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ABSTRACT. An analysis is made of the time required to build up an ice-age ice sheet and of the time 
required to destroy such an ice sheet. The calculations are based on the approximation that the theory of 
perfect plasticity is valid . I t is concluded that the time required to bui ld up an ice-age ice sheet is longer than 
the time required to eliminate it. If it is assumed that the accumulation rate of an ice-age ice sheet lies in the 
range of o · 2 to 0·6 m ./yr., it is found that the growth time of a large ice sheet is o f the order of 15,000 to 
30,000 yr. Abla tion rates o f I to 2 m. /yr. lead to shrinkage times of the order of 2 , 000 to 4 ,000 yr. , provided 
a blation occurs over an appreciable a rea of the ice sheet. 

RESUME. On analyse le temps necessaire a l'eta blissement d'une calo tte de g lace et a sa disparition . L es 
calculs sont bases sur l'approximation que la theori e des corps parfaitement plastiques est valable. On en 
conclut que le temps requis pour edifier une calotte de glace, est plus grand que le temps necessaire a sa 
d estruction. Si l'on adme t que le taux d'accumu lation d'une calolte d e g lace est compris entre 0 , 2 et 0,6 m /an, 
on trouve que le temps de c roissance d ' une calotte etendue est d e l'o rdre de 15000 a 30000 ans. D 'autre 
part, si l'on ad met un taux d 'ablation d e I a 2 m/an , on est conduit a un temps d e disparition d e l'ordre 
d e 2000 a 4000 ans a condition qu'il y ait ablation sur une su rface appreciable d e la calotte. 

Z USAMMENFASSUN G. Die vorliegende Untersuchung gi lt der Frage, in welch en Zeitraumen ein eiszei tlicher 
E issch ild entstehen bzw. verschwinden kann. Die Berechnungen beruhen auf der Naherungsannahme, dass 
d ie Theorie del' vollstandigen P lastizitat gult ig ist. Man kann dann lo lgem, dass del' Aufbau eines eiszeitlichen 
E isschildes eine langere Zeit beansprucht als se in Abbau. U nte r d el' Annahme e ines jahrlichen Auftrages 
von o· 2 - 0 · 6 m ergibt si ch fur einen grossen Eisschi ld eine Bildungszeit von 15 000- 30000 Jahren. Ein 
Abtrag von 1- 2 m pro Jahr fuhrt zu Abbauzeiten in de l' Griissenordnung von 2000- 4000 Jahren , 
vorausgesetzt, dass Liber einem betracht lichen T eil des E issch ild es Ablation herrscht. 

I NTRODUCTION 

In the past, theoretical treatments (Marchi, 1895 ; F insterwalder, 1907; N ye, 1958, 196o, 
1961, 1963 ; Weertman, 1958) of non equi librium glaciers and ice sheets have been concerned 
primarily with the effect of small perturbations from a stable equilibrium state. An interesting 
problem which lies outside the scope of such theories is the determination of the time required 
for a small , nonequi librium ice cap to grow into a large, stable ice sheet. T his determination 
is of practical importance in the study of the chronology of the Pleistocene Epoch. A knowledge 
of the growth time of an ice sheet is valuab le in any theoretical consideration of the cause of 
ice ages. For example, if it were found that the time required to build up an ice-age sheet is of 
the order of the duration of one glacial stage or substage, this fact wou ld lend support to any 
theory in which the growth of an ice sheet triggers off the mechanism which ultimately causes 
the destruction and disappearance of the ice sheet. 

Perturbation-type theories have shown that the behavior of nonequilibrium glaciers and 
ice sheets is complex. As an illustration we may note that the mathematical equation which 
predicts the time-dependence of a perturbation contains a diffusion term, an exponential 
time term, and a term which is associated with the occurrence of traveling waves. It is reason­
ab le to expect the same complex behavior in an ice sheet which grows from a small to a large 
size (or contracts from a large to small area). Obviously, it would be difficult to develop a 
theory which describes in detail this complicated response of ice sheets to nonequilibrium 
conditions. Moreover unless the fine details of the growth process are of interest, it is 
unnecessary to develop a complete theory in order to obtain the time required by a small ice 
sheet to become large. In the following sections we present a more modest theory which gives 
growth and shrinkage times but which does not attempt to investigate such problems as 
kinematic waves or kindred phenomena involved in the nonequilibrium behavior of glaciers 
and ice sheets. 
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BASIS OF THEORY 

The reader may recall that the modern theory of glacier mechanics started with the 
calculation by Orowan (1949) of an ice sheet profile. His calculation was based upon the 
assumption of perfect plasticity, i.e. it was postulated that no plastic deformation can occur 
in a solid until a certain stress, 'To, is exceeded. At this stress level there is an infinite amount 
of deformation. Thus the solid cannot support a stress larger than 'To. Orowan's work was 
greatly extended by Nye (195 I ) , who still used the theory of perfect plasticity as the basis of 
his calculations. His work showed that the use of this theory is a reasonable approach to glacier 
mechanics. In fact the observed and calculated profiles of the Unteraar Glacier are in 
remarkable agreement (Nye, 1952). 

