
London Mathematical Society ISSN 1461–1570

COUNTING UNLABELLED SUBTREES OF A TREE
IS #P-COMPLETE

LESLIE ANN GOLDBERG and MARK JERRUM

Abstract

The problem of counting unlabelled subtrees of a tree (that is, sub-
trees that are distinct up to isomorphism) is #P-complete, and hence
equivalent in computational difficulty to evaluating the permanent of
a 0,1-matrix.

1. Introduction

Valiant’s complexity class #P (see [11]) stands in relation to counting problems as NP does
to decision problems. A functionf : 6∗ → N is in #P if there is a nondeterministic
polynomial-time Turing machineM such that the number of accepting computations ofM

on inputx is f (x), for all x ∈ 6∗. A counting problem, that is, a functionf : 6∗ → N,
is said to be #P-hard if every function in #P is polynomial-time Turing reducible tof ;
it is complete for#P if, in addition,f ∈ #P. A #P-complete problem is equivalent in
computational difficulty to such problems as counting the number of satisfying assignments
to a Boolean formula, or evaluating the permanent of a 0,1-matrix, which are widely believed
to be intractable. For background information on #P and its completeness class, refer to one
of the standard texts, for example [3,8].

The main result of the paper—advertised in the abstract, and stated more formally
below—is interesting on two counts. First, it provides a rare example of a natural ques-
tion about trees that is unlikely to be polynomial-time solvable. (Two other examples are
determining a vertex ordering of minimum bandwidth [1, 4], or determining the ‘harmo-
nious chromatic number’ [2].) Second, it is, as far as we are aware, the first intractability
result concerning the counting of unlabelled structures.

Some definitions follow. Byrooted tree(T , r) we simply mean a treeT with a distin-
guished vertexr, theroot. An embeddingof a treeT ′ in a treeT is a injective mapι from
the vertex set ofT ′ to the vertex set ofT such that(ι(u), ι(v)) is an edge ofT whenever
(u, v) is an edge ofT ′. SometimesT ′ andT will be rooted, in which case we may insist that
ι maps the rootr ′ of T ′ to the rootr of T . We now define a sequence of problems leading to
one of interest; we do not claim that both the intermediate problems are particularly natural.

Name. #BipartiteMatchings.
Instance. A bipartite graphG with n vertices in each of its two vertex sets.
Output. The number of matchings of all sizes inG.

Name. #CommonRootedSubtrees.
Instance. Two rooted trees,(T1, r1) and(T2, r2).

This work was supported in part by the ESPRIT Working Group 21726 ‘RAND2’ and by EPSRC grant GR/L60982.
Received 29 November 1999, revised 20 March 2000; published 26 April 2000.
2000 Mathematics Subject Classification 68Q25, 68R10, 05C05, 05C30, 05C60
© 2000, Leslie Ann Goldberg and Mark Jerrum

LMS J. Comput. Math. 3 (2000)117–124https://doi.org/10.1112/S1461157000000243 Published online by Cambridge University Press

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/3
https://doi.org/10.1112/S1461157000000243

Counting unlabelled subtrees

Output. The number of distinct (up to isomorphism) rooted trees(T , r) such that(T , r)

embeds in(T1, r1) and(T2, r2) with r mapped tor1 andr2, respectively.

Name. #RootedSubtrees.
Instance. A rooted tree,(T , r).
Output. The number of distinct (up to isomorphism) rooted trees(T ′, r ′) such that(T ′, r ′)

embeds in(T , r) with r ′ mapped tor.

Name. #Subtrees.
Instance. A treeT .
Output. The number of distinct (up to isomorphism) subtrees ofT .

We will use each of the problem names in an obvious way to denote a function from
instances to outputs: thus#RootedSubtrees(T , r) denotes the number of distinct rooted
subtrees of the rooted tree(T , r). Our main result is the following.

Theorem 1. #Subtrees is #P-complete.

