∑︁
𝑥∈Z𝑑

𝐺𝑧 (𝑥). (1.24)

The radius of convergence 𝑧c (the critical point) of these series is finite and positive,
and is strictly smaller for animals than for trees [7]. High-dimensional versions and
extensions of Theorem 1.2 for 𝑔(𝑧𝑐) are proved in [19, 23]. The analogous quantities
for trees and animals on the torus T𝑑

𝑟 are denoted 𝑔𝑟 (𝑧), 𝐺𝑟 ,𝑧 (𝑥), 𝜒𝑟 (𝑧). These are
polynomials in 𝑧, so they define entire functions of 𝑧. Nevertheless, for large 𝑟 the
infinite-volume critical point 𝑧𝑐 plays a role in the scaling. We denote the volume of
the torus by𝑉 = 𝑟𝑑 .

Our computation of the profile 𝐼 for the two-point function and susceptibility in
Theorem 1.1 supports the following conjecture from [22] that the profile 𝐼0 (just a
rescaled 𝐼) occurs for both lattice trees and lattice animals on the torus, above the
upper critical dimension.

Conjecture 1.4 For lattice trees and lattice animals on T𝑑
𝑟 with 𝑑 > 8, there are constants

𝑎𝑑 < 0 and 𝑏𝑑 > 0 (different constants for trees and animals) such that, as𝑉 = 𝑟𝑑 → ∞,

𝐺𝑟 ,𝑧𝑐+𝑠𝑉−1/2 (𝑥) − 𝐺𝑧𝑐 (𝑥) ∼ 𝑏𝑑𝑉−3/4𝐼0 (𝑎𝑑𝑠),
𝜒𝑟 (𝑧𝑐 + 𝑠𝑉−1/2) ∼ 𝑏𝑑𝑉1/4𝐼0 (𝑎𝑑𝑠).

(1.25)

In (1.25), the torus point 𝑥 is identified with its representative in Z𝑑 ∩ (− 𝑟
2 ,

𝑟
2 ]

𝑑

in the evaluation of 𝐺𝑧𝑐 (𝑥). For 𝑑 > 8, 𝐺𝑧𝑐 (𝑥) decays as |𝑥 |−(𝑑−2) [10, 11], and the
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6 Y. Liu and G. Slade

constant term of order 𝑉−3/4 = 𝑟−3𝑑/4 dominates the Gaussian decay over most of
the torus. This is the “plateau” phenomenon. On the complete graph, the decaying
term |𝑥 |−(𝑑−2) is absent, and only the constant term occurs for 𝐺𝑉,01, as in (1.6). For
𝑑 = 𝑑c = 8, the conjecture is modified to include logarithmic corrections to the win-
dow scale𝑉−1/2, the plateau scale𝑉−3/4, and the susceptibility scale𝑉1/4, but with the
identical profile 𝐼0.

Self-avoidingwalk: Self-avoiding walk on the complete graph K𝑉 is exactly solvable
[27]. For 1 ≤ 𝑛 ≤ 𝑉 − 1, let 𝑐𝑉,𝑛 (0, 1) =

∏𝑛
𝑗=2 (𝑉 − 𝑗) denote the number of 𝑛-step

self-avoiding walks from 0 to 1 on K𝑉 . Let 𝑆𝑉,01 (𝑝) =
∑𝑉−1

𝑛=1 𝑐𝑉,𝑛 (0, 1) (𝑝/𝑉)𝑛 and
let 𝜒SAW

𝑉
(𝑝) = 1 + (𝑉 − 1)𝑆𝑉,01 (𝑝). It is proved in [27] (see also [24, Appendix B])

that, as𝑉 → ∞,

𝑆𝑉,01 (1 + 𝑠𝑉−1/2) ∼ (2𝑉)−1/2𝐼1 (−
√
2𝑠),

𝜒SAW𝑉 (1 + 𝑠𝑉−1/2) ∼ 2−1/2𝑉1/2𝐼1 (−
√
2𝑠).

(1.26)

In [24, 26], the same profile 𝐼1 is conjectured to apply to the self-avoiding walk on
T𝑑
𝑟 for 𝑑 ≥ 4, in the sense that the two-point function and susceptibility obey the

analogue of (1.25) with the right-hand sides replaced respectively by 𝑏𝑑𝑉−1/2𝐼1 (𝑎𝑑𝑠)
and 𝑏𝑑𝑉1/2𝐼1 (𝑎𝑑𝑠). The conjectured log corrections for 𝑑 = 4 are indicated in [24,
Section 1.6.3].

Spin systems: The plateau for spin systems in dimensions 𝑑 ≥ 𝑑c = 4 is discussed in
[20, 21, 26], including rigorous results for a hierarchical |𝜑|4 model and conjectures
for spin systems on the torus. The relevant profile for 𝑛-component spin systems is

𝑓𝑛 (𝑠) =
∫
R𝑛 |𝑥 |2𝑒−

1
4 |𝑥 |

4− 𝑠
2 |𝑥 |

2
𝑑𝑥

𝑛
∫
R𝑛 𝑒

− 1
4 |𝑥 |4−

𝑠
2 |𝑥 |2𝑑𝑥

=
𝐼𝑛+1 (𝑠)
𝑛𝐼𝑛−1 (𝑠)

. (1.27)

The profile 𝑓1 has been proven to occur for the Ising model on the complete graph
(Curie–Weiss model); a recent reference is [2]. As 𝑛 → 0, the profile 𝑓𝑛 (𝑠) converges
to 𝐼1 (𝑠), which is consistent with the conventional wisdom that the spin model with
𝑛 = 0 corresponds to the self-avoiding walk.

