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ABsTRACT. An analysis is made of the time required to build up an ice-age ice sheet and of the time
required to destroy such an ice sheet. The calculations are based on the approximation that the theory of
perfect plasticity is valid. It is concluded that the time required to build up an ice-age ice sheet is longer than
the time required to eliminate it. If it is assumed that the accumulation rate of an ice-age ice sheet lies in the
range of 0-2 to 0-6 m./yr., it is found that the growth time of a large ice sheet is of the order of 15,000 to
30,000 yr. Ablation rates of 1 to 2 m./yr. lead to shrinkage times of the order of 2,000 to 4,000 yr., provided
ablation oceurs over an appreciable area of the ice sheet.

Resumit. On analyse le temps nécessaire & 'établissement d’une calotte de glace et 4 sa disparition. Les
calculs sont basés sur 'approximation que la théorie des corps parfaitement plastiques est valable. On en
conclut que le temps requis pour édifier une calotte de glace, est plus grand que le temps nécessaire i sa
destruction. Si 'on admet que le taux d’accumulation d’une calotte de glace est compris entre 0,2 et 0,6 m/an,
on trouve que le temps de croissance d’une calotte étendue est de l'ordre de 15 000 4 30 000 ans. D’autre
part, si I'on admet un taux d’ablation de 1 & 2 m/an, on est conduit & un temps de disparition de ’ordre
de 2 000 4 4 000 ans A condition qu’il y ait ablation sur une surface appréciable de la calotte.

ZUsAMMENFASSUNG, Die vorliegende Untersuchung gilