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COUNTING UNLABELLED SUBTREES OF A TREE
IS #P-COMPLETE

LESLIE ANN GOLDBERG and MARK JERRUM

Abstract

The problem of counting unlabelled subtrees of a tree (that is, sub-
trees that are distinct up to isomorphism) is #P-complete, and hence
equivalent in computational difficulty to evaluating the permanent of
a 0,1-matrix.

1. Introduction

Valiant’s complexity class #P (see [11]) stands in relation to counting problems as NP does
to decision problems. A functionf : 6∗ → N is in #P if there is a nondeterministic
polynomial-time Turing machineM such that the number of accepting computations ofM

on inputx is f (x), for all x ∈ 6∗. A counting problem, that is, a functionf : 6∗ → N,
is said to be #P-hard if every function in #P is polynomial-time Turing reducible tof ;
it is complete for#P if, in addition,f ∈ #P. A #P-complete problem is equivalent in
computational difficulty to such problems as counting the number of satisfying assignments
to a Boolean formula, or evaluating the permanent of a 0,1-matrix, which are widely believed
to be intractable. For background information on #P and its completeness class, refer to one
of the standard texts, for example [3,8].

The main result of the paper—advertised in the abstract, and stated more formally
below—is interesting on two counts. First, it provides a rare example of a natural ques-
tion about trees that is unlikely to be polynomial-time solvable. (Two other examples are
determining a vertex ordering of minimum bandwidth [1, 4], or determining the ‘harmo-
nious chromatic number’ [2].) Second, it is, as far as we are aware, the first intractability
result concerning the counting of unlabelled structures.

Some definitions follow. Byrooted tree(T , r) we simply mean a treeT with a distin-
guished vertexr, theroot. An embeddingof a treeT ′ in a treeT is a injective mapι from
the vertex set ofT ′ to the vertex set ofT such that(ι(u), ι(v)) is an edge ofT whenever
(u, v) is an edge ofT ′. SometimesT ′ andT will be rooted, in which case we may insist that
ι maps the rootr ′ of T ′ to the rootr of T . We now define a sequence of problems leading to
one of interest; we do not claim that both the intermediate problems are particularly natural.

Name. #BipartiteMatchings.
Instance. A bipartite graphG with n vertices in each of its two vertex sets.
Output. The number of matchings of all sizes inG.

Name. #CommonRootedSubtrees.
Instance. Two rooted trees,(T1, r1) and(T2, r2).
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Output. The number of distinct (up to isomorphism) rooted trees(T , r) such that(T , r)

embeds in(T1, r1) and(T2, r2) with r mapped tor1 andr2, respectively.

Name. #RootedSubtrees.
Instance. A rooted tree,(T , r).
Output. The number of distinct (up to isomorphism) rooted trees(T ′, r ′) such that(T ′, r ′)

embeds in(T , r) with r ′ mapped tor.

Name. #Subtrees.
Instance. A treeT .
Output. The number of distinct (up to isomorphism) subtrees ofT .

We will use each of the problem names in an obvious way to denote a function from
instances to outputs: thus#RootedSubtrees(T , r) denotes the number of distinct rooted
subtrees of the rooted tree(T , r). Our main result is the following.

Theorem 1. #Subtrees is #P-complete.

Proof. The #P-hardness of#BipartiteMatchings follows from Valiant’s paper [11]. In
particular, Valiant shows that the problemImperfectMatchings is #P-complete.Imper-
fectMatchings is the same as#BipartiteMatchings except that the size of the two
vertex sets may differ.ImperfectMatchings may be reduced to#BipartiteMatchings
by adding vertices to the smaller vertex set. Thus, #P-hardness of#Subtrees follows from
Lemmas2–4, and from the transitivity of polynomial-time Turing reducibility. We will now
show that#Subtrees is in #P. Suppose thatT is a tree with vertex setVn = {v0, . . . , vn−1}.
We will order the vertices inVn so thatvi < vj if and only if i < j . For every (labelled)
subtreeT ′ of T , letV (T ′) denote the vertex set ofT ′. We will say that subtreeT ′′ is larger
than subtreeT ′ if and only if there is a vertexvi ∈ Vn such thatvi ∈ V (T ′′), vi 6∈ V (T ′)
and

V (T ′) ∩ {vi+1, . . . , vn} = V (T ′′) ∩ {vi+1, . . . , vn}.
Let T ′′ be a subtree ofT . EitherT ′′ is the smallest subtree ofT in its isomorphism class,
or there is a vertexv` ∈ V (T ′′) such that the sub-forestF` of T induced by vertex set