Percolation: Percolation has been extensively studied both on infinite lattices [9] and
on the complete graph (the Erdős–Rényi random graph) [17]. This is a probabilistic
model in which the cluster containing 0 is a connected subgraph 𝐴 ∋ 0 with weight
𝑝 |𝐴| (1−𝑝) |𝜕𝐴| , where |𝐴| denotes the number of edges in 𝐴, and 𝜕𝐴 denotes the set of
edges which are not in 𝐴 but are incident to one or two vertices in 𝐴. On the complete
graph, we divide 𝑝 by 𝑉 (not by 𝑒𝑉 as in (1.2)) to make the critical value 𝑝 = 1. Thus
we define the two-point function

𝜏𝑉,01 (𝑝) = P𝑝/𝑉 (0 ↔ 1) =
∑︁
𝐴∋0,1

( 𝑝
𝑉

) |𝐴| (
1 − 𝑝

𝑉

) |𝜕𝐴|
(1.28)

and the susceptibility (expected cluster size) 𝜒perc
𝑉

(𝑝) = 1 + (𝑉 − 1)𝜏𝑉,01 (𝑝). Our
conjecture for an analogue of Theorem 1.1 for percolation on the complete graph
is as follows. It involves the Brownian excursion 𝑊∗ of length 1, and the moment
generating function Ψ(𝑥) = E exp[𝑥

∫ 1
0 𝑊

∗ (𝑡)d𝑡] for the Brownian excursion area.
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Conjecture 1.5 For 𝑠 ∈ R, let

𝑓perc (𝑠) =
∫ ∞

0
𝑥2d𝜎𝑠 , d𝜎𝑠 =

1
√
2𝜋
𝑥−5/2Ψ(𝑥3/2)𝑒− 1

6 𝑥
3+ 𝑠

2 𝑥
2− 𝑠2

2 𝑥d𝑥. (1.29)

Then, for some 𝑎, 𝑏 > 0, as𝑉 → ∞ we have

𝜏𝑉,01 (1 + 𝑠𝑉−1/3) ∼ 𝑏𝑉−2/3 𝑓perc (𝑎𝑠),
𝜒
perc
𝑉

(1 + 𝑠𝑉−1/3) ∼ 𝑏𝑉1/3 𝑓perc (𝑎𝑠).
(1.30)

Note the different powers of 𝑉 in (1.30) compared to (1.25) and (1.6)–(1.7). The
powers of𝑉 in (1.30) are well-known, but to our knowledge the occurrence of the pro-
file has not been proved. On the torus T𝑑

𝑟 with 𝑑 > 6, the powers 𝑉−1/3, 𝑉−2/3, 𝑉1/3

are proved in [14], and the role of 𝑓perc was first conjectured in [20, Appendix C].
The origin of the conjecture is as follows. The properly rescaled cluster size (without

expectation) is known to converge in distribution to a random variable described by
the Brownian excursion [1], and the limiting random variable is characterised by a
point process [18]. The measure 𝜎𝑠 is the intensity of the point process and is found
in [18, Theorem 4.1]. The point process describes cluster sizes, in the sense that

𝑛−2𝑘/3
∑︁
𝑖

|𝐶𝑖 |𝑘 ⇒
∫ ∞

0
𝑥𝑘d𝜎𝑠 (𝑘 ≥ 2) (1.31)

in distribution [1]. The 𝑘 = 2 case corresponds to 𝜒perc
𝑉

and identifies 𝑓perc (𝑠).

2 Proof for trees

We begin with an elementary lemma.

Lemma 2.1 Let 𝛾 ≥ 0, 𝜅 > 0, and 𝜆 ∈ R. There is a constant 𝐶𝜅,𝜆 > 0 such that

𝑉∑︁
𝑛=⌈𝑏

√
𝑉 ⌉

1
𝑛𝛾
𝑒−𝜅𝑛

2/𝑉𝑒𝜆𝑛/
√
𝑉 ≤ 𝐶𝜅,𝜆𝑏

−𝛾𝑉 (1−𝛾)/2. (2.1)

for all𝑉 and for all 𝑏 sufficiently large (depending on 𝜅, 𝜆).

Proof Since 𝑛 ≥ 𝑏
√
𝑉 and 𝛾 ≥ 0, the left-hand side of (2.1) is bounded by

1
𝑏𝛾𝑉𝛾/2

∞∑︁
𝑛=⌈𝑏

√
𝑉 ⌉

𝑒−𝜅𝑛
2/𝑉𝑒𝜆𝑛/

√
𝑉 . (2.2)

For 𝑏 sufficiently large (depending on 𝜅, 𝜆), the summand above is monotone decreas-
ing in 𝑛, so we can bound the sum by the integral∫ ∞

𝑏
√
𝑉−1

𝑒−𝜅 (𝑦/
√
𝑉 )2𝑒𝜆(𝑦/

√
𝑉 )d𝑦 ≤ 𝐶𝜅,𝜆

√
𝑉, (2.3)

and the desired result follows. ■
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Proof of Theorem 1.1 for trees We use (1.14) and drop the superscript 𝑡. Fix 𝑠 ∈ R.
For 𝑝 = 1 + 𝑠𝑉−1/2, by combining𝑉−(𝑛−1) with the binomial coefficient, we have

𝜒𝑉 (1 + 𝑠𝑉−1/2) =
𝑉∑︁
𝑛=1

(𝑛−1∏
𝑗=1

(1 − 𝑗

𝑉
)
) 1
(𝑛 − 1)!