The application of perfect plasticity to glacier mechanics was abandoned after the 
experimental work of Glen (1955) on the creep of ice provided a more realistic plastic deforma­
tion law. He found the following creep law for ice 

where E is the creep rate, 'T the applied stress, and C, n, and 'To are constants. The value of n 

is of the order of 3 to 4. 
Profiles (Nye, 1959; Weertman, 1961 ) of ice sheets which were calculated with the aid of 

Glen's creep law are similar to those found using the perfect plasticity deformation law. This 
result is not surprising. The perfect plasticity deformation law is a fair approximation to 
equation ( I) . Figure I is a schematic plot of stress versus creep rates given by equation 
( I) tor various values of n. Setting the value of n equal to infinity produces the curve of a 
perfectly plastic solid. This curve approximates the curve of n = 3, which describes the 
actual behavior of ice. 

In addition to the similarity in profiles, other results of perfect plasticity theory are close to 
those found in the more realistic glacier mechanics theory. In the perfect plastic case it is 
found that the shear stress acting at the bottom of a glacier and parallel to its bed is a constant. 
(I ts value is taken to be I bar.) In the more exact theory the shear stress at the bed is not 
constant, but the variation in the value of the stress is relatively small. (The spread is from 
about o' 5 to I' 5 bars. ) To a first approximation the stress may be considered constant. 
According to the perfect plastic theory the thickness at the center of an ice sheet of given width 
is independent of the accumulation rate. In the more exact theory the thickness does depend 
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Fig. I. Schematic plot of stress versus creep ra/efor n = 3, n = 9, and n = 00 . The last value corresponds to perfect plasticity 
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on accumulation rate but the dependence is extremely weak. The thickness depends on the 
accumulation rate only to a t to + power. To a first approximation, therefore, the thickness 
given by the more exact so lution likewise is independent of the accumulation rate. The 
glacier mechanics theory based on the assumption of perfect plasticity gives essentially the 
same results as the more exact theory based on Glen's creep law. 

The perfect plasticity theory is inadequate for the investigation of such phenomena as 
kinematic waves. These can be handled only by the more exact theory. However, as was 
mentioned in the introduction, we actually wish to avoid a detailed examination of this type of 
complicated phenomenon. The possibility arises therefore that the shortcomings of the 
abandoned perfect plasticity theory can be turned to advantage for us. It automatically masks 
the g lacier phenomena we do not want to see. In the analysis which follows it will be assumed 
that the behavior of ice may be described by letting n of equation (I) approach infinity. 

BASIC EQUATIONS 

The equations basic to our analysis can be set up with the aid of Figure 2. This figure 

H 

h 

V(X) 

OL-----------+---~----------------lL--~X X x+8x 
Fig. 2 . Cross section of one half of an ice sheet which rests on a flat base. The ice sheet extends all infinite distance in a direction 

perpendiClllar to the plane of the paper 

shows the cross section of one half of an ice sheet resting on a flat base. The ice sheet extends 
over an infinite distance in the direction perpendicular to the plane of the paper. At a distance 
x from the center of the ice sheet the thickness of the ice is equal to h. The average velocity of 
the ice passing through a vertical plane at x is V. The average accumulation at x, converted to 
the equivalent amount of high density ice, is a. The accumulation has the units of volume of 
ice per unit surface of the ice sheet. The accumulation rate may be a function of the distance x . 
A positive value of a corresponds to accumulation and a negative value to ablation. 

When the ice sheet is in a nonequilibrium state the value of h will not be constant. An 
expression for its time variation may be obtained from a consideration of the mass budget 
between the vertical planes at x and x+ ox. Per unit time, the amount of ice passing across 
the plane x is Vh and across x+ ox is Vh + [o( Vh )/ox]ox. The difference in the flow of ice 
across the two sections is [o( Vh ) /ox] ox. The accumulation at the upper surface increases the 
height by the amount aox. (Any possible loss or gain at the bottom surface will be neglected. ) 
If h is not constant the volume of ice between the two vertical planes will change by an 
amount (oh/ot) ox. From the requirement of the conservation of the volume of ice (ice is 
assumed to be incompressible throughout this paper) we obtain the equation 

oh/ot = a-o( Vh )/ox. (2) 

