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Abstract. Recent observations have shown that in many exoplanetary systems the spin axis
of the parent star is misaligned with the planet’s orbital axis. These have been used to argue
against the scenario that short-period planets migrated to their present-day locations due to
tidal interactions with their natal discs. However, this interpretation is based on the assumption
that the spins of young stars are parallel to the rotation axes of protostellar discs around them.
We show that the interaction between a magnetic star and its circumstellar disc can (although
not always) have the effect of pushing the stellar spin axis away from the disc angular momentum
axis toward the perpendicular state and even the retrograde state. Planets formed in the disc
may therefore have their orbital axes misaligned with the stellar spin axis, even before any
additional planet-planet scatterings or Kozai interactions take place. In general, magnetosphere–
disc interactions lead to a broad distribution of the spin–orbit angles, with some systems aligned
and other systems misaligned.
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1. Introduction
As discussed by others in this conference (J. Winn, A. Triaud), the Rossiter-McLaughlin

(RM) effect, an apparent radial velocity anomaly caused by the partial eclipse of a rotat-
ing parent star by its transiting planet, can be used to measure the sky-projected stellar
obliquity, the angle between the stellar spin axis and the planetary orbital axis. Among
the dozens of systems with RM measurements, about 60% have an orbital axis aligned (in
sky projection) with the stellar spin, while the other systems show a significant spin-orbit
misalignment, including at least 5 with retrograde orbits.

The solar system also provides a clue. Except for Pluto, all planets outside 1 AU
lie within 2◦ of the ecliptic plane, while the Sun’s equatorial plane is inclined by 7◦

with respect to the ecliptic. It is not clear whether the difference between 2◦ and 7◦ is
significant or needs an explanation.

The process of planetary system formation can be roughly divided into two stages.
In the first stage, which lasts a few million years until the dissipation of the gaseous
protoplanetary disc, planets are formed and undergo migration due to tidal interaction
with the gaseous disc. The second stage, which lasts from when the disc has dissipated
to the present, involves dynamical gravitational interactions between multiple planets
if they are produced in the first stage in a sufficiently close-packed configuration (e.g.,
Juric & Tremaine 2007; Chatterjee et al. 2008; Nagasawa et al. 2008), and/or secular
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interactions with a distant planet or stellar companion (Wu & Murray 2003; Fabrycky
& Tremaine 2007). The eccentricity distribution of exoplanetary systems and the recent
observational results on the spin – orbit misalignment indicate that the physical processes
in the second stage play an important role in determining the properties of exoplanetary
systems. Nevertheless, the importance of the first stage cannot be neglected as it sets the
initial condition for the possible evolution in the second stage.

The main message of this talk is that magnetic interaction torque between a protostar
and its disk can (but not always) push the stellar spin axis away from the disk axis.
This implies that (i) protoplanetary disks do not have to be aligned with the stellar spin,
and (ii) before few-body interaction starts (in the second stage), the planet’s orbital axis
may already be misaligned with the stellar spin. This talk is based on two papers, Lai,
Foucart & Lin (2011) and Foucart & Lai (2011), in which more details and references
can be found.

2. Physical Origin of the Magnetic Warping Torque
The interaction between a magnetic star and a disk is complex. However, the key

physics related to the magnetic torques of interest here can be described robustly in a
parametrized manner (see Fig. 1). The stellar magnetic field disrupts the accretion disc
at the magnetospheric boundary, where the magnetic and plasma stresses balance:

rin = η
[
µ4/(GM�Ṁ

2)
]1/7

, (2.1)

where µ is magnetic moment of the protostar, Ṁ is the mass accretion rate, and η is
a dimensionless constant somewhat less than unity (η ∼ 0.5). Before being disrupted,
the disc generally experiences nontrivial magnetic torques from the star. These torques
are of two types: (i) A warping torque Nw which acts in a small interaction region
rin < r < rint , where some of the stellar field lines are linked to the disc. These field
lines are twisted by the differential rotation between the star and the disc, generating a
toroidal field ∆Bφ = ∓ζB

(s)
z from the quasi-static vertical field B

(s)
z threading the disc,

where ζ ∼ 1 and the upper/lower sign refers to the value above/below the disc plane.
Since the toroidal field from the stellar dipole B

(µ)
φ is symmetric with respect to the disc

plane, the net toroidal field differs above and below the disc plane, giving rise to a vertical
force on the disc. While the mean force (averaging over the azimuthal direction) is zero,
the uneven distribution of the force induces a net warping torque which tends to push
the orientation of the disc angular momentum l̂ away from the stellar spin axis ω̂s . The
essential physics of the warping torque can also be understood from the “laboratory” toy
model depicted in Fig. 1(b). (ii) A precession torque Np which arises from the screening
of the azimuthal electric current induced in the highly conducting disc. This results in
a difference in the radial component of the net magnetic field above and below the disc
plane and therefore in a vertical force on the disc. The resulting precession torque tends
to cause l̂ to precess around ω̂s .