𝑛𝑛−1

𝑒𝑛−1

(
1 + 𝑠

√
𝑉

)𝑛−1
. (2.4)

Let 0 < 𝑎 < 1 < 𝑏 < ∞. We divide the sum over 𝑛 into three parts 𝜒 (1)
𝑉
, 𝜒

(2)
𝑉
, 𝜒

(3)
𝑉

,
which respectively sum over 𝑛 in the intervals [1, 𝑎

√
𝑉), [𝑎

√
𝑉, 𝑏

√
𝑉], (𝑏

√
𝑉,𝑉]. We

will prove that

𝜒
(1)
𝑉

≲ 𝑒𝑎 |𝑠 | (1 + 𝑎1/2𝑉1/4), 𝜒
(3)
𝑉

≤ 𝐶 |𝑠 |𝑏
−1/2𝑉1/4 (2.5)

for all 𝑎 > 0 and all 𝑏 sufficiently large, and that

lim
𝑉→∞

𝑉−1/4𝜒 (2)
𝑉

=

∫ 𝑏

𝑎

𝑓 (𝑥)d𝑥, 𝑓 (𝑥) = 𝑒
√
2𝜋
𝑒−𝑥

2/2 1
√
𝑥
𝑒𝑠𝑥 (2.6)

for all 𝑎, 𝑏. These claims imply that∫ 𝑏

𝑎

𝑓 (𝑥)d𝑥 ≤ lim inf
𝑉→∞

𝜒𝑉

𝑉1/4 ≤ lim sup
𝑉→∞

𝜒𝑉

𝑉1/4 ≤ 𝐶𝑒𝑎 |𝑠 |𝑎1/2 +
∫ 𝑏

𝑎

𝑓 (𝑥)d𝑥 + 𝐶 |𝑠 |𝑏
−1/2

(2.7)
for all 𝑎 > 0 and all 𝑏 sufficiently large. Since 𝜒𝑉 does not depend on 𝑎 or 𝑏, by taking
the limits 𝑎 → 0, 𝑏 → ∞, we obtain lim𝑉→∞𝑉−1/4𝜒𝑉 =

∫ ∞
0 𝑓 , which is the desired

result (1.7).
It remains to prove the claims (2.5)–(2.6). Let

𝑏𝑛 =
𝑛𝑛−1

(𝑛 − 1)!𝑒𝑛−1 , (2.8)

which obeys 𝑏𝑛 ≲ 1/
√
𝑛, by Stirling’s formula. Using this in the sum for 𝜒 (1)

𝑉
, and

using 1 + 𝑠/
√
𝑉 ≤ 𝑒 |𝑠 |/

√
𝑉 , we get

𝜒
(1)
𝑉

≲
⌊𝑎

√
𝑉 ⌋∑︁

𝑛=1

1
1
√
𝑛
𝑒 |𝑠 |𝑛/

√
𝑉 ≤ 𝑒𝑎 |𝑠 |

⌊𝑎
√
𝑉 ⌋∑︁

𝑛=1

1
√
𝑛
≲ 𝑒𝑎 |𝑠 | (1 + 𝑎1/2𝑉1/4), (2.9)

as claimed. For 𝜒 (3)
𝑉

, we also need a bound on the product over 𝑗 . Using 1 − 𝑥 ≤ 𝑒−𝑥 ,
we have

𝑛−1∏
𝑗=1

(
1 − 𝑗

𝑉

)
≤ exp

{
− 1
𝑉

𝑛−1∑︁
𝑗=1

𝑗

}
= exp

{
−𝑛(𝑛 − 1)

2𝑉

}
. (2.10)

By Lemma 2.1 with 𝛾 = 𝜅 = 1
2 and 𝜆 = |𝑠 |, this implies that, for all 𝑏 sufficiently large,

𝜒
(3)
𝑉

≲
𝑉∑︁

𝑛=⌈𝑏
√
𝑉 ⌉

𝑒−𝑛
2/2𝑉𝑒𝑛/2𝑉

1
√
𝑛
𝑒 |𝑠 |𝑛/

√
𝑉 ≲ 𝑒1/2𝑏−1/2𝑉1/4. (2.11)
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Finally, for 𝜒 (2)
𝑉

we fix 𝑎, 𝑏 and use the asymptotic formulas(
1 + 𝑠

√
𝑉

)𝑛−1
= exp

{
(𝑛 − 1) log(1 + 𝑠

√
𝑉
)
}
= 𝑒𝑠𝑛/

√
𝑉
[
1 +𝑂

( 1
√
𝑉

)
+𝑂

( 𝑛
𝑉

)]
,

(2.12)
𝑛−1∏
𝑗=1

(
1 − 𝑗

𝑉

)
= exp

{ 𝑛−1∑︁
𝑗=1

log(1 − 𝑗

𝑉
)
}
= 𝑒−𝑛

2/2𝑉
[
1 +𝑂

( 𝑛
𝑉

)
+𝑂

( 𝑛3
𝑉2

)]
, (2.13)

which follow from Taylor expansion of the logarithm (the constants here depend on 𝑠).
Since 𝑛 ∈ [𝑎

√
𝑉, 𝑏

√
𝑉], the above, together with the fact that 𝑏𝑛 = 𝑒√

2𝜋𝑛
[1+𝑂 (1/𝑛)]

by Stirling’s formula, give

𝜒
(2)
𝑉

=

⌊𝑏
√
𝑉 ⌋∑︁

𝑛=⌈𝑎
√
𝑉 ⌉

𝑒−𝑛
2/2𝑉 𝑒

√
2𝜋𝑛

𝑒𝑠𝑛/
√
𝑉
[
1 +𝑂

( 1
√
𝑉

)]
. (2.14)