{vi ∈ Vn | vi < v`} ∪ {vi ∈ V (T ′′) | vi > v`}
contains a tree isomorphic toT ′′. Thus, one can determine whetherT ′′ is the smallest subtree
of T in its isomorphism class by solvingsubgraph isomorphismwith inputsF` andT ′′ for
all v` ∈ V (T ′′). SinceF` is a forest andT ′′ is a tree, this can be done in polynomial time [3]
using the method of Edmonds and Matula. It is now simple to describe the #P computation:
with input T , each branch picks a subtreeT ′′ of T and rejects unlessT ′′ is the smallest
subtree ofT in its isomorphism class.

2. The reductions

Denote by6T the relation ‘is polynomial-time Turing reducible to’.

Lemma 2. #BipartiteMatchings 6T #CommonRootedSubtrees.

Proof. LetG be an instance of#BipartiteMatchings with vertex sets{u0, . . . , un−1} and
{v0, . . . , vn−1}. FromG, we construct two rooted trees,(T1, r1) and(T2, r2), each based on
a fixed skeleton. The skeleton ofT1 has vertex set

{xi,j : 0 6 i 6 n − 1 and 06 j 6 n2 + i + 1} ∪ {r1},
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Figure 1: The skeleton of treesT1 andT2, illustrating the presence of edge(ui, vj ) in G.

and edge set

{(xi,j , xi,j+1) : 0 6 i 6 n − 1 and 06 j 6 n2 + i} ∪ {(r1, xi,0) : 0 6 i 6 n − 1}.
Informally, the skeleton ofT1 consists ofn paths of different lengths emanating from the
root r1, as illustrated in Figure1. Thesen paths correspond to then vertices{ui} of G.

The skeleton ofT2 is similar to the skeleton ofT1, except that the paths now have equal
length. It has vertex set

{yi,j : 0 6 i 6 n − 1 and 06 j 6 n2 + n} ∪ {r2},
and edge set

{(yi,j , yi,j+1) : 0 6 i 6 n − 1 and 06 j 6 n2 + n − 1} ∪ {(r2, yi,0) : 0 6 i 6 n − 1}.
Then paths emanating fromr2 correspond to then vertices{vi} of G.
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The treesT1 andT2 are themselves built by adding to the respective skeletons certain
edges encoding the graphG. Specifically, for each edge(ui, vj ) of G, we add an edge from
a new vertex to vertexxi,in+j of T1, and add an edge from a new vertex to vertexyj,in+j

of T2.
Let T ∗ denote the set of all finite (unlabelled) rooted trees(T , r) that have leaves at

all distances in the range[n2 + 2, n2 + n + 1] from the rootr. For any rooted tree(T , r),
let T (T , r) denote the set of all (unlabelled) rooted subtrees of(T , r). Thus, the quantity
#RootedSubtrees(T , r) is just the size ofT (T , r). We first observe that there is a bijection
between the set of matchings (of all sizes) inG and the setT (T1, r1)∩T (T2, r2)∩T ∗, and
then conclude the proof by showing how to compute the size ofT (T1, r1)∩T (T2, r2)∩T ∗
using an oracle for#CommonRootedSubtrees.

Consider some tree(T , r) ∈ T (T1, r1)∩T (T2, r2)∩T ∗. From the definition ofT ∗ we
see thatT must contain the entire skeleton ofT1. Let us now see which other edges ofT1
can be present inT . That is, we will now consider the ‘pendant edges’ which hang off of
the skeleton ofT1. Suppose that for somei andj in {0, . . . , n−1} there is a pendant edgee
at distancein + j + 1 from the root ofT . Then the edge(ui, vj ) must be present inE(G).
Also, for anyj ′ ∈ {0, . . . , n−1}which is not equal toj , T cannot contain a pendant edgee′
at distancein + j ′ + 1 from the root. (To see this, note that by the construction ofT1, edge
e′ would be a descendant ofxi,0 in T1. The presence ofe in T ensures thatxi,0 andyj,0 are
associated with the same vertex ofT bute′ is not a descendant ofyj,0 in T2.) Similarly, for
anyi ′ ∈ {0, . . . , n−1}which is not equal toi,T cannot contain a pendant edgee′ at distance
i′n + j + 1 from the root. Thus,T contains at mostn pendant edges, and these correspond
to a matching inE(G). So, every rooted tree(T , r) ∈ T (T1, r1) ∩ T (T2, r2) ∩ T ∗ may be
interpreted as a matching inG, and vice versa. This is the sought-for bijection between the set
of matchings inG and the setT (T1, r1)∩T (T2, r2)∩T ∗. To conclude, we just need to show
how to compute the size of the latter set using an oracle for#CommonRootedSubtrees.