The two magnetic torques (per unit area) on the disc can be written as

Nw = −(Σr2Ω) cos β Γw l̂ × (ω̂s × l̂), Np = (Σr2Ω) cos β Ωp ω̂s × l̂, (2.2)

where Σ(r) is the surface density, Ω(r) the rotation rate of the disc, and β(r) is the disc
tilt angle (the angle between l̂(r) and the spin axis ω̂s). The warping rate and precession
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Figure 1. (a) A sketch of magnetic field configuration in a star – disc system for nonzero
β (the angle between the disc axis and the stellar spin axis) and θ� (the angle between the
stellar dipole axis and the spin axis). Part of the stellar magnetic fields (dashed lines) penetrate
the disc in the interaction zone between the disc inner radius rin and rint in a cyclic manner,
while other field lines are screened out of the disc. The closed field lines are twisted by the
differential rotation between the star and the disc, which leads to a magnetic braking torque
and a warping torque. The screening current in the disc leads to a precessional torque. (b) A toy
model for understanding the origin of the warping torque. A tilted rotating metal plate (with
angular momentum L) in an external magnetic field B experiences a vertical magnetic force
around region 2 and 4 due to the interaction between the induced current J and the external
B‖, resulting in a torque N which further increases the tilt angle β.

angular frequency at radius r are given by

Γw (r) =
ζµ2

4πr7Ω(r)Σ(r)
cos2 θ� , Ωp(r) = − µ2

π2r7Ω(r)Σ(r)D(r)
sin2 θ� , (2.3)

where θ� is the angle between the magnetic dipole axis and the spin axis, and the dimen-
sionless function D(r) is somewhat less than unity.

3. Disk Response to Magnetic Torques and Back-reaction on the Star
In the last section, we showed that the inner region of the disc where magnetic field lines

connect star and the disc and where the disc rotates faster than the star (Ω > Ωs cos β)
experiences a warping torque and a precessional torque. If we imagine dividing the disc
into many rings, and if each ring were allowed to behave independent of each other, it
would be driven toward a perpendicular state and precess around the spin axis of the
central star. Obviously, real protoplanetary discs do not behave as a collection of non-
interacting rings: Hydrodynamic stresses (bending waves and viscosity) provide strong
couplings between different rings, and the disk will resist the inner disk warping. Detailed
calculations by Foucart & Lai (2011) showed that for most reasonable stellar/disc pa-
rameters, the steady-state disc warp is rather small because of efficient viscous damping
or propagation of bending waves. Thus the inner disk direction is approximate the same
as the outer disk direction.

What is happening to the stellar spin? Is there a secular change to the stellar spin
direction? Note that there are a hierarchy of timescales in this problem: (1) The dynamical
time associated with the spin frequency, disc rotation frequency and the beat frequency
|ωs−Ω|. This is much shorter than the effects of interest here. (ii) The warping/precession
timescale of the inner disc, of order a few months. (iii) The disc warp evolution timescale
tdisc due to viscosity or bending wave propagation, of order 1000’s of years. (iv) The
stellar spin evolution timescale. The magnetic misalignment torque on the star is of the
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Figure 2. (a) A sketch of the effect of the magnetic warping torque. This torque tends to push
the disc angular momentum axis l̂ toward a state perpendicular to the spin axis When l̂ is fixed
by the outer disc, the back reaction torque tends to push the spin axis toward being misaligned
with l̂. (b) The rate of change of the stellar inclination angle β for a fixed disc rotation axis.
From top to bottom, the four curves correspond to (λ, ζ̃) = (1, 0.5), (0.8, 2), (0.2, 2) and (0, 2),
respectively. The arrows indicate the direction of β evolution.

same order as the fiducial accretion torque N0 = Ṁ
√

GM�rin . Assuming the spin angular
momentum Js = 0.2M�R

2
�ωs , we find the spin evolution time

tspin =
Js

N0
= (1.25Myr)