The theory of glacier mechanics based on equation ( I) gives the following approximate 
expression for the average velocity V 0 

https://doi.org/10.3189/S0022143000028744 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000028744


JO URNA L OF GLAC I OLOGY 

where T is the shear stress acting at the bed of the glacier and Vo, TO, and m are constants . 
The value of m differs somewhat from the previously used n. The magnitude of the difference 
depends on the relative values of the contributions to V from sliding at the bottom and from 
the creep deformation within the ice sheet. For our purposes it is necessary only to note that if 
the value of n approaches infinity the value of m likewise approaches infinity. Observations on 
glaciers which have a shear stress T at the bed of about I bar indicate that the velocity V is 
approximately 100 m. /yr. Thus, if TO is taken to be equal to I bar, 100 m. /yr. is an appropriate 
value for Vo. 

To a good approximation the shear stress acting at the bottom of a g lacier is given by 

T = - pgh (oh/ox) 
where p is the density of ice and g is the gravitational acceleration. The minus sign is used in 
this equation so that T will be a positive quantity. 

By inserting eq uations (3) and (4) into equation (2) we obtain 

oh/at = a-Vo o[h { - (pgh/TO )(oh/ox) }mJ /ox. 
Equations (2) and (5) may be integrated with respect to x at any given instant in time: 

x 

Vh Voh ( - pgh?!!) m = J (a- Oh)dX. 
TO OX at 

This equation can be rewritten as 

T 
ch 

-pgh- = ox 

x 

TO [_I J(a- ah)dX] ,fm Voh ot . 

(6a) 

(6b) 

Consider now the perfectly plastic case in which m is allowed to approach infinity. If the 
values of a a nd oh/at are nonzero, the following conclusions are obvious: 

x 

I. T = TO when J (a-::)dx > 0, 

o 

x 

H. J (a - ::)a'x = 0 when T < TO 

o 

(Except in unusual situations, this equation reduces to a = oh/at), 
Ill. The right-hand side of equation (6a) can never have a negative value, 
IV. Any state of an ice sheet for which T > TO can last only an infinitesimally small length 

of time. 
We need consider only the two conditions given by equations (7a) and (7b). These 

equations will be of great importance to our analysis. The nonequilibrium ice sheets in which 
we are interested contain both accumulation and ablation areas. In order to understand the 
behavior of these ice sheets it is instructive to consider first the simpler case of ice sheets which 
contain only accumulation areas or only ablation areas. 

GROWING ICE SHEETS WHICH CONTAIN ONLY AN ACCUMULATION ZONE 

Let us consider the case of an ice sheet which rests on a flat base. This ice sheet extends an 
infinite distance in the horizontal direction. Suppose that there is no ablation zone on the ice 
sheet. Suppose further that the rate of accumulation does not depend on the distance x but that 
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accumulation occurs only on the ice sheet itself and not on the exposed, ice-free, ground. We 
would expect that for this ice sheet equation (7a), which predicts that the shear stress at the 
bed is equal to 'To, is valid. (If the shear stress at the bed of the ice sheet were less than 'To over 
an extensive area, the ice in this region would be stagnant and not flow. From equation (7b) 
it can be seen that in this stagnant area the ice thickness builds up at the rate oh/at = a. 
Eventually the ice thickness will become large enough to make the shear stress 'T equal 'To. ) 
From equation (4) we ~nd that 

which integrates to 

where 

pgh oh/ox = - 'To, 

h = H ( I-X/L)! 

H = (2L'To/pg)!. 

(8) 

(9) 

( 10) 

In these equations, which were found first by Orowan, H is the thickness of the ice sheet at its 
center and L is its half-width (Fig. 2) . 

Because there is no ablation area on the ice sheet the total volume of the sheet must 
increase. It can be seen that for one half of an ice sheet, such as shown in Figure 2, the rate of 
increase of volume per unit length is simply aL. (The unit length is measured in the direction 
perpendicular to the plane of the drawing. ) The total volume of ice per unit length of one 
half of the ice sheet is 

L L 

J J ( x) ~ (2'TO)! ~, h dx = H I - I dx = i LH = i pg L ' . ( 1 1 ) 

o 0 

Thus the rate of change of the volume is equal to (2L'To/ pg) "dL/dt. If this expression is equated 
to the rate of total accumulation it is found that 

dL /dt = a(pgL/2'To )\ 
which integrates to t = (2/a) (2'To/pg)! (V - Lo!) 

where t is the time required for an ice sheet of initial half-width Lo to grow to a half-width L. 
Figure 3 shows plots of accumulation rate versus the time required to build an ice sheet up to 
a half-width L = 1,000 km. when Lo ~ L. The value L = 1,000 km. is of the order of the 
half-width of ice-age ice sheets. The curves of Figure 3 are calculated assuming 'To = 1 bar and 
'To = o· 5 bar. (The former value gives H = 4.8 km. and the latter H = 3·4 km. ) 

SHRINKING ICE SHEETS WHICH CONTAIN ONLY AN ABLATION ZONE 

Suppose now that the supply of ice producing accumulation on the growing ice sheet of 
the previous problem is turned off and instead there is ablation over the entire surface. A 
volume of ice aL, where a has a negative value, is now removed from the glacier. 