The desired limit then follows from the observations that the leading term of
𝑉−1/4𝜒 (2)

𝑉
is a Riemann sum for the integral

∫ 𝑏

𝑎
𝑓 with mesh size𝑉−1/2. ■

Proof of Theorem 1.2 for trees We use (1.11) and again drop the superscript 𝑡. Fix
𝑠 ≥ 0. Let 𝑝𝑉 be a sequence with 𝑝𝑉 ≤ 1+ 𝑠𝑉−1/2 and 𝑝𝑉 → 𝑝 ∈ [0, 1]. Similarly to
(2.4) and with an additional factor of 𝑛 in the denominator,

𝐺𝑉,0 (𝑝𝑉 ) =
𝑉∑︁
𝑛=1

( 𝑛−1∏
𝑗=1

(1 − 𝑗

𝑉
)
) 1
𝑛!
𝑛𝑛−1

𝑒𝑛−1
𝑝𝑛−1𝑉 . (2.15)

Let 𝑁, 𝑏 ≥ 1. We divide the sum over 𝑛 into three parts 𝐺 (1)
𝑉
, 𝐺

(2)
𝑉
, 𝐺

(3)
𝑉

, which
respectively sum over 𝑛 in the intervals [1, 𝑁], (𝑁, 𝑏

√
𝑉], (𝑏

√
𝑉,𝑉]. For a fixed 𝑁 ,

we immediately get

lim
𝑉→∞

𝐺
(1)
𝑉

(𝑝𝑉 ) =
𝑁∑︁
𝑛=1

1
𝑛!
𝑛𝑛−1

𝑒𝑛−1
𝑝𝑛−1, (2.16)

which dominates the sum. Indeed, using monotonicity of the generating function, for
𝐺

(2)
𝑉

we can proceed as in (2.9) to bound

𝐺
(2)
𝑉

(𝑝𝑉 ) ≤ 𝐺 (2)
𝑉

(1 + 𝑠𝑉−1/2) ≤ 𝑒𝑏𝑠
⌊𝑏

√
𝑉 ⌋∑︁

𝑛=𝑁

1
𝑛3/2

≲
𝑒𝑏𝑠
√
𝑁
. (2.17)

For𝐺 (3)
𝑉

, we can argue as in (2.11) but with an additional factor 𝑛 in the denominator,
and use Lemma 2.1 with 𝛾 = 3

2 to get𝐺 (3)
𝑉

(𝑝𝑉 ) ≲ 𝑏−3/2𝑉−1/4 for 𝑏 sufficiently large.
Together, we obtain

𝑁∑︁
𝑛=1

1
𝑛!
𝑛𝑛−1

𝑒𝑛−1
𝑝𝑛−1 ≤ lim inf

𝑉→∞
𝐺𝑉,0 ≤ lim sup

𝑉→∞
𝐺𝑉,0 ≤

𝑁∑︁
𝑛=1

1
𝑛!
𝑛𝑛−1

𝑒𝑛−1
𝑝𝑛−1 + 𝐶𝑒𝑏𝑠

√
𝑁

(2.18)
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for all 𝑁 ≥ 1 and all 𝑏 sufficiently large. Since 𝐺𝑉,0 does not depend on 𝑁 , we can
take the limit 𝑁 → ∞ to conclude the desired result (1.9). ■

3 Proof for connected subgraphs

3.1 Bound on 𝐶 (𝑛, 𝑛 + 𝑘)

We use the asymptotic formula for 𝐶 (𝑛, 𝑛 + 𝑘) proved in [3]. We follow the notation
in [3] and write

𝑥 = 1 + 𝑘

𝑛
. (3.1)

For 𝑥 > 1, we define the function 𝑦 = 𝑦(𝑥) ∈ (0, 1) implicitly by

𝑥 =
1
2𝑦

log
(
1 + 𝑦
1 − 𝑦

)
=

1
𝑦
arctanh 𝑦 =

∞∑︁
𝑚=0

𝑦2𝑚

2𝑚 + 1
, (3.2)

and we define the functions 𝜑(𝑥), 𝑎(𝑥) by

𝑒𝜑 (𝑥 ) =
2𝑒−𝑥𝑦1−𝑥√︁

1 − 𝑦2
, (3.3)

𝑎(𝑥) = 𝑥(𝑥 + 1) (1 − 𝑦) + log(1 − 𝑥 + 𝑥𝑦) − 1
2
log(1 − 𝑥 + 𝑥𝑦2). (3.4)

Both 𝜑 and 𝑎 extend continuously to 𝑥 = 1 by defining 𝑦1−𝑥 = 1 at 𝑥 = 1 and defining
𝑎(1) = 2 + 1

2 log
3
2 .

Let𝑁 =
(𝑛
2
)
. It is proved in [3, Corollary 1] that there are constants𝑤𝑘 = 1+𝑂 (1/𝑘)

for which

𝐶 (𝑛, 𝑛 + 𝑘) = 𝑤𝑘

(
𝑁

𝑛 + 𝑘

)
𝑒𝑛𝜑 (𝑥 )𝑒𝑎 (𝑥 )

[
1 +𝑂

(
(𝑘 + 1)1/16

𝑛9/50

)]
(3.5)

uniformly in 0 ≤ 𝑘 ≤ 𝑁−𝑛. The constants𝑤𝑘 are related to Wright’s constants for the
the asymptotics of𝐶 (𝑛, 𝑛 + 𝑘) with 𝑘 fixed [29], and they are related to the Brownian
excursion area [28]. We will simply bound 𝑤𝑘 by a constant. The next lemma gives
estimates for 𝜑(𝑥) and 𝑎(𝑥).

Lemma 3.1 Let 𝑥 ≥ 1.

(i) The function 𝑎(𝑥) is bounded.
(ii) Let 𝑡 =

√
3𝑒 and 𝑦 = 𝑦(𝑥). Then

𝑒𝜑 (𝑥 ) ≤ 2
𝑒
exp

{
−1
3
𝑦2 log

𝑦

𝑡

}
, (3.6)

and the right-hand side is monotonically increasing for 0 < 𝑦 ≤ 𝑡/
√
𝑒.

By considering the limit 𝑥 → ∞ (𝑦 → 1), we expect that the inequality (3.6)
becomes optimal with 𝑡 = (𝑒/2)3 ≈ 2.51, but we do not pursue this. The weaker ver-
sion with 𝑡 =

√
3𝑒 is sufficient for our purposes, but to show the role of 𝑡 we keep it

in our formulas.
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Proof (i) The function 𝑎(𝑥) is continuous on [1,∞) by definition, and it satisfies
|𝑎(𝑥) | ≲ 𝑥2 (1 − 𝑦) ∼ 2𝑥2𝑒−2𝑥 as 𝑥 → ∞ by [3, Lemma 3.2], so it is bounded.
(ii) By the definitions of 𝜑(𝑥) and 𝑥, and by the Taylor series for log(1 − 𝑦2),

𝜑(𝑥) − log
2
𝑒
= (1 − 𝑥) (1 + log 𝑦) − 1

2
log(1 − 𝑦2)

= −
∞∑︁

𝑚=1

𝑦2𝑚

2𝑚 + 1
(1 + log 𝑦) +

∞∑︁
𝑚=1

𝑦2𝑚

2𝑚

= −1
3
𝑦2 log 𝑦 + 1

6
𝑦2 +

∞∑︁
𝑚=2

𝑦2𝑚

2𝑚 + 1

(
− log 𝑦 + 1

2𝑚

)
. (3.7)

We bound the series in the last line by a quadratic function, term by term. For any
𝑚 ≥ 2, by calculus,

max
0≤𝑦≤1

[
𝑦2𝑚−2 (−2𝑚 log 𝑦 + 1)

]
=

2𝑚
2𝑚 − 2

𝑒−1/𝑚. (3.8)

Then, with 𝐾 = max𝑚≥2{ 2𝑚
2𝑚−2 𝑒

−1/𝑚} = 2𝑒−1/2, by [8, 0.234.8] we have
∞∑︁

𝑚=2

𝑦2𝑚

2𝑚 + 1

(
− log 𝑦 + 1

2𝑚

)
≤

∞∑︁
𝑚=2

𝐾𝑦2

(2𝑚 + 1) (2𝑚) = (1 − log 2 − 1
6
)𝐾𝑦2. (3.9)

Therefore,

𝜑(𝑥) − log
2
𝑒
≤ −1

3
𝑦2 log 𝑦 +

[
1
6
+ (1 − log 2 − 1

6
)𝐾

]
𝑦2. (3.10)

This implies (3.6) with any 𝑡 that obeys 1
3 log 𝑡 ≥

1
6 + (1 − log 2 − 1

6 )𝐾 ≈ 0.3367. In
particular, we can take any 𝑡 ≥ 2.75, including 𝑡 =

√
3𝑒 ≈ 2.85. Monotonicity of the

upper bound in 0 < 𝑦 ≤ 𝑡/
√
𝑒 is another calculus exercise. ■

We now restate and prove Proposition 1.3.

Proposition 3.2 Let 𝑛 ≥ 3, 𝑁 =
(𝑛
2
)
, and 𝑡 =

√
3𝑒. For 0 ≤ 𝑘

𝑛
≤ 𝑡2

3𝑒 , we have

𝐶 (𝑛, 𝑛 + 𝑘) ≲
(
𝑁

𝑛 + 𝑘

) (
2
𝑒

)𝑛 (
𝑡2𝑛

3𝑘

) 𝑘/2
. (3.11)

Proof We use the asymptotic formula (3.5), and use that 𝑤𝑘 = 1 + 𝑂 (1/𝑘) is
bounded. The error term in (3.5) is bounded by a constant since 𝑘 is at most linear
in 𝑛. The factor 𝑒𝑎 (𝑥 ) is also bounded by a constant, by Lemma 3.1(i). We therefore
only need to estimate 𝑒𝑛𝜑 (𝑥 ) . Since 0 ≤ 𝑘

𝑛
≤ 𝑡2

3𝑒 and 𝑥 = 1 + 𝑘
𝑛

, by (3.2) we have
𝑦(𝑥) ≤

√︁
3(𝑥 − 1) =

√︁
3𝑘/𝑛 ≤ 𝑡/

√
𝑒, so Lemma 3.1(ii) gives

𝑒𝜑 (𝑥 ) ≤ 2
𝑒
exp

{
−1
3
𝑦2 log

𝑦

𝑡

}
≤ 2
𝑒
exp

{
−𝑥 − 1

2
log

3(𝑥 − 1)
𝑡2

}
=

2
𝑒

(
𝑡2𝑛

3𝑘

) 𝑘/2𝑛
. (3.12)

The desired result then follows by inserting the above into (3.5). ■
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For larger 𝑘
𝑛

we simply use the fact that𝐶 (𝑛, 𝑛+ 𝑘) is less than the total number of
graphs (connected or not) on 𝑛 vertices with 𝑛 + 𝑘 edges, which is