Proof. The #P-hardness of#BipartiteMatchings follows from Valiant’s paper [11]. In
particular, Valiant shows that the problemImperfectMatchings is #P-complete.Imper-
fectMatchings is the same as#BipartiteMatchings except that the size of the two
vertex sets may differ.ImperfectMatchings may be reduced to#BipartiteMatchings
by adding vertices to the smaller vertex set. Thus, #P-hardness of#Subtrees follows from
Lemmas2–4, and from the transitivity of polynomial-time Turing reducibility. We will now
show that#Subtrees is in #P. Suppose thatT is a tree with vertex setVn = {v0, . . . , vn−1}.
We will order the vertices inVn so thatvi < vj if and only if i < j . For every (labelled)
subtreeT ′ of T , letV (T ′) denote the vertex set ofT ′. We will say that subtreeT ′′ is larger
than subtreeT ′ if and only if there is a vertexvi ∈ Vn such thatvi ∈ V (T ′′), vi 6∈ V (T ′)
and

V (T ′) ∩ {vi+1, . . . , vn} = V (T ′′) ∩ {vi+1, . . . , vn}.
Let T ′′ be a subtree ofT . EitherT ′′ is the smallest subtree ofT in its isomorphism class,
or there is a vertexv` ∈ V (T ′′) such that the sub-forestF` of T induced by vertex set

{vi ∈ Vn | vi < v`} ∪ {vi ∈ V (T ′′) | vi > v`}
contains a tree isomorphic toT ′′. Thus, one can determine whetherT ′′ is the smallest subtree
of T in its isomorphism class by solvingsubgraph isomorphismwith inputsF` andT ′′ for
all v` ∈ V (T ′′). SinceF` is a forest andT ′′ is a tree, this can be done in polynomial time [3]
using the method of Edmonds and Matula. It is now simple to describe the #P computation:
with input T , each branch picks a subtreeT ′′ of T and rejects unlessT ′′ is the smallest
subtree ofT in its isomorphism class.

2. The reductions

Denote by6T the relation ‘is polynomial-time Turing reducible to’.

Lemma 2. #BipartiteMatchings 6T #CommonRootedSubtrees.

Proof. LetG be an instance of#BipartiteMatchings with vertex sets{u0, . . . , un−1} and
{v0, . . . , vn−1}. FromG, we construct two rooted trees,(T1, r1) and(T2, r2), each based on
a fixed skeleton. The skeleton ofT1 has vertex set

{xi,j : 0 6 i 6 n − 1 and 06 j 6 n2 + i + 1} ∪ {r1},
118https://doi.org/10.1112/S1461157000000243 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000243

Counting unlabelled subtrees

T1

r1

T2

r2
r

r

�
�

�
�

� r r

@
@

@
@

@

r

r

�
�

�
�

� r r

@
@

@
@

@
x0,0 . . . xi,0 . . . xn−1,0 y0,0 . . . yj,0 . . . yn−1,0

r

r

r r r r

x0,n2+1

xi,n2+i+1

xn−1,n2+n y0,n2+n yj,n2+n yn−1,n2+n

r�
�

r

xi,in+j
r�

�
r

yj,in+j

Figure 1: The skeleton of treesT1 andT2, illustrating the presence of edge(ui, vj) in G.

and edge set

{(xi,j , xi,j+1) : 0 6 i 6 n − 1 and 06 j 6 n2 + i} ∪ {(r1, xi,0) : 0 6 i 6 n − 1}.
Informally, the skeleton ofT1 consists ofn paths of different lengths emanating from the
root r1, as illustrated in Figure1. Thesen paths correspond to then vertices{ui} of G.

The skeleton ofT2 is similar to the skeleton ofT1, except that the paths now have equal
length. It has vertex set

{yi,j : 0 6 i 6 n − 1 and 06 j 6 n2 + n} ∪ {r2},
and edge set

{(yi,j , yi,j+1) : 0 6 i 6 n − 1 and 06 j 6 n2 + n − 1} ∪ {(r2, yi,0) : 0 6 i 6 n − 1}.
Then paths emanating fromr2 correspond to then vertices{vi} of G.

119https://doi.org/10.1112/S1461157000000243 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000243

Counting unlabelled subtrees

The treesT1 andT2 are themselves built by adding to the respective skeletons certain
edges encoding the graphG. Specifically, for each edge(ui, vj) of G, we add an edge from
a new vertex to vertexxi,in+j of T1, and add an edge from a new vertex to vertexyj,in+j

of T2.
Let T ∗ denote the set of all finite (unlabelled) rooted trees(T , r) that have leaves at

all distances in the range[n2 + 2, n2 + n + 1] from the rootr. For any rooted tree(T , r),
let T (T , r) denote the set of all (unlabelled) rooted subtrees of(T , r). Thus, the quantity
#RootedSubtrees(T , r) is just the size ofT (T , r). We first observe that there is a bijection
between the set of matchings (of all sizes) inG and the setT (T1, r1)∩T (T2, r2)∩T ∗, and
then conclude the proof by showing how to compute the size ofT (T1, r1)∩T (T2, r2)∩T ∗
using an oracle for#CommonRootedSubtrees.

