AN EXAMPLE OF A FUNCTION WITH NON-ANALYTIC ITERATES

M. LEWIN

(Received 11 January 1965)

1. Preliminaries

Let Ω be the set of the analytic functions $F(z)$, regular in some neighbourhood of the origin with the expansion

$$
\begin{equation*}
F(z)=z+f_{2} z^{2}+f_{3} z^{3}+\cdots \tag{1.1}
\end{equation*}
$$

There may exist a function $F(s, z)$ analytic in s and satisfying the following conditions (s and s^{\prime} are any complex numbers):

$$
\begin{align*}
& F(1, z)=F(z) \tag{1.2}\\
& F(s, z) \in \Omega \tag{1.3}\\
& F\left[s, F\left(s^{\prime}, z\right)\right]=F\left[\left(s+s^{\prime}\right), z\right] \tag{1.4}\\
& F(s, z)=\sum_{k=1}^{\infty} f_{k}(s) z^{k} \quad \text { for } \quad|z|<\rho_{s}, \quad \rho_{s}>0 \tag{1.5}
\end{align*}
$$

and the $f_{k}(s)$ are polynomials in s.
If $F(s, z)$ exists, it will be called the analytic iterate of $F(z)$. (The necessity and independence of these four conditions are discussed in [4]).

It is easily seen that $F(z)=z /(1-z)$ possesses the analytic iterate $F(s, z)=z /(1-s z)$. Functions which possess an analytic iterate will be called functions of type A. Functions for which (1.5) does not hold for every s, will be called functions of type B. In [2] I. N. Baker shows that for type B the set S of points s for which (1.5) converges in some neighbourhood of $z=0$ is a discreet lattice (one- or two-dimensional). In [7] G. Szekeres shows that the class of entire functions of Ω belongs to B, also the class of rational functions of Ω unless $F(z)=z /(1-a z)$. Baker [3] extends the B-property to the class of meromorphic functions.

It is the purpose of this paper to prove the B-property for a certain function using much more elementary considerations. The function $e^{z}-1$ has been chosen to illustrate the method used. (By essentially the same method the functions $z+z^{2}$ and $z /(1-z)^{2}$ had been dealt with.)

2. Jabotinsky's L-functions

Let $F(z) \in A$. It then has an analytic iterate $F(s, z)$. Define $L(z)$ by

$$
\begin{equation*}
L(z)=\left.\frac{\partial F(s, z)}{\partial s}\right|_{s=0} \tag{2.1}
\end{equation*}
$$

It is shown in [5] that the expansion of $L(z)$ is of the form

$$
\begin{equation*}
L(z)=\sum_{k=l}^{\infty} l_{k} z^{k+l}, \quad \text { for } \quad|z|<\rho_{L}, \quad \quad \rho_{L}>0 \tag{2.2}
\end{equation*}
$$

and that $L(z)$ satisfies the functional equation

$$
\begin{equation*}
L[F(z)]=F^{\prime}(z) L(z) \tag{2.3}
\end{equation*}
$$

which may however have other solutions that are not L-functions of the function F. Clearly equation (2.3) has the particular solution:

$$
\begin{equation*}
L(z)=0 \tag{2.4}
\end{equation*}
$$

whatever the given function F. The only function of Ω for which $L(z)=0$, is $F(z)=z$.

It is shown in [5] that the sequences f_{n} in (1.1) and l_{n} in (2.2) determine each other uniquely (though the series in (2.2) corresponding to a given function F may converge only for $z=0$). To show that F of Ω belongs to B it is thus sufficient to show that the series (2.2) corresponding to this F converges only for $z=0$.

$$
\text { 3. } F(z)=e^{x}-1
$$

Put $e^{z}-1=e^{x+i y}-1=u+i v(x, y, u, v$ real $)$, so that:

$$
\begin{equation*}
u=e^{x} \cos y-1 ; v=e^{x} \sin y \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{2}+v^{2}=e^{2 x}-2 e^{x} \cos y+1 \tag{3.2}
\end{equation*}
$$

It is easily seen that for $0<|y|<\pi / \mathbf{2}$:

$$
\begin{equation*}
\frac{2(1-\cos y)}{\cos y}>y^{2} \tag{3.3}
\end{equation*}
$$

and for $y \neq 0$:

$$
\begin{equation*}
2(1-\cos y)<y^{2} \tag{3.4}
\end{equation*}
$$

Lemma 3.1. The function $e^{z}-1$ maps each point of the right half-strip $\operatorname{Re} z>0,-\pi<\operatorname{Im} z \leqq \pi$ either into the left half-plane (including the imaginary axis) or else farther away from the origin.