The rate of shrinkage of the ice sheet cannot be found simply by reversing the analysis of 
the previous section. In that situation, because of accumulation, the ice sheet would maintain 
a profile such that the shear stress at the bottom is - pgh oh/ox = 'T o. I t is clear that in the 
present case, if ablation should initially decrease the thickness slightly whereas the slope 
oh/ox remained a lmost the same, the shear stress at the bottom initially would be less than 'To. 
Thus, we are dealing with equation (7b) rather than (7a) . The rate of change of ice thickness 
is equal to the ablation rate. The following expression describes the profile of an ice sheet of 
initial half-width Lo at a time t after the start of ab lation 

Negative values of h are disregarded. The half-width L of the glacier at any time t can be found 
by setting h = 0 in equation (14) . Thus L is 

( 15) 
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and~the time required to reach a half-width L is 

t = -(r ja) (2To jpg)! (Lo-L) ~ . 

Figure 3 shows a plot of the time required for the disappearance of an ice sheet of initial 
half-width Lo: = r,ooo km. at various ablation rates. 

Cl) 
Q: 

« 
w 
>- • 

.. 10 -

w 
:lE 
I-

ACCUMULATION or ABLATION. METERS/YEAR 

Fig. 3. Double log plot a/the growth or shrinkage time of an ice sheet a/half-width L = I,OOO km. as a function 0/ accumulation 
or ablation rate. Solid lines: time required/or build up; dashed lines: time required/or disappearance. Equations ( [3) and 
( [6 ) 0/ the text were used to obtain these lines. The hatching indicates reasonable accumulation or ablation rates for growing 
or shrinking ice sheets 

COMMENTS ON THE PREVIOUS SECTIONS 

The simple calculations of the two previous sections contain features worthy of comment. 
It will be noted that, except for a factor of two, the equation giving the time required to build 
up a large ice sheet from a small one is essentially the same as the equation giving the time 
required for the disappearance of a large sheet. Thus, if the absolute values of the accumulation 
rate during growth and the ablation rate during shrinkage are identical, the build-up time is 
twice as long as the time required to eliminate the ice sheet. The physical cause of this 
difference between growth and shrinkage times stems from the fact that during shrinkage the 
ice is stagnant and does not flow. Thus, the widths of two ice sheets, each containing the same 
total volume of ice but one growing and the other shrinking, would differ. As a result the rate 
of volume change, which is equal to aL, also would differ. 

Actually, accumulation rates on glaciers and ice sheets are expected to be smaller than 
ablation rates because accumulation areas usually are larger than ablation areas. (In the case 
of equilibrium glaciers and ice sheets the ratio of average accumulation rate to average abla­
tion rate is equal to the ratio of ablation area to accumulation area. ) From this consideration 
alone it would seem likely that the growth time of an ice-age ice sheet exceeds its shrinkage 
time. 
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From Figure 3 we can obtain som e rough estima tes of the time required to build up or 
destroy a large ice sheet. The hatched a reas in this fig ure indicate typical va lues for the 
average accumulation ra te on a growing ice sheet or the average abl a tion ra te on a shrinking 
ice sheet. (For example, consider accumulation a nd abla tion data fo r the Greenla nd I ce 
Shee t. The accumula tion ra te (Ba uer, 1961 ) on the so uth-west part of the Greenland I ce 
Sheet which drains into the J akobshavns Isbne is a bo u t o ' 4 m. /Yr. The abl a tion rate (Ba uer, 
196 I ) of the abla tion zone of the J akobshavns Isbr a:: is a round I ' I m. /yr. ) From this figure 
it is seen that growth times range from 15,000 to 30,000 yr. and destruction times are of the 
order of 2,000 to 4,000 yr. The m agnitude of these values for the growth time is the same as 
the extent in time of an ice age or a substage of one as judged by pal eo temperatures of ocean 
wa ters (Emiliani , 1958 ; Broecker and o thers, 1960; Ericson and others, 1961 ). (There is a 
controversy (Donn and Smiley, 1963; Emiliani , 1963) about the chronology determined 
from the d eep-sea cores.) Likewise the calcula ted disappearance times a re of the right ord er of 
magnitude. The use of radio-ca rbon d a ting techniques has shown that the edge of the 
Wisconsin Ice Sheet was in the Great L a kes region 10,000 to 11 ,000 B.P . R a dio-carbon d a ta of 
Lee ( 1960) indicate tha t sometime between 7,000 a nd 8,000 B.P . the Hudson Bay area of 
Canad a became ice-free. 