Consider some tree(T , r) ∈ T (T1, r1)∩T (T2, r2)∩T ∗. From the definition ofT ∗ we
see thatT must contain the entire skeleton ofT1. Let us now see which other edges ofT1
can be present inT . That is, we will now consider the ‘pendant edges’ which hang off of
the skeleton ofT1. Suppose that for somei andj in {0, . . . , n−1} there is a pendant edgee
at distancein + j + 1 from the root ofT . Then the edge(ui, vj) must be present inE(G).
Also, for anyj ′ ∈ {0, . . . , n−1}which is not equal toj , T cannot contain a pendant edgee′
at distancein + j ′ + 1 from the root. (To see this, note that by the construction ofT1, edge
e′ would be a descendant ofxi,0 in T1. The presence ofe in T ensures thatxi,0 andyj,0 are
associated with the same vertex ofT bute′ is not a descendant ofyj,0 in T2.) Similarly, for
anyi ′ ∈ {0, . . . , n−1}which is not equal toi,T cannot contain a pendant edgee′ at distance
i′n + j + 1 from the root. Thus,T contains at mostn pendant edges, and these correspond
to a matching inE(G). So, every rooted tree(T , r) ∈ T (T1, r1) ∩ T (T2, r2) ∩ T ∗ may be
interpreted as a matching inG, and vice versa. This is the sought-for bijection between the set
of matchings inG and the setT (T1, r1)∩T (T2, r2)∩T ∗. To conclude, we just need to show
how to compute the size of the latter set using an oracle for#CommonRootedSubtrees.

Let L be the set of allleavesin (T1, r1) whose distances from the rootr1 are in the range
[n2 + 2, n2 + n + 1]. LetU be the set of allverticesin (T2, r2) whose distances fromr2

are in the range[n2 + 2, n2 + n + 1]. For eachj ∈ {0, . . . , n}, let T j

1 be the tree formed

from (T1, r1) by adorning every vertex inL with a tuft of n + j edges, and letT j

2 be the
tree formed from(T2, r2) by adorning every vertex inU with a tuft ofn + j edges. By the
phrase ‘adorning a vertexv with a tuft of t edges’ we mean the following: ‘createt new
vertices and add an edge from each of these new vertices tov’. For k ∈ {0, . . . , n}, letak be
the number of rooted trees inT (T 0

1 , r1) ∩ T (T 0
2 , r2) that havek vertices of degreen + 1.

Clearly,

an = |T (T1, r1) ∩ T (T2, r2) ∩ T ∗ |.
So we want to show how to computean using an oracle for#CommonRootedSubtrees.

We claim (and shall presently justify) that

|T (T
j

1 , r1) ∩ T (T
j

2 , r2)| =
n∑

k=0

ak(j + 1)k. (1)

Thus, we can use an oracle for#CommonRootedSubtrees to evaluate the left-hand side
of 1atj = 0, . . . n; then we can computean by Lagrange interpolation. (See [11] for details
of this process, particularly the claim that interpolation is a polynomial-time operation.)

It remains to prove equation (1). We define a projection function

π : T (T
j

1 , r1) ∩ T (T
j

2 , r2) → T (T 0
1 , r1) ∩ T (T 0

2 , r2)

120https://doi.org/10.1112/S1461157000000243 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000243

Counting unlabelled subtrees

as follows. For any rooted tree(T , r) in the domain,(T ′, r) = π(T , r) is the maximum
r-rooted subtree of(T , r) that has no vertex of degree greater thann + 1. To see thatT ′
is uniquely defined, consider an embedding of(T , r) into (T

j

1 , r1). The only vertices of
degree greater thann + 1 are those that are mapped to tufts. Thus,(T ′, r) is obtained from
(T , r) by pruning tufts with more thann pendant edges, down to exactlyn pendant edges.
Note also that the resulting tree(T ′, r) can be embedded in both(T 0

1 , r1) and(T 0
2 , r2), so

π is indeed well defined.
How large isπ−1(T ′, r)? To every tuft with exactlyn pendant edges we may add any

number of pendant edges, from 0 toj . All the tufts are distinguishable, because they are all
at distinct distances from the rootr. Thus all these possible augmentations lead to distinct
trees, andπ−1(T ′, r) = (j+1)k, wherek is the number of vertices in(T ′, r) of degreen+1.
Thus, each of theak rooted trees inT (T 0

1 , r1) ∩ T (T 0
2 , r2) with k vertices of degreen + 1

is mapped byπ−1 to (j + 1)k trees inT (T
j

1 , r1) ∩ T (T
j

2 , r2). The lemma follows.