Let L be the set of allleavesin (T1, r1) whose distances from the rootr1 are in the range
[n2 + 2, n2 + n + 1]. LetU be the set of allverticesin (T2, r2) whose distances fromr2

are in the range[n2 + 2, n2 + n + 1]. For eachj ∈ {0, . . . , n}, let T j

1 be the tree formed

from (T1, r1) by adorning every vertex inL with a tuft of n + j edges, and letT j

2 be the
tree formed from(T2, r2) by adorning every vertex inU with a tuft ofn + j edges. By the
phrase ‘adorning a vertexv with a tuft of t edges’ we mean the following: ‘createt new
vertices and add an edge from each of these new vertices tov’. For k ∈ {0, . . . , n}, letak be
the number of rooted trees inT (T 0

1 , r1) ∩ T (T 0
2 , r2) that havek vertices of degreen + 1.

Clearly,

an = |T (T1, r1) ∩ T (T2, r2) ∩ T ∗ |.
So we want to show how to computean using an oracle for#CommonRootedSubtrees.

We claim (and shall presently justify) that

|T (T
j

1 , r1) ∩ T (T
j

2 , r2)| =
n∑

k=0

ak(j + 1)k. (1)

Thus, we can use an oracle for#CommonRootedSubtrees to evaluate the left-hand side
of 1atj = 0, . . . n; then we can computean by Lagrange interpolation. (See [11] for details
of this process, particularly the claim that interpolation is a polynomial-time operation.)

It remains to prove equation (1). We define a projection function

π : T (T
j

1 , r1) ∩ T (T
j

2 , r2) → T (T 0
1 , r1) ∩ T (T 0

2 , r2)
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as follows. For any rooted tree(T , r) in the domain,(T ′, r) = π(T , r) is the maximum
r-rooted subtree of(T , r) that has no vertex of degree greater thann + 1. To see thatT ′
is uniquely defined, consider an embedding of(T , r) into (T

j

1 , r1). The only vertices of
degree greater thann + 1 are those that are mapped to tufts. Thus,(T ′, r) is obtained from
(T , r) by pruning tufts with more thann pendant edges, down to exactlyn pendant edges.
Note also that the resulting tree(T ′, r) can be embedded in both(T 0

1 , r1) and(T 0
2 , r2), so

π is indeed well defined.
How large isπ−1(T ′, r)? To every tuft with exactlyn pendant edges we may add any

number of pendant edges, from 0 toj . All the tufts are distinguishable, because they are all
at distinct distances from the rootr. Thus all these possible augmentations lead to distinct
trees, andπ−1(T ′, r) = (j+1)k, wherek is the number of vertices in(T ′, r) of degreen+1.
Thus, each of theak rooted trees inT (T 0

1 , r1) ∩ T (T 0
2 , r2) with k vertices of degreen + 1

is mapped byπ−1 to (j + 1)k trees inT (T
j

1 , r1) ∩ T (T
j

2 , r2). The lemma follows.

Lemma 3. #CommonRootedSubtrees 6T #RootedSubtrees.

Proof. Suppose that(T1, r1) and(T2, r2) constitute an instance of#CommonRootedSub-
trees. Let (T , r) be the rooted tree formed by takingT1 andT2 and adding a new root,r,
and edges(r, r1) and(r, r2). For notational convenience, introduce the following quantities:

N1 = #RootedSubtrees(T1, r1),

N2 = #RootedSubtrees(T2, r2),

N = #RootedSubtrees(T , r), and
C = #CommonRootedSubtrees((T1, r1), (T2, r2)).

We start by observing that

N = 1 + N1 + N2 − C + N1N2 −
(

C

2

)
.

To see this, note that(T , r) has

• one distinct subtree in which the degree ofr is 0, and

• N1 + N2 − C distinct subtrees in which the degree ofr is 1, and

• N1N2 − (
C
2

)
distinct subtrees in which the degree ofr is 2.

Thus,C(C + 1) = 2Z, whereZ denotes

1 + N1 + N2 + N1N2 − N.

To computeC, first calculateZ using an oracle for#RootedSubtrees. Then, observe that

C2 < 2Z < (C + 1)2,

soC is theinteger square rootof 2Z, which can be computed in2(logZ) time. Note that
logZ is polynomially bounded in the size of the input, since, for example,N1 6 2n1, where
n1 is the number of vertices inT1.