Th e calcula tions leading to Figure 3 a re naive in that a n ice shee t was p ermitted to con tain 
only a n accumula tion zone or an a blation zone. In the next section we sha ll present a m ore 
refin ed calcula tion whi ch takes into account the presence of both types of zone. In addition, 
the e ffect of the isostatic sinking of a large ice sheet into the Earth's crust is considered. 

I CE S H EET W ITH BOTH ACC UMU LATI ON AN D AB LAT ION Z ONES 

vVe wish now to d evelop an ana lysis simila r to one used previously in a study of ice-age ice 
sheets (vVeertman, 196 1) . Our a na lysis is based on Fig ure 4. H ere is shown a cross section of 
an idealized ice-age ice sheet which ex tends from th e Arctic O cean to the lower latitud es. I t 
is ass umed tha t the la nd upon which the ice sheet is resting was fl a t before the ice age started. 
Accumulation on a n upper ice surface is assumed to occur onl y in those a reas whose elevation 
is a bove a " snow line" elevation ks. Abla tion occurs on upper ice surfaces lying below this 
elevation . \Ne sha ll now let a represent o nly the average accumula tion ra te in the accumula tion 
zone a nd we sha ll let ii represent the average ab lation rate in the ablat ion zone. Both a a nd ii 
a re d efined to be posi tive quantities. For simplicity we sha ll assume th a t th e actua l accumula­
tion o r a blat ion rate at a pa rticul a r poin t is eq ua l to the average accumula tion or a bl ation 
rate. Also, for simplicity it is assumed that the snow-lin e elevation rises linearl y with decreasing 
la titud e a nd is eq ua l to zero a t th e north ern edge o f the ice sheet. * 

\tV e let hs be given by the expression 

It s = s(L n+ x) ( 17) 

where s is the slope of the snow line a nd L n is the wid th of the northern pa rt of the ice sheet. 
In Fig u re 4 the snow-line elevation is eq ua l to the eleva tion of the ice sUl'fa ce a t x = R, where 
x is m easured from th e ice divide. 

Crowing ice sheet 

If the ice sheet of Figure 4 is growing in size, clearl y the ice wi thin i t is not stagnant. In this 
case throughout bo th ha lves of the ice shee t condition (7a) is app li cable, i. e . the s!lear stress at 
the bed is equal to T O ' 

* T his ass ump ti on is slig htl y diffe ren t rrom tha t used in the p revio us a na lysis (vVeertman, 196 1) . Fo rm erl y 
we assumed that hs is g reate r than zero at the no rthern edge. T he previo us assumption pe rm itted the investigation 
or small unstable equi libriu m ice caps. T he presen t onc does no t. In th e present pa per we a re not in terested in the 
existen ce or small uns ta ble ice caps and thus th ere is no need to req uire that hs does not b('come eq ua l tQ ze ro. 
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Fig. 4. Idealized ice-age ice sheet in the Northern Hemis/Jhere. The land surJace was flat bifore isostatic sinking of ice. The 
origin is taken below the /Josition of maximum elevation. Accumulation occurs on a'!)l ice surJace whose elevation is higher than 
the snow line hs ; ablation occurs on a'!)l ice surJace below this elevation. The coordinate x represents a positive horizontal 
distance in the southern half of the ice sheet, and the coordinate x represents a positive horizontal distance in the northern half 
of the ice sheet 

The shear stress at the bottom of the ice sheet is 

TO = - pg (h+ d)8hj8x 

(it will be assumed that isostatic sinking takes p lace instantaneously) where d is the depth of 
isostatic sinking. In this equation X, which is defined in Figure 4, is substituted for x in the 
northern half of the ice sheet. The depth d can be determined from the isostatic condition that 

prd = p(h+ d) (19) 

where PI' is an average rock density. We shall take pjPr ~ ~ . Thus 

d = hp j( pl' - p) ~ th. ('20 ) 

Substitution of this last equation into equation ( 18) fo llowed by integration gives 

h = H ( I - XjL )1 

H = ['2LTo ( pr -p ) ] ~ ~ [4LT o] 1 
pprg 3pg 

where 

and where x is used for x in the northern half. The symbol L represents either Ln or Ls. Since 
at the ice divide the elevation of the ice in each half must be the same, Ln = Ls = L. 

