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COUNTING UNLABELLED SUBTREES OF A TREE
IS #P-COMPLETE

LESLIE ANN GOLDBERG Anp MARK JERRUM

Abstract

The problem of counting unlabelled subtrees of a tree (that is, sub-
trees that are distinct up to isomorphism) is #P-complete, and hence
equivalent in computational difficulty to evaluating the permanent of
a 0,1-matrix.

1. Introduction

Valiant’'s complexity class #P (se&]]) stands in relation to counting problems as NP does
to decision problems. A functiorf : ©* — N is in #P if there is a nondeterministic
polynomial-time Turing maching/ such that the number of accepting computation&fof

on inputx is f(x), for all x € X*. A counting problem, that is, a functiofi : ¥* — N,

is said to be #Fhard if every function in #P is polynomial-time Turing reducible 1

it is complete for#P if, in addition, f € #P. A #P-complete problem is equivalent in
computational difficulty to such problems as counting the number of satisfying assignmer
toaBoolean formula, or evaluating the permanent of a 0,1-matrix, which are widely believe
to be intractable. For background information on #P and its completeness class, refer to
of the standard texts, for example B,

The main result of the paper—advertised in the abstract, and stated more forma
below—is interesting on two counts. First, it provides a rare example of a natural que
tion about trees that is unlikely to be polynomial-time solvable. (Two other examples at
determining a vertex ordering of minimum bandwidfh 4], or determining the *harmo-
nious chromatic number?].) Second, it is, as far as we are aware, the first intractability
result concerning the counting of unlabelled structures.

Some definitions follow. Byooted tree(T, r) we simply mean a tre& with a distin-
guished vertex, theroot. An embeddingf a tree7” in a treeT is a injective map from
the vertex set of”’ to the vertex set of” such that(t(«), «(v)) is an edge off whenever
(u, v) is an edge of’. Sometimed”’ andT will be rooted, in which case we may insist that
« maps the root’ of 7’ to the rootr of 7. We now define a sequence of problems leading to
one of interest; we do not claim that both the intermediate problems are particularly natur

Name. #BIPARTITEMATCHINGS.
Instance. A bipartite graphG with » vertices in each of its two vertex sets.
Output. The number of matchings of all sizeséh

Name. #CoMMONROOTEDSUBTREES.
Instance. Two rooted trees(T1, r1) and(7>, r»).
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Counting unlabelled subtrees

Output. The number of distinct (up to isomorphism) rooted tréEsr) such that(T, r)
embeds inT1, r1) and(7>, r2) with r mapped to; andr;, respectively.

Name. #ROOTEDSUBTREES.

Instance. A rooted tree(T, r).

Output. The number of distinct (up to isomorphism) rooted trég’s r') such tha(7’, r’)
embeds inT, r) with r" mapped to-.

Name. #SUBTREES.
Instance. A treeT .
Output. The number of distinct (up to isomorphism) subtreeg of

We will use each of the problem names in an obvious way to denote a function fror
instances to outputs: thé#RooTEDSUBTREES(7, r) denotes the number of distinct rooted
subtrees of the rooted tré&, r). Our main result is the following.

Theorem 1. #SUBTREES is #P-complete.

Proof. The #P-hardness @BiparTITEMATCHINGS follows from Valiant's paper11]. In
particular, Valiant shows that the probldmpERFECTMATCHINGS iS #P-completelMpER-
FECTMATCHINGS IS the same agBi1PARTITEMATCHINGs except that the size of the two
vertex sets may diffelMPERFECTMATCHINGS may be reduced t#BIPARTITEMATCHINGS
by adding vertices to the smaller vertex set. Thus, #P-hardnéSs:efreEs follows from
Lemmas2—4, and from the transitivity of polynomial-time Turing reducibility. We will now
show that#tSUBTREESs is in #P. Suppose thdtis a tree with vertex sét,, = {vo, ..., v,_1}.
We will order the vertices irV,, so thaty; < v; if and only ifi < j. For every (labelled)
subtreel” of T, let V(T") denote the vertex set @f. We will say that subtre&” is larger
than subtred” if and only if there is a vertex; € V, such thaw; € V(T"), v; & V(T')
and

V(T N {vis1, ... o0} = VTN {vigg, ..., o4}

Let 7" be a subtree of . EitherT” is the smallest subtree @f in its isomorphism class,
or there is a vertex, € V(T") such that the sub-foregy of T induced by vertex set