Proof. If $u \leqq 0$, there is nothing to prove. If

$$
\begin{equation*}
u=e^{x} \cos y-1>0 \tag{3.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\cos y>0 \text { and }|y|<\frac{\pi}{2} \tag{3.6}
\end{equation*}
$$

For $x>0$:

$$
\begin{equation*}
e^{x}-1>x \tag{3.7}
\end{equation*}
$$

or, by squaring and subtracting $2 e^{x} \cos y$ from both sides:

$$
\begin{equation*}
e^{2 x}-2 e^{x} \cos y+1>x^{2}+2 e^{x}(1-\cos y) \tag{3.8}
\end{equation*}
$$

But (3.5) implies:

$$
\begin{equation*}
e^{x}>\frac{1}{\cos y} \tag{3.9}
\end{equation*}
$$

so that by (3.2), (3.8) and (3.9):

$$
u^{2}+v^{2}>x^{2}+\frac{2(1-\cos y)}{\cos y}>x^{2}+y^{2}
$$

the right inequality following from (3.3) and (3.6). This proves the lemma.
Lemma 3.2. The function $e^{z}-1$ maps all the points of the left half-strip $\operatorname{Re} z \leqq 0,-\pi<\operatorname{Im} z \leqq \pi$ nearer to the origin.

Proof. For $x=0$ this follows directly from (3.2) and (3.4). For $x<0$:

$$
\begin{equation*}
e^{x}<1 \tag{3.10}
\end{equation*}
$$

and also (since (3.7) holds generally for $x \neq 0$)

$$
\begin{equation*}
\left|e^{x}-1\right|<|x| \tag{3.11}
\end{equation*}
$$

or

$$
\begin{equation*}
e^{2 x}+1<x^{2}+2 e^{x} \tag{3.12}
\end{equation*}
$$

By squaring and subtracting as before we obtain $\boldsymbol{u}^{2}+v^{2}<x^{2}+y^{2}$.
We now show the divergence of the $L(z)$ series. Equation (2.3) becomes in this case

$$
\begin{equation*}
L\left(e^{z}-1\right)=e^{z} L(z) \tag{3.13}
\end{equation*}
$$

It is sufficient to prove that this functional equation has no solution of the form (2.2) with a positive radius of convergence ρ, and which is not identically zero.

It is obviously sufficient to consider the singular points of $L(z)$ in the strip $-\pi<\operatorname{Im} z \leqq \pi$ since $L(z)$ is periodic with period $2 \pi i$, if it is defined in a large enough region.
A. First suppose that ρ is finite. $e^{z}-1$ maps the left half of the strip onto the circle $|z+1|<1$. If $\rho>0$ let ζ be a singular point of $L(z)$ on the circle of convergence. If ζ belongs to the left half-strip or is purely imaginary, then w for which $w=e^{\zeta}-1$ is also a singular point and is nearer to the origin than ζ by lemma 3.2 which is a contradiction.

If ζ is a point of the right half-strip, then ω for which $e^{\omega}-1=\zeta$ is also a singular point. If ζ belongs to the right half-strip, then, by lemma 3.1, so does ω and also $|\omega|<|\zeta|$. Again there is a singular point inside the circle of convergence - a contradiction.
B. Suppose now that $L(z)$ is an entire function. It is then periodic and cannot therefore be a polynomial.

Equation (3.13) can be written in the form

$$
\begin{equation*}
L(z)=(1+z) L[\log (1+z)] . \tag{3.14}
\end{equation*}
$$

This implies that for all large enough r the function $M(r)=\max _{|z|=r}|L(z)|$ satisfies

$$
\begin{equation*}
M(r)<2 r M(2 \log r) \tag{3.15}
\end{equation*}
$$

and putting, $V\left(e^{s}\right)=\log M(r), r=e^{s}$, the increasing function V of s satisfies $V(4 s)<V\left(e^{z}\right)<V(2 s)+s+\log 2$. Hence $(V(4 s)-V(2 s)) / 2 s<1$ for all large s and thus it easily follows that $V(s)<s+K$ for some constant. Hence $V\left(e^{z}\right)<3 s+K$ so that

$$
\begin{equation*}
M(r)<e^{K} r^{3} \tag{3.16}
\end{equation*}
$$

which implies $L(z)$ to be a constant C which can only be zero because of (3.13). But $L(z)=0$ corresponds only to $F(z)=z$ so that our proof is complete.

Acknowledgement

The author wishes to thank Prof. Jabotinsky for his help in preparing a former version of this paper, and Prof. Baker for his many helpful remarks, which brought it into the present form.

Bibliography

[1] I. N. Baker, Zusammensetzungen ganzer Funktionen, Math. Z. 69 (1958), 121-163.
[2] I. N. Baker, Permutable power series and regular iteration, J. Australian Math. Soc. 2 (1962), 265-294.
[3] I. N. Baker, Fractional iteration near a fixpoint of multiplier 1., J. Australian Math. Soc. 4 (1964), 143-148.
[4] P. Erdös and E. Jabotinsky, On analytic iteration, J. Analyse Math. 8. (1960-61), 361-376.
[5] E. Jabotinsky, Analytic iteration, Trans. Amer. Math. Soc. 108 (1963), 457-477.
[6] G. Szekeres, Regular iteration of real and complex functions, Acta Math. 100 (1958), 203-258.
[7] G. Szekeres, Fractional iteration of entire and rational functions, J. Australian Math. Soc. 4 (1964), 129-142.

The Technion, Israel Institute of Technology Haifa, Israel