Lemma 3. #CommonRootedSubtrees 6T #RootedSubtrees.

Proof. Suppose that(T1, r1) and(T2, r2) constitute an instance of#CommonRootedSub-
trees. Let (T , r) be the rooted tree formed by takingT1 andT2 and adding a new root,r,
and edges(r, r1) and(r, r2). For notational convenience, introduce the following quantities:

N1 = #RootedSubtrees(T1, r1),

N2 = #RootedSubtrees(T2, r2),

N = #RootedSubtrees(T , r), and
C = #CommonRootedSubtrees((T1, r1), (T2, r2)).

We start by observing that

N = 1 + N1 + N2 − C + N1N2 −
(

C

2

)
.

To see this, note that(T , r) has

• one distinct subtree in which the degree ofr is 0, and

• N1 + N2 − C distinct subtrees in which the degree ofr is 1, and

• N1N2 − (
C
2

)
distinct subtrees in which the degree ofr is 2.

Thus,C(C + 1) = 2Z, whereZ denotes

1 + N1 + N2 + N1N2 − N.

To computeC, first calculateZ using an oracle for#RootedSubtrees. Then, observe that

C2 < 2Z < (C + 1)2,

soC is theinteger square rootof 2Z, which can be computed in2(logZ) time. Note that
logZ is polynomially bounded in the size of the input, since, for example,N1 6 2n1, where
n1 is the number of vertices inT1.

Lemma 4. #RootedSubtrees 6T #Subtrees.

Proof. For anyi, an ‘i-tuft’ is a tree consisting of one (centre) vertex with degreei andi

(outer) vertices, each of which has degree 1.

121https://doi.org/10.1112/S1461157000000243 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000243

Counting unlabelled subtrees

Suppose that(T , r) is an instance of#RootedSubtrees. Let 1 denote the maximum
degree of a vertex inT . LetT ′ be the tree formed fromT by taking a new(1+ 3)-tuft, and
identifying one of the outer vertices withr. LetT ′′ be the tree formed fromT by taking a new
(1+2)-tuft, and identifying one of the outer vertices withr. LetN ′ denote#Subtrees(T ′),
and letN ′′ denote#Subtrees(T ′′). Then#RootedSubtrees(T , r) is equal toN ′ − N ′′,
so it can be computed using an oracle for#Subtrees.

3. Some consequences

Following Valiant [11], we say that a functionf : 6∗ → N is in FP if it can be computed
by a deterministic polynomial-time Turing machine. We say that it is in FPg for a problemg

if it can be computed by a deterministic polynomial-time Turing machine which is equipped
with an oracle forg. Finally, we say that it is in FPA for a complexity classA if there is
someg ∈ A such thatf ∈ FPg.

Let #ConnectedSubgraphs be the problem of counting unlabelled connected sub-
graphs of a graph. Formally, let it be defined as follows.

Name. #ConnectedSubgraphs
Instance. A graphG.
Output. The number of distinct (up to isomorphism) connected subgraphs ofG.

Corollary 5. #ConnectedSubgraphs is complete forFP#P.

Proof. #ConnectedSubgraphs is FP#P-hard by Theorem1. We will show that#Con-
nectedSubgraphs is in the class FPspan-P, which will be defined shortly. The result will
then follow by Toda’s theorem [9].

We start by defining the relevant complexity classes. A functionf : 6∗ → N is in the
class span-P [7] if there is a polynomial-time nondeterministic Turing machineM (with an
output device) such that the number ofdifferentaccepting outputs ofM on inputx is f (x),
for all x ∈ 6∗.

A functionf : 6∗ → N is in #NP if there is a polynomial-time nondeterministic Turing
machineM and an oracleA ∈ NP such that the number of accepting computations ofMA

on inputx is f (x), for all x ∈ 6∗.
The classes #P, span-P, and #NP are related [7] by

#P⊆ span-P⊆ #NP.

Thus,

FP#P ⊆ FPspan-P⊆ FP#NP.

But FP#NP ⊆ FP#PH, where #PH is the class of functions that count the number of accepting
computations of polynomial-time nondeterministic Turing machines with oracles from PH.
Furthermore, Toda and Watanabe [10] show #PH⊆ FP#P. Thus,

FP#P = FPspan-P.

(See also Section 1.8 of Welsh’s book [12].)
We now complete the proof by showing that#ConnectedSubgraphs is in FPspan-P.