{vi € Vi lvi < v} U{v; € V(T") | vi > v}

contains atree isomorphicTd'. Thus, one can determine whetfi&tis the smallest subtree

of T in its isomorphism class by solvirsmbgraph isomorphiswith inputs F, andT” for
allvy € V(T”). SinceFy is aforestand™” is a tree, this can be done in polynomial tin3g [
using the method of Edmonds and Matula. It is now simple to describe the #P computatic
with input 7', each branch picks a subtré€ of T and rejects unlesg” is the smallest
subtree off in its isomorphism class. O

2. The reductions
Denote by<t the relation ‘is polynomial-time Turing reducible to’.
Lemma 2. #B1PARTITEMATCHINGS <T #COMMONROOTEDSUBTREES.

Proof. LetG be aninstance ¢fBIPARTITEMATCHINGS With vertex set$ug, ..., u,_1} and
{vo, ..., vy—1}. FromG, we construct two rooted tregd}, r1) and(7>», r2), each based on
a fixed skeleton. The skeleton Bf has vertex set

{xi,j30<ién—land0<j<n2+i+1}u{rl}7
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T1 1>
r1 2
X00 --- X0 ... Xp—10 Y00 --- Yji0 --- Yn—10
‘4;+j 4%;
L
X0,n241
L]
Xin24i+1
L[] L[] > L]
xn—l,n2+n yO,n2+n yj,n2+n yn—l,n2+n

Figure 1: The skeleton of treds and7>, illustrating the presence of edge;, v;) in G.

and edge set
{(xij,xij+0:0<i<n—1and0< j <n —|—l}U{(r1,x,o) 0<i<n—-1}

Informally, the skeleton of; consists of: paths of different lengths emanating from the
rootry, as illustrated in Figuré. These: paths correspond to thevertices{u;} of G.

The skeleton of’» is similar to the skeleton df, except that the paths now have equal
length. It has vertex set

{vij:0<i<n—-1land0<j<n —|—n}U{r2}
and edge set
{(ij,yij+1):0<i<n-—1land0< j <n +n_1}U{(72 ¥i,00:0<i<n—1}

Then paths emanating fromp correspond to the vertices{v;} of G.
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The treesl; and 7> are themselves built by adding to the respective skeletons certai
edges encoding the gragh Specifically, for each edge;, v;) of G, we add an edge from
a new vertex to vertex; ;,+; of 71, and add an edge from a new vertex to vengex, ;
of T».

Let 7* denote the set of all finite (unlabelled) rooted tr¢&sr) that have leaves at
all distances in the rande? + 2, n2 + n + 1] from the rootr. For any rooted tre€T’, r),
let 7 (T, r) denote the set of all (unlabelled) rooted subtree&lof-). Thus, the quantity
#RoOTEDSUBTREES(7, r) is just the size of (T, r). We first observe that there is a bijection
between the set of matchings (of all sizesiimnd the sef (T4, r1) N T (T2, r2) N T *, and
then conclude the proof by showing how to compute the size@, r1) N7 (T2, r2) NT*
using an oracle fo#CoMMONROOTEDSUBTREES.

Consider some tred’,r) € 7 (T, r1) N T (T>, r2) N T*. From the definition of™* we
see thafl" must contain the entire skeleton Bf. Let us now see which other edgesTaf
can be present ifi. That is, we will now consider the ‘pendant edges’ which hang off of
the skeleton of’;. Suppose that for sonieand;j in {0, ..., n — 1} there is a pendant edge
at distancen + j 4 1 from the root ofT . Then the edgéx;, v;) must be presentifi (G).
Also, foranyj’ € {0, ..., n—1}whichis not equal tg, T cannot contain a pendant edge
at distancén + j' + 1 from the root. (To see this, note that by the constructiofypédge
¢ would be a descendant ©f in 71. The presence afin T ensures that; o andy; o are
associated with the same vertexfobute’ is not a descendant of o in 7>.) Similarly, for
anyi’ € {0, ...,n—1}whichis not equal té, T cannot contain a pendant edgat distance
i’'n + j + 1 from the root. ThusT contains at most pendant edges, and these correspond
to a matching inE (G). So, every rooted tre@’, r) € 7 (T1, r1) N T (T2, r2) N T* may be
interpreted as a matchingdh and vice versa. Thisis the sought-for bijection between the se
of matchingsirG and the sef (71, r1) NT (T2, r2) NT *. To conclude, we just need to show
how to compute the size of the latter set using an oraclé¢oMMONROOTEDSUBTREES.