The rate of growth of the ice sheet will be determined by the rate of growth of the southern 
half of the ice sheet. This circumstance arises from the fact that the accumulation area of the 
southern half is smaller than that of the northern ha lf. The accumulation on the northern half 
of the ice sheet which is in excess of the amount needed to keep pace with the growth rate of 
the southern half can be eliminated by flow into ice shelves in the Arctic Ocean. 

The distance R separating the accumu lation area from the ablation area can be found by 
equating equations (17) and (21 ). The following expression is obtained: 

R = L (I _ s2 (L + R )2 jH2
) . 

This equation can be solved for R. The analysis which fo llows is considerably simplified if only 
limiting values of R are considered . A lower limit on R is found by setting R = L in the 
right-hand side of this equation. For a growing ice sheet an upper limit on R can be set by 
noting that when the ice sheet is in equilibrium, aR = a(L - R ). For a growing ice sheet R 
must lie between 
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It can be seen that if the ablation rate becomes large compared with the accumu lation rate, 
the two limits approach each other. In order to simplify the analysis we now make what we 
believe is a reasonable assumption , namely, that the ablation rate is greater than twice the 
accumulation rate. The right-hand limit of the inequalities (24) thus reduces to the approxi­
mate expression L( I - 3s2L'/H2). 

Limits on the average accumulation rate a * over the whole area of the southern half of the 
ice sheet can be found from the inequalities (24) , The average accumulation rate is 

a* = [aR-ii(L-R)]/L = a-(a+ ii )[3s2U /H2 = a-(a+ ii ) [3Pg[3S2L] (25 ) 
4T o 

where 3 < [3 < 4· This equation would have a much more complicated form if the exact value 
of R of equation (24) had been used. The simpler form of equation (25) is the justification for 
the use of inequality (24) . The equilibrium width of the ice sheet is determined by setting a* 
equal to zero. The half-width Le of a stable equilibrium ice sheet is 

4 TO a TO a Le = - ----- ~ .l ____ _ 
3 pg[3s2 (a+ ii ) ~ 3 pgs2 (a+ ii ) 

when ii is at least twice as great as a. 
If we set TO eq ual to I bar and if, as in Weertman (196 I ), we assign to s the val ue 10- 3, we 

find that the equilibrium half-width Le is equal to 1 ,000 km. when ii is approximately three 
times as great as a. 

The rate of growth of the ice sheet can be calculated by the method of a previous section. 
The rate of volume addition to the southern half of the ice sheet is a*L. The total volume of 
the southern half is 2PrLH/3(pr - P) ~ LH. The rate of volume change of this expression is 
o(LH)/ot = 3LTo/pg)!oL /ot. Equating the two volume changes results in 

dL 
dl 

[a - (a+ ii ) (3pgf3s2L/4T o)]L 

(3LT o/pg )' 

When integrated this equation gives 

where Le is given by equation (26) and 

The quantity 10 is a measure of the time required by an ice sheet to reach half its equili­
brium size. In a time 2to = (2/a)(3ToLe/pg)! the ice sheet wi ll attain close to its equili brium 
value. If this last expression is compared with equation (13) it will be seen that this time is 
almost the same as that previously calculated by the simple method. * Thus Figure 3 sti ll gives 
a good estimate of the time required to form a large ice sheet. The reader should note that in 
the last expression on the right-hand side of equation (29) both the ablation rate and the rate 
of rise of the snow line very conveniently have dropped out. Therefore these quantities do not 
complicate the estimate of the build-up time. The physical reason behind the observation that 
the build-up time of equation (29) is a lmost the same as that found from the simple calcula tion 
is the fact that when the ice sheet is small its ablation area is negligible compared to its 
accumulation area. Only when the ice sheet nears equilibrium size is the effect of ablation 
sufficient to slow down the growth rate. 

* The agreemcl1l between the two times is even closer if isos tatic sinking also occurs in the simple method. 
The fac tor (2To/ pg)! of equation ( 13) is replaced by (3To/ pg )! for the isos tati c situation. 
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Since the time interval required for growth is relatively long, the assumption that during 
growth the ice sheet is a lways in isostatic balance is reasonable. 

RATE OF SHRINKAGE 

Suppose that the ice sheet of the last section has reached its equilibrium width. Suppose 
further that for some reason either the accumulation or the ablation rate, or the rate of rise 
of the snow line, or any combination of these quantities changes in such a direction that the 
equilibrium width given by equation (26) must decrease. The calculation of the rate of 
shrinkage of the ice sheet is now much more complicated than in the simpler case already 
considered. In the previous situation the whole ice sheet was stagnant during shrinkage, 
whereas now only a part of the ice sheet wi ll be stagnant. 