Let N(G, k) denotek! times the number of distinct (up to isomorphism) connected size-k

122https://doi.org/10.1112/S1461157000000243 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000243

Counting unlabelled subtrees

subgraphs ofG. Since

#ConnectedSubgraphs(G) =
n∑

k=1

1

k!N(G, k),

wheren is the number of vertices ofG, it suffices to show that computingN(G, k) is in
span-P. Each branch of the computation tree forN(G, k) chooses

• a size-kconnected subgraphH of G,

• a bijectionσ from the vertices ofH to the set{v1, . . . , vk}, and

• a permutationπ of v1, . . . , vk.

Let H ′ be the graph formed fromH by relabelling each vertexv of H with the labelσ(v).
If π is an automorphism ofH ′ then(H ′, π) is output. Otherwise, the branch rejects. The
result now follows from Burnside’s lemma, which implies that for any given isomorphism
class ofk-vertex graphs, the number of graphs in the isomorphism class times the number
of automorphisms of any member of the class is equal tok!. (For example, see [5].)

Let #GraphSubtrees be the problem of counting unlabelled subtrees of a graph. For-
mally, let it be defined as follows.

Name. #GraphSubtrees
Instance. A graphG.
Output. The number of distinct (up to isomorphism) subtrees ofG.

Corollary 6. #GraphSubtrees is complete forFP#P.

Proof. This is the same as the proof of Corollary5, except that the span-P computation
rejects any subgraphH which is not a tree. A more direct proof could be obtained by using
a polynomial-time canonical labelling algorithm for trees such as the one by Hopcroft and
Tarjan [6].

References

1. G. Blache, M. Karpinski andJ. Wirtgen, ‘On approximation intractability of the
bandwidth problem’, Electronic Colloquium on Computational Complexity, Report
TR98-014, 1998.http://www.eccc.uni-trier.de/eccc-local/Lists/TR-1998.html 117

2. K. J. Edwards andC. J. H. McDiarmid, ‘The complexity of harmonious colouring
for trees’,Discrete Appl. Math.57 (1995) 133–144.117

3. M. R. Garey andD. S. Johnson, Computers and intractability: a guide to the theory
of NP-completeness(Freeman, San Francisco, CA, 1979).117,118

4. M. R. Garey, R. L. Graham, D. S. Johnson andD. E. Knuth, ‘Complexity results
for bandwidth minimization’,SIAM J. Appl. Math.34 (1978) 477–495.117

5. F. Harary andE. M. Palmer, Graphical enumeration(Academic Press, 1973).123

6. J. E. Hopcroft and R. E. Tarjan, ‘Efficient planarity testing’,J. ACM 21 (1974)
549–568. 123

7. J. Köbler, U. Schöning andJ. Toran, ‘On counting and approximation’,Acta In-
form.26 (1989) 363–379.122,122

8. C. H. Papadimitriou, Computational complexity(Addison-Wesley, 1994).117

123https://doi.org/10.1112/S1461157000000243 Published online by Cambridge University Press

http://www.eccc.uni-trier.de/eccc-local/Lists/TR-1998.html
https://doi.org/10.1112/S1461157000000243

Counting unlabelled subtrees

9. S. Toda, ‘PP is as hard as the polynomial-time hierarchy’,SIAM J. Comput.20 (1991)
865–877. 122

10. S. Toda andO. Watanabe, ‘Polynomial-time 1-Turing reductions from #PH to #P’,
Theoret. Comput. Sci.100 (1992) 205–221.122

11. L. G. Valiant, ‘The complexity of enumeration and reliability problems’,SIAM J.
Comput.8 (1979) 410–421.117,118,120,122

12. D. J. A. Welsh, Complexity: knots, colourings and counting(Cambridge University
Press, 1993).122

Leslie Ann Goldberg leslie@dcs.warwick.ac.uk

Department of Computer Science, University of Warwick,
Coventry, CV4 7AL
http://www.dcs.warwick.ac.uk/∼leslie/

Mark Jerrum mrj@dcs.ed.ac.uk

Department of Computer Science, University of Edinburgh,
The King’s Buildings, Edinburgh EH9 3JZ
http://www.dcs.ed.ac.uk/∼mrj/

124https://doi.org/10.1112/S1461157000000243 Published online by Cambridge University Press

mailto:leslie@dcs.warwick.ac.uk
http://www.dcs.warwick.ac.uk/$sim $leslie/
mailto:mrj@dcs.ed.ac.uk
http://www.dcs.ed.ac.uk/$sim $mrj/
https://doi.org/10.1112/S1461157000000243

	Introduction
	The reductions
	Some consequences