Let L be the set of aleavesn (71, r1) whose distances from the roqtare in the range
[n? +2,n% + n + 1]. LetU be the set of alverticesin (7>, r2) whose distances from
are in the rang@n? + 2, n2 + n + 1]. For eachj € {0, ..., n}, let 7] be the tree formed

from (T4, r1) by adorning every vertex ifh with a tuft ofn + j edges, and IeTZJ be the
tree formed from(T», r») by adorning every vertex ity with a tuft ofn + j edges. By the
phrase ‘adorning a vertexwith a tuft of  edges’ we mean the following: ‘createnew
vertices and add an edge from each of these new vertieésRor k € {0, ..., n}, leta; be
the number of rooted trees (72, r1) N 7 (T2 , r2) that havek vertices of degree + 1.
Clearly,

an = |T (T, r))NT (T2, r2) NT*|.

So we want to show how to compuig using an oracle fo#CoMMONROOTEDSUBTREES.
We claim (and shall presently justify) that

n
T (T r) N T (TS )l = > ar(j + D 1)
k=0
Thus, we can use an oracle f#8@CoMmMONROOTEDSUBTREES to evaluate the left-hand side
oflatj =0, ...n;thenwe can computg, by Lagrange interpolation. (Se&l] for details
of this process, particularly the claim that interpolation is a polynomial-time operation.)
It remains to prove equation (1). We define a projection function

T(T{ . r) NT (T, r2) — 7 T (TP, r1) N T (T3, r2)
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as follows. For any rooted tre@’, r) in the domain(7’, r) = = (T, r) is the maximum
r-rooted subtree of7, r) that has no vertex of degree greater than 1. To see thar”’

is uniquely defined, consider an embeddingDfr) into (T, r1). The only vertices of
degree greater than+ 1 are those that are mapped to tufts. TH@S, r) is obtained from
(T, r) by pruning tufts with more than pendant edges, down to exactlypendant edges.
Note also that the resulting tré&’, r) can be embedded in bot?, r1) and(T2, r»), so
7 is indeed well defined.

How large isz ~1(T’, r)? To every tuft with exactly: pendant edges we may add any
number of pendant edges, from OjtoAll the tufts are distinguishable, because they are all
at distinct distances from the root Thus all these possible augmentations lead to distinct
trees, anar ~1(7”, r) = (j+1)*, wherek is the number of vertices i7", r) of degreei +1.
Thus, each of they rooted trees iy (T2, r1) N 7 (T2, r») with k vertices of degree + 1

is mapped byr ~1 to (j + 1)* trees inT (T, r1) N T (T, ro). The lemma follows. [

Lemma 3. #CoMMONROOTEDSUBTREES <T #ROOTEDSUBTREES.

Proof. Suppose thaiT1, r1) and(7», r2) constitute an instance 6CoMMONROOTEDSUB-
TREES. Let (T, r) be the rooted tree formed by takidg and7> and adding a new root,
and edge¢r, r1) and(r, r2). For notational convenience, introduce the following quantities:

N1 = #ROOTEDSUBTREES(T1, r1),
N2 = #ROOTEDSUBTREES(7?, 12),

N = #RooTEDSUBTREES(T, r), and

C = #CoMMONROOTEDSUBTREES((11, r1), (T2, 12)).

We start by observing that

C
N=1+N1+N2—C+N1N2—<2>.

To see this, note thaf’, r) has

 one distinct subtree in which the degree-a$ 0, and

e N1+ N2 — C distinct subtrees in which the degreerdf 1, and

* NNz — () distinct subtrees in which the degreerds 2.
Thus,C(C + 1) = 2Z, whereZ denotes

14+ N1+ N2+ NiNo—N.
To computeC, first calculateZ using an oracle fo#RooTEDSUBTREES. Then, observe that
C? <27 < (C—i—l)z,

soC is theinteger square roobf 2Z, which can be computed i@ (log Z) time. Note that
log Z is polynomially bounded in the size of the input, since, for examypleg 21, where
n1 is the number of vertices ify;. O

Lemma 4. #ROOTEDSUBTREES <T #SUBTREES.