( 𝑁
𝑛+𝑘

)
. For all 𝑛 ≥ 2

and 𝑘 ≥ −1, we have

𝐶 (𝑛, 𝑛 + 𝑘) ≤
(
𝑁

𝑛 + 𝑘

)
≤ 𝑁𝑛+𝑘

(𝑛 + 𝑘)! . (3.13)

3.2 Bound on the surplus generating function

We now prove useful bounds on the surplus generating function defined in (1.15):

𝑆(𝑛, 𝑧) =
∞∑︁
ℓ=1

𝐶 (𝑛, 𝑛 − 1 + ℓ)𝑧ℓ =
∞∑︁
𝑘=0

𝐶 (𝑛, 𝑛 + 𝑘)𝑧𝑘+1. (3.14)

The terms in the series are zero unless 𝑘 ≤
(𝑛
2
)
− 𝑛. The goal is to prove that 𝑆(𝑛, 𝑧) is

small relative to the number of trees𝐶 (𝑛, 𝑛 − 1) = 𝑛𝑛−2. We do this by decomposing
the series into two parts corresponding to sparse and dense graphs. We define

𝐴(𝑛, 𝑧) = 1
𝑛𝑛−2

𝑛∑︁
𝑘=0

𝐶 (𝑛, 𝑛 + 𝑘)𝑧𝑘+1, 𝐵(𝑛, 𝑧) = 1
𝑛𝑛−2

∞∑︁
𝑘=⌊ 12 𝑛⌋

𝐶 (𝑛, 𝑛 + 𝑘)𝑧𝑘+1,

(3.15)
so that

𝑆(𝑛, 𝑧) ≤ 𝑛𝑛−2
(
𝐴(𝑛, 𝑧) + 𝐵(𝑛, 𝑧)

)
. (3.16)

Lemma 3.3 (Sparse connected graphs) Let 𝑛 ≥ 3, 𝑧 ≥ 0, and 𝑡 =
√
3𝑒.

(i) If 𝑛3/2𝑧 ≤ 𝑏, then 𝐴(𝑛, 𝑧) ≤ 𝐶𝑏𝑛
3/2𝑧 for some 𝐶𝑏 > 0.

(ii) If 𝜀 > 0, then

𝐴(𝑛, 𝑧) ≤ 𝐶𝜀 exp
{( 1
24

+ 𝜀
)
𝑒𝑡2𝑧2𝑛3

}
(3.17)

for some 𝐶𝜀 > 0.

Proof Since 𝑡2

3𝑒 = 1, we can apply Proposition 3.2 to estimate 𝐶 (𝑛, 𝑛 + 𝑘). For the
binomial coefficient in (3.11), we use Stirling’s formula, 𝑛 + 𝑘 ≥ 𝑛, and 𝑁 =

(𝑛
2
)
=

1
2𝑛(𝑛 − 1) to see that(

𝑁

𝑛 + 𝑘

)
≤ 𝑁𝑛+𝑘

(𝑛 + 𝑘)! ≲
1

√
𝑛 + 𝑘

(
𝑒𝑁

𝑛 + 𝑘

)𝑛+𝑘
≤ 1

√
𝑛

(
𝑒(𝑛 − 1)

2

)𝑛+𝑘
. (3.18)

Then, by extending the sum to run over all 𝑘 ≥ 0, we obtain

1
𝑧
𝐴(𝑛, 𝑧) = 1

𝑛𝑛−2

𝑛∑︁
𝑘=0

𝐶 (𝑛, 𝑛 + 𝑘)𝑧𝑘

≲
1

𝑛𝑛−2
√
𝑛

𝑛∑︁
𝑘=0

(
𝑒𝑛

2

)𝑛+𝑘 (2
𝑒

)𝑛 (
𝑡2𝑛

3𝑘

) 𝑘/2
𝑧𝑘 ≤ 𝑛3/2

∞∑︁
𝑘=0

1
𝑘 𝑘/2

(
𝑒𝑡𝑛3/2𝑧

2
√
3

) 𝑘
,

(3.19)
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which converges for all 𝑧 > 0.

(i) If 𝑛3/2𝑧 ≤ 𝑏 then the series on the right-hand side is bounded by a constant 𝐶𝑏 , as
required.

(ii) We set 𝑥 = 𝑒𝑡𝑛3/2𝑧
2
√
3

and use the asymptotic formula [16, Lemma 4.1(i)]

∞∑︁
𝑘=0

1
𝑘 𝑘/2

𝑥𝑘 ∼ (4𝜋𝑒−1)1/2𝑥𝑒 1
2𝑒 𝑥

2
as 𝑥 → ∞ (3.20)

to get a bound for large 𝑥. For smaller 𝑥 ≥ 0, we simply bound by a constant. The
desired result then follows by absorbing the prefactor of (3.20) and another factor of
𝑛3/2𝑧 = const 𝑥 into the exponential. This completes the proof. ■

Lemma 3.4 (Dense connected graphs) Let 𝑛 ≥ 3 and 𝑧 ≤ 3
𝑒𝑛

. Then 𝐵(𝑛, 𝑧) ≲ 𝑧2.

Proof Let 𝜈 = ⌊𝑛/2⌋ ≥ 1. The crude bound (3.13) gives

𝐵(𝑛, 𝑧) ≤ 1
𝑛𝑛−2

∞∑︁
𝑘=𝜈

𝑁𝑛+𝑘

(𝑛 + 𝑘)! 𝑧
𝑘+1 =

𝑧1+𝜈

𝑛𝑛−2
𝑁𝑛+𝜈

(𝑛 + 𝜈)!