(
M�

1M�

)(
Ṁ

10−8M�yr−1

)−1 (
rin

4R�

)−2
ωs

Ω(rin )
. (3.1)

We are interested in the evolution of the stellar spin direction on timescale of order tspin .
We can now consider the back-reaction torque from the disk on the stellar spin. For

simplicity, let us assume small warps so that the disk is flat (averaged over the dynamical
timescale). If the magnetic torque were the only torque acting on the star, then it is clear
(see Fig. 2) that even if initially the stellar spin axis is approximately (but not perfectly)
aligned with the disc axis, given enough time, the stellar spin axis will evolve towards
the perpendicular state and even the retrograde state.

However, there are other torques acting on the star which counter-act the warping
torque. In general, the evolution equation for the spin angular momentum of the star,
Jsω̂s , can be written in the form

d

dt
(Jsω̂s) = N = N l + N s + N w + N p . (3.2)

Here N l represents the torque component (including the accretion torque) that is aligned
with the inner disc axis:

N l = λṀ(GM�rin )1/2 l̂, (3.3)

where λ <∼ 1 is a dimensionless parameter. The term N s = −|Ns |ω̂s represents a spin-
down torque carried by a wind/jet from the open field line region of the star. The term
N w and N p represent the back-reactions of the warping and precessional torques, re-
spectively. Note that both N w and N p are of order µ2/r3

in , which does not directly
depend on Ṁ . But since rin depends on Ṁ , we find that both N w and N p are of the
same order of magnitude as the fiducial accretion torque N0 . The inclination angle of the
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stellar spin relative to the disc evolves according to the equation

d

dt
cos β =

N0

Js
sin2β

(
λ − ζ̃ cos2β

)
, with ζ̃ =

ζ ′ cos2θ�

6η7/2 . (3.4)

Equation (3.4) is our key result. It reveals the following behavior for the evolution of β
(see Fig. 2): (i) For λ = 0, equation (3.4) describes the effect of the magnetic warping
torque acting alone on the star. This torque always pushes the stellar spin toward anti-
alignment with l̂. (ii) For ζ̃/λ < 1: Regardless of the initial β, the spin always evolves
towards alignment. (iii) For ζ̃/λ > 1: There are two possible directions of β evolution,
depending on the initial value of β. The condition d cos β/dt = 0 yields two “equilibrium”

states (β+ and β−), given by cos β± = ±
√

λ/ζ̃. Of the two equilibria, one is stable (β+)
and the other is unstable. For β(t = 0) < β−, the system will evolve towards a misaligned
prograde state β+; for β(t = 0) > β−, the system will evolve towards the anti-aligned
state (β = 180◦).

4. Discussion
Note that there is a 90-degree barrier: Starting from a small angle β, the systen cannot

evolve into retrograde if the outer disk orientation is fixed. However, it is possible to
produce retrograde systems in two ways: (i) If the outer disk changes direction (e.g.,
due to external perturbers/flybys); (ii) If the initial condition is retrograde: this may be
the case if we consider disk formation in turbulent star-forming clouds, as suggested by
Bate et al. (2010). But note that even in this scenario, the magnetic misalignment effect
discussed above is important – without it, the stellar spin would align with the disk axis
on a short timescale. In fact, starting from a random distribution of the initial relative
orientation between the spin and disk axes, we can calculate the evolution of the stellar
obliquity distribution as a function of time. For “weak” magnetic torques (ζ̃/λ < 1), a
distribution peaked at β = 0 is produced. For “strong” magnetic torques (ζ̃/λ > 1), we
produce a bi-modal distribiton: one peak is at β+, another at β = 180◦ (see Lai et al.
2010).

How to test the effects discussed above? One way is to measure the spin-orbit angles
for systems with two transiting planets (Kepler-9 is an example). Another is to measure
the orientation of the stellar spin and its disk. Recently, Watson et al. (2011) carried
out such an analysis for several debris disc systems and found no significant difference
between sin i� and sin idisc . Note that i� = idisc does not necessarily imply alignment
between the spin axis and the disc axis. Also, systematic uncertainties in estimating idisc
need to be taken into account. For example, for HD 22049 (one of the best cases studied
by Watson et al.), the disc inclination is consistent with face-on (idisc <∼ 25◦; Backman
et al. 2009). It would be useful to do this for classical T Tauri stars.
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