Lemma 4. #RootedSubtrees 6T #Subtrees.

Proof. For anyi, an ‘i-tuft’ is a tree consisting of one (centre) vertex with degreei andi

(outer) vertices, each of which has degree 1.
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Suppose that(T , r) is an instance of#RootedSubtrees. Let 1 denote the maximum
degree of a vertex inT . LetT ′ be the tree formed fromT by taking a new(1+ 3)-tuft, and
identifying one of the outer vertices withr. LetT ′′ be the tree formed fromT by taking a new
(1+2)-tuft, and identifying one of the outer vertices withr. LetN ′ denote#Subtrees(T ′),
and letN ′′ denote#Subtrees(T ′′). Then#RootedSubtrees(T , r) is equal toN ′ − N ′′,
so it can be computed using an oracle for#Subtrees.

3. Some consequences

Following Valiant [11], we say that a functionf : 6∗ → N is in FP if it can be computed
by a deterministic polynomial-time Turing machine. We say that it is in FPg for a problemg

if it can be computed by a deterministic polynomial-time Turing machine which is equipped
with an oracle forg. Finally, we say that it is in FPA for a complexity classA if there is
someg ∈ A such thatf ∈ FPg.

Let #ConnectedSubgraphs be the problem of counting unlabelled connected sub-
graphs of a graph. Formally, let it be defined as follows.

Name. #ConnectedSubgraphs
Instance. A graphG.
Output. The number of distinct (up to isomorphism) connected subgraphs ofG.

Corollary 5. #ConnectedSubgraphs is complete forFP#P.

Proof. #ConnectedSubgraphs is FP#P-hard by Theorem1. We will show that#Con-
nectedSubgraphs is in the class FPspan-P, which will be defined shortly. The result will
then follow by Toda’s theorem [9].

We start by defining the relevant complexity classes. A functionf : 6∗ → N is in the
class span-P [7] if there is a polynomial-time nondeterministic Turing machineM (with an
output device) such that the number ofdifferentaccepting outputs ofM on inputx is f (x),
for all x ∈ 6∗.

A functionf : 6∗ → N is in #NP if there is a polynomial-time nondeterministic Turing
machineM and an oracleA ∈ NP such that the number of accepting computations ofMA

on inputx is f (x), for all x ∈ 6∗.
The classes #P, span-P, and #NP are related [7] by

#P⊆ span-P⊆ #NP.

Thus,

FP#P ⊆ FPspan-P⊆ FP#NP.

But FP#NP ⊆ FP#PH, where #PH is the class of functions that count the number of accepting
computations of polynomial-time nondeterministic Turing machines with oracles from PH.
Furthermore, Toda and Watanabe [10] show #PH⊆ FP#P. Thus,

FP#P = FPspan-P.

(See also Section 1.8 of Welsh’s book [12].)
We now complete the proof by showing that#ConnectedSubgraphs is in FPspan-P.

Let N(G, k) denotek! times the number of distinct (up to isomorphism) connected size-k
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subgraphs ofG. Since

#ConnectedSubgraphs(G) =
n∑

k=1

1

k!N(G, k),

wheren is the number of vertices ofG, it suffices to show that computingN(G, k) is in
span-P. Each branch of the computation tree forN(G, k) chooses

• a size-kconnected subgraphH of G,

• a bijectionσ from the vertices ofH to the set{v1, . . . , vk}, and

• a permutationπ of v1, . . . , vk.

Let H ′ be the graph formed fromH by relabelling each vertexv of H with the labelσ(v).
If π is an automorphism ofH ′ then(H ′, π) is output. Otherwise, the branch rejects. The
result now follows from Burnside’s lemma, which implies that for any given isomorphism
class ofk-vertex graphs, the number of graphs in the isomorphism class times the number
of automorphisms of any member of the class is equal tok!. (For example, see [5].)

Let #GraphSubtrees be the problem of counting unlabelled subtrees of a graph. For-
mally, let it be defined as follows.

Name. #GraphSubtrees
Instance. A graphG.
Output. The number of distinct (up to isomorphism) subtrees ofG.

Corollary 6. #GraphSubtrees is complete forFP#P.

Proof. This is the same as the proof of Corollary5, except that the span-P computation
rejects any subgraphH which is not a tree. A more direct proof could be obtained by using
a polynomial-time canonical labelling algorithm for trees such as the one by Hopcroft and
Tarjan [6].
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