∞∑︁
𝑘=𝜈

(𝑁𝑧)𝑘−𝜈 (𝑛 + 𝜈)!(𝑛 + 𝑘)!

≤ 𝑧1+𝜈

𝑛𝑛−2
𝑁𝑛+𝜈

(𝑛 + 𝜈)!

∞∑︁
𝑚=0

(
𝑁𝑧

𝑛 + 𝜈

)𝑚
, (3.21)

since (𝑛 + 𝑘)! ≥ (𝑛 + 𝜈)!(𝑛 + 𝜈)𝑘−𝜈 . Note that by our hypothesis

𝑁𝑧

𝑛 + 𝜈 ≤
1
2𝑛(𝑛 − 1)𝑧
𝑛 + ( 12𝑛 −

1
2 )
<
𝑛(𝑛 − 1)
3𝑛 − 3

𝑧 =
1
3
𝑛𝑧 ≤ 1

𝑒
, (3.22)

so the geometric series in (3.21) is bounded by a constant. For the prefactor in (3.21),
since 1 + 𝜈 ≥ 2 and 𝑧 ≤ 3

𝑒𝑛
by hypothesis, we have

𝑧1+𝜈 = 𝑧2𝑧𝜈−1 ≤ 𝑒

3
𝑧2
(3
𝑒

)𝜈
𝑛1−𝜈 . (3.23)

Also, using 𝑁 = 1
2𝑛(𝑛 − 1) and Stirling’s formula,

𝑁𝑛+𝜈

(𝑛 + 𝜈)! ≲
[ 12𝑛(𝑛 − 1)]𝑛+𝜈
√
𝑛( 𝑛+𝜈

𝑒
)𝑛+𝜈

=
𝑛𝑛+𝜈
√
𝑛

( 𝑒
2

)𝑛+𝜈 ( 𝑛 − 1
𝑛 + 𝜈

)𝑛+𝜈
. (3.24)

Since 𝑛−1
𝑛+𝜈 ≤ 2

3 , together we obtain

𝑧1+𝜈

𝑛𝑛−2
𝑁𝑛+𝜈

(𝑛 + 𝜈)! ≲ 𝑧2
(3
𝑒

)𝜈
𝑛5/2

( 𝑒
3

)𝑛+𝜈
= 𝑧2𝑛5/2

( 𝑒
3

)𝑛
. (3.25)

It follows that 𝐵(𝑛, 𝑧) ≲ 𝑧2 sup𝑛≥3{𝑛5/2 (𝑒/3)𝑛}, and the proof is complete since 𝑒 <
3. ■
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3.3 Proof for connected subgraphs

Proof of Theorem 1.1 for connected subgraphs Fix 𝑠 ∈ R and let 𝑝 = 1 + 𝑠𝑉−1/2.
We assume 𝑉 is large enough so that 𝑝 ≤ 3. As discussed around (1.21), it suffices to
prove

lim
𝑉→∞

𝑉−1/4Δ𝑉 (1 + 𝑠𝑉−1/2) = 0. (3.26)

By the definition of Δ𝑉 in (1.19) and by (3.16),

Δ𝑉 (𝑝) ≤
𝑉∑︁
𝑛=3

(
𝑉 − 1
𝑛 − 1

) ( 𝑝
𝑒𝑉

)𝑛−1
𝑛𝑛−1

(
𝐴
(
𝑛,

𝑝

𝑒𝑉

)
+ 𝐵

(
𝑛,

𝑝

𝑒𝑉

) )
. (3.27)

We write the part of the upper bound (3.27) that contains 𝐴, 𝐵 as Δ(𝐴)
𝑉
,Δ

(𝐵)
𝑉

respec-
tively.

We start with Δ
(𝐵)
𝑉

and use Lemma 3.4 to bound 𝐵. Let 𝑧 = 𝑝/(𝑒𝑉). Since 𝑛 ≤ 𝑉
and 𝑝 ≤ 3 (for large 𝑉 ), we have 𝑛𝑧 ≤ 𝑝/𝑒 ≤ 3/𝑒, so Lemma 3.4 applies and gives
𝐵(𝑛, 𝑧) ≲ 𝑉−2. Then, by comparing to 𝜒𝑡

𝑉
in (1.14), we find that

Δ
(𝐵)
𝑉

(𝑝) ≲ 𝑉−2𝜒𝑡𝑉 (𝑝). (3.28)

For Δ(𝐴)
𝑉

, we claim that if both 𝑏 ≥ 1 and𝑉 are sufficiently large, then

Δ
(𝐴)
𝑉

(𝑝) ≤ 𝐶𝑏𝑉
−1/4𝜒𝑡𝑉 (𝑝) + 𝐶𝑠𝑏

−1/2𝑉1/4. (3.29)

Since we already know that𝑉−1/4𝜒𝑡
𝑉

converges, (3.29) implies that

0 ≤ lim sup
𝑉→∞

Δ𝑉

𝑉1/4 ≤ lim sup
𝑉→∞

Δ
(𝐴)
𝑉

+ Δ
(𝐵)
𝑉

𝑉1/4 ≤ 𝐶𝑠𝑏
−1/2 (3.30)

for all 𝑏 sufficiently large. ButΔ𝑉 does not depend on 𝑏, so by taking the limit 𝑏 → ∞,
we obtain (3.26), as desired.