Figure 5 shows schematically a shrinking ice sheet. In this figure the half-width Ls of the 

Ln 

ARCTIC 
OCEAN 

ACTIVE ICE STAGNANT 
ICE 

Fig. 5. Idealized ice-age ice sheet which is shrinking. The position S separates stagnant from active ice 

southern half of the ice sheet is not equal to the ha lf-width Ln of the northern half. The 
snow-line elevation curve is shown to intersect the upper surface in the southern half of the ice 
sheet. It is of course possible for it to intersect the upper surface in the northern half. We shall 
not consider this latter situation since it is similar to that previously studied. 

The location s in Figure 5 represents the point of separation of the stagnant ice from the 
active ice a horizontal distance S from the ice divide . Between x = 0 and x = S the profile of 
the upper surface of the southern half of the ice sheet is the mirror image of the profile of the 
northern half. This similarity in profiles follows from the requirement that the ice thickness at 
x = x = 0 must be the same in both halves. The dashed curve shows what would be the 
profile of the remainder of the southern half if no stagnant ice were present. 

In the stagnant region the rate of change of the ice surface is 

o(h+ d )/ot = -ii. 

This equation will hold for all values of x equal to or greater than S. The ice thickness (h+ d ) 
at x = S obtained from equations (20) , (21 ) and (22) is 
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If this equa tion is substi tu ted into equation (30) and S is held consta n t, the following expression 
is obtained for the rate of cha nge of Ln : 

As expected , this ra te of cha nge approaches zero as L n, S, a nd L s a pproach the same value. 
In the region in which ice is active, 0 ~ x ~ S, the ful fi llment of the condition of conserva­

tion of mass requires tha t the fo llowing equa tion be valid : 

s 

Ja(h+ d ) 
at dx = aR - a(S - R ). 

o 

U equations (20), (21 ) a nd (22 ) a re substituted into the left-ha nd side of this equa tion, and S 
again is held constant, we fi nd that 

With the use of equation (32 ) this last equa tion reduces to 

2a[ (L n- S ) - L n1(L n- S )l] = aR - a(S - R ), 

which can be reduced further to 

(Ln -S) ~ = Ln } -(a+ a)~Rl/ al . 

Placing equa tion (35b) into equa tion (32 ) gives 

aLn/at = - 2a(pg/3'T o)l [Ln l-(a+ a)lR ' /a1] . 

Unowequa tion (23) is solved for R in terms of L n and this so lu tion is placed in to equation (36), 
a differentia l equa tion in Ln is obtained whose solution gives the time dependence of L n, in 
other words the solution of our problem. 

The exact solution of equa tions (36) a nd (23) obviously will be a ra ther complicated 
expression rela ting Ln with time. However, without developing the exac t so lution, it is 
possible to obtain from these eq ua tions reasonable estima tes of the time required to reach a 
new equili brium profil e. W e now consider two cases of shrinking ice sheets. In one case the 
s:lrinkage of the ice sheet is due primaril y to a rise in the elevatio n of the snow line, that is, to 
an increase in s. In the other case, the shrinkage res ul ts from a n increase in the a blation ra te 
a nd a d ecrease in the accumulation rate. 

I NCREASED ELEVATION OF T H E SNOW LI E 

If for som e reason the snow-line elevation is raised while the accumula tion and ab lation 
rate rem ain cons tant, the effect is to reduce the dista nce R shown in Figures 4 and 5. Suppose 
tha t the increase in snow-line elevation is large enough that the new equilibrium size of the ice 
shee t is appreciab ly sma ller t han the origina l. Und er these conditions the term (a+ a)lRl/ at 
of equation (36) will be considera bly sma ller tha n Ln' immediately after the cha nge in the 
snow-line elevation a nd , m oreover , it will remain considerably sm a ller until the new profi le is 
approached. O ver most of the time in terval when the ice sheet is shrinking, equation (36) 
a pproxima tes the equa tion 

whose solu tion is 
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where Le is the original half-width of the ice sheet. This equation is almost the same as 
equation (16), which gives the shrinkage time of an ice sheet containing no accumulation. 
(The chief difference between the two expressions for the time is that one contains the factor 
3! and the other the factor 2' . This difference, as pointed out earlier, arises from the fact that 
one calculation considered isostatic sinking and the other did not. ) Thus Figure 3 still presents 
a good estimate of the shrinkage time of a large ice sheet. This time is relatively short compared 
with the growth time. The shrinkage time of equation (38) is essentially the same as that 
previously calculated because of the assumption that the snow-line elevation was raised 
sufficiently high to reduce substantially the value of R on an ice sheet previously in eq uili­
brium. * This assumption is equivalent to the assumption that the ratio of ablation a rea to 
accumula tion area has been substantially increased. 