Proof. For anyi, an i-tuft’ is a tree consisting of one (centre) vertex with degreed:
(outer) vertices, each of which has degree 1.
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Suppose thatT, r) is an instance ofROOTEDSUBTREES. Let A denote the maximum
degree of a vertex ifi. Let T’ be the tree formed frofi by taking a new(A + 3)-tuft, and
identifying one of the outer vertices withLet T” be the tree formed frofi by taking a new
(A +2)-tuft, and identifying one of the outer vertices with_et N’ denotetSUBTREES(T"),
and letN” denote#SUBTREES(T”). Then#RooTEDSUBTREES(T, r) is equal toN’ — N”,
so it can be computed using an oracle#8UBTREES. O

3. Some consequences

Following Valiant [L1], we say that a functiofi : ¥* — Nisin FP if it can be computed
by a deterministic polynomial-time Turing machine. We say that itis ifflePa problemg
if it can be computed by a deterministic polynomial-time Turing machine which is equippe
with an oracle forg. Finally, we say that it is in F for a complexity classi if there is
someg € A such thatf € FF®.

Let #CoNNECTEDSUBGRAPHS be the problem of counting unlabelled connected sub-
graphs of a graph. Formally, let it be defined as follows.

Name. #CONNECTEDSUBGRAPHS
Instance. A graphG.
Output. The number of distinct (up to isomorphism) connected subgrapbtis of

Corollary 5. #CONNECTEDSUBGRAPHS is complete foF P*P.

Proof. #CoNNECTEDSUBGRAPHS is FP*P-hard by Theoremi. We will show that#Con-
NECTEDSUBGRAPHS is in the class F®a"F which will be defined shortly. The result will
then follow by Toda’s theorem [9].

We start by defining the relevant complexity classes. A funcfianz* — N is in the
class span-P [7] if there is a polynomial-time nondeterministic Turing madifeith an
output device) such that the numbedifferentaccepting outputs a¥ on inputx is f(x),
forall x € X*.

Afunction f : ©* — Nisin #NP if there is a polynomial-time nondeterministic Turing
machineM and an oraclet € NP such that the number of accepting computation¥ 8f
oninputx is f(x), forallx € X*.

The classes #P, span-P, and #NP are related [7] by

#P C span-PC #NP.
Thus,
FPP c FpsPan-Pc ppiNP

But FPPNP ¢ FPPH where #PH is the class of functions that count the number of acceptini
computations of polynomial-time nondeterministic Turing machines with oracles from PH
Furthermore, Toda and Watanabe [10] show #PIHP*F. Thus,

FP'P = ppspanf

(See also Section 1.8 of Welsh's book [12].)
We now complete the proof by showing tH&EONNECTEDSUBGRAPHS is in FPPan-F
Let N(G, k) denotek! times the number of distinct (up to isomorphism) connected/size-
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subgraphs o&. Since
n
1
#CONNECTEDSUBGRAPHS(G) = Z —N(G, k),
k!
k=1
wheren is the number of vertices df, it suffices to show that computing (G, k) is in
span-P. Each branch of the computation treeMo&, k) chooses
¢ asize-kconnected subgrapH of G,
¢ abijectiono from the vertices of to the sefv, ..., v}, and
e apermutationr of v1, ..., v.

Let H’' be the graph formed frorff by relabelling each vertexof H with the labelo (v).

If = is an automorphism off’ then(H’, =) is output. Otherwise, the branch rejects. The
result now follows from Burnside’s lemma, which implies that for any given isomorphism
class ofk-vertex graphs, the number of graphs in the isomorphism class times the numb
of automorphisms of any member of the class is equal.t@For example, see [5].) O

Let #GraPHSUBTREES be the problem of counting unlabelled subtrees of a graph. For-
mally, let it be defined as follows.

Name. #GRAPHSUBTREES
Instance. A graphG.
Output. The number of distinct (up to isomorphism) subtreesof

Corollary 6. #GRrAPHSUBTREES is complete foFP*P.

Proof. This is the same as the proof of Corollesyexcept that the span-P computation
rejects any subgrapH which is not a tree. A more direct proof could be obtained by using
a polynomial-time canonical labelling algorithm for trees such as the one by Hopcroft an
Tarjan [6]. O
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