It remains to prove (3.29). We divide the sum defining Δ
(𝐴)
𝑉

into two parts
Δ
(1)
𝑉
,Δ

(2)
𝑉

, which sum over 𝑛 in the intervals [3, 𝑏
√
𝑉], (𝑏

√
𝑉,𝑉] respectively.

For Δ(1)
𝑉

, we have 𝑛 ≤ 𝑏𝑉1/2 so 𝑛3/2𝑧 = 𝑛3/2𝑝/(𝑒𝑉) ≤ 𝑐𝑏𝑉
−1/4, so we can apply

Lemma 3.3(i) to obtain 𝐴(𝑛, 𝑧) ≤ 𝐶′
𝑏
𝑛3/2𝑧 ≤ 𝐶𝑏𝑉

−1/4. With the formula for 𝜒𝑡
𝑉

in
(1.14), this gives

Δ
(1)
𝑉

≤ 𝐶𝑏𝑉
−1/4

⌊𝑏
√
𝑉 ⌋∑︁

𝑛=3

(
𝑉 − 1
𝑛 − 1

) ( 𝑝
𝑒𝑉

)𝑛−1
𝑛𝑛−1 ≤ 𝐶𝑏𝑉

−1/4𝜒𝑡𝑉 (𝑝). (3.31)

This provides the first term on the right-hand side of (3.29).
For Δ(2)

𝑉
, we use 𝑧 = 𝑝/(𝑒𝑉) and Lemma 3.3(ii) to see that

𝐴(𝑛, 𝑧) ≤ 𝐶𝜀 exp
{( 1
24

+ 𝜀
)
𝑒−1𝑡2𝑝2𝑛3/𝑉2

}
, (3.32)
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Since 𝑡 =
√
3𝑒, we have 1

24 𝑒
−1𝑡2 = 1

8 . By choosing 𝜀 small, and by using 𝑝 = 1 +
𝑠𝑉−1/2 → 1 as𝑉 → ∞, for𝑉 sufficiently large (depending only on 𝜀, 𝑠) we have

𝐴(𝑛, 𝑧) ≤ 𝐶𝜀 exp
{1
5
𝑛3

𝑉2

}
. (3.33)

For these values of𝑉 , we thus have

Δ
(2)
𝑉

(1 + 𝑠𝑉−1/2) ≲
𝑉∑︁

𝑛=⌈𝑏
√
𝑉 ⌉

(
𝑉 − 1
𝑛 − 1

) (
1 + 𝑠𝑉−1/2

𝑒𝑉

)𝑛−1
𝑛𝑛−1 exp

{1
5
𝑛3

𝑉2

}
. (3.34)

We now follow the argument used for 𝜒 (3)
𝑉

of trees in the paragraph containing (2.11).
Using 𝑛3

𝑉2 ≤ 𝑛2

𝑉
and Lemma 2.1 with 𝛾 = 1

2 and 𝜅 = 1
2 − 1

5 > 0, we find that if 𝑏 is
sufficiently large then

Δ
(2)
𝑉

(1 + 𝑠𝑉−1/2) ≲
𝑉∑︁

𝑛=⌈𝑏
√
𝑉 ⌉

𝑒−( 12 −
1
5 )𝑛

2/𝑉 1
√
𝑛
𝑒 |𝑠 |𝑛/

√
𝑉 ≤ 𝐶 |𝑠 |𝑏

−1/2𝑉1/4. (3.35)

This gives the second term on the right-hand side of (3.29) and concludes the proof.
■

Proof of Theorem 1.2 for connected subgraphs As noted at (1.20), it suffices to
prove thatΔ𝑉,0 (1+𝑠𝑉−1/2) → 0 for all 𝑠 ≥ 0. We write 𝑝 = 1+𝑠𝑉−1/2 and follow the
proof of Theorem 1.1. Compared to Δ𝑉 for the susceptibility, there is one less factor
𝑛 in Δ𝑉,0, so instead of (3.27) we now have

Δ𝑉,0 (𝑝) ≤
𝑉∑︁
𝑛=3

(
𝑉 − 1
𝑛 − 1

) ( 𝑝
𝑒𝑉

)𝑛−1
𝑛𝑛−2

(
𝐴
(
𝑛,

𝑝

𝑒𝑉

)
+ 𝐵

(
𝑛,

𝑝

𝑒𝑉

) )
. (3.36)

As in (3.28), the contribution from 𝐵 obeys

Δ
(𝐵)
𝑉,0 (𝑝) ≲ 𝑉

−2𝐺𝑡
𝑉,0 (𝑝) ≲ 𝑉

−2, (3.37)

so it vanishes in the limit. For Δ(1)
𝑉,0 (𝑝), the same bound on 𝐴 that was used in (3.31)

now gives Δ(1)
𝑉,0 (𝑝) ≤ 𝐶𝑏𝑉

−1/4𝐺𝑉,0 (𝑝). For Δ(2)
𝑉,0 (𝑝), in (3.35) we now have an extra

factor 𝑛 in the denominator, so Lemma 2.1 with 𝛾 = 3
2 gives

Δ
(2)
𝑉,0 (1 + 𝑠𝑉

−1/2) ≲
𝑉∑︁

𝑛=⌈𝑏
√
𝑉 ⌉

𝑒−( 12 −
1
5 )𝑛

2/𝑉 1
𝑛3/2

𝑒 |𝑠 |𝑛/
√
𝑉 ≤ 𝐶 |𝑠 |𝑏

−3/2𝑉−1/4. (3.38)

Altogether, we have Δ𝑉,0 (𝑝) ≲ 𝑉−1/4 → 0, and the proof is complete. ■
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