I NCREASED ABLATION AND D EC REASE D ACCUMULATION RATES 

Suppose that the shrinkage of an ice sheet is induced, not by an increase in the snow-line 
elevation, but rather through a decrease in the accumulation rate and an increase in the 
ablation rate. If again we assume that the ablation rate is at least twice the accumulation rate, 
both before and after the change in rates, we can make use of the fact that R is approximately 
equal to L. A better approximation fo r R, found by letting R = L in the right-hand side of 
equation (23), is 

and 

Rk ::::; Lnl ( 1 - 3s' pgLn /2To). 

The substitution of equation (3gb) into equa tion (36) gives 

8L n/8t = -2a(pg I3 To)!Ln~[( 1 +al a)~( 3s' pg/2To)Ln - ( I + a/a)!+ I], (40) 

which can be rewritten as 

8L n/8t = - a(1 + a/a)' 3! (pg/To )ts'Lnl(Ln - Le) 

where L e is the new equilibrium half-width and is given by 

Le = [( I+ a/a)}- I]( I+ a/a)-!(2T o/3s'pg ). 

The solution of equation (41 ) is 

where 

and 

Ln~ = Le' [I + A exp ( - 1110 ) ] 

I - A exp ( - t / I 0) 

\lYe are interested in the situation in which the old equilibrium width Le is much greater 
than the new width L e. When Le ~ Le equation (43) reduces to 

, - , [ I+ exp (- tllo) ] 
Ln' = L e' l - exp \ - lllo)+ 2\L c' ILe') exp (- tlt o) ' 

* If the isos lal ic rise does not keep pace w ith a shrinking ice sheet Ihe shrinkage rate will be increased since a 
lag is equi"alent to raising the snow- lin e elevat ion. 
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For t < 10 this equation becomes 

Lnl = Lelj( I + ILe1 jtoLel) . 

From equation (44b) we find that the time required to reduce the old equi librium half-width 
Le by a factorf (Ln = Lejf > L e) is equal to 

Through the use of equations (26) and (43) this equation reduces to 

where a* and ii* are the original values of the accumulation and ablation rates. 
The shrinkage time given by equation (45b) is considerably longer than that given by 

equation (16). For example, iff = 4, ii* ja* = 2, and the ablation rates are the same, the new 
shrinkage time is approximately three times longer. The reason for this increase in shrinkage 
time is obvious. In the previous examples of shrinkage the ablation area was large compared 
to the accumulation area. In the present example this is not the case. Thus, even with a large 
ablation rate the net ablation over the whole surface of the ice sheet can be relatively small, a 
situation which results in slower shrinkage rates. However, a change in the ablation rate 
obviously would affect the elevation of the snow line. An increase in ab lation rate goes hand in 
hand with an increase in the snow-line elevation. 

SUMMARY 

The results of the analysis presented in this paper can be summarized as follows. The time 
required to build up an ice-age ice sheet is of the order of 15,000 to 30,000 yr. if the accumula­
tion rate over the ice sheet is in the range of 0 . 2 to 0 . 6 m. jyr. Al though there is no way known 
of obtaining paleo-accumulation rates, it can be argued that these rates are reasonable, in 
light of what is known about accumulation on the Green land Ice Sheet. A period of time of 
the range of 15,000 to 30,000 yr . is of the order of the duration of an ice age or a substage of an 
ice age . The possibility arises, therefore, that the build-up of an ice sheet indeed may trigger 
off the mechanism which causes the ultimate destruction or temporary recession of the ice 
sheet. If such is the case, this result would favor an ice-age theory, such as that proposed by 
Ewing and Donn, which depends on a triggering action . 

I t has been shown in this paper that the time required for the disappearance of an ice-age 
ice sheet is smaller than the build-up time provided that the average ablation rate is at least 
twice the average accumulation rate and that ablation occurs over an appreciable area during 
shrinkage. The rapid disappearance of the last ice-age ice sheets can be understood on the 
basis of these resu lts. 

All thc calculations wcre carried out on the basis of the theory of perfect plasticity. C learly 
it would be desirable to repeat these calculations using G len's creep law. Such a calculation 
probably would yield valuable information on possible pulsations in the dimensions of an ice 
sheet, both during its growth and its retreat. We doubt that the refined calculation would lead 
to an appreciable a lteration in the build-up and shrinkage times found in this paper. Since 
paleo-accumulation and ablation rates are not known, any small differences between the 
results of a refined calculation and the rough analysis of the present paper would be of little 
significance. 

MS. received ID September 1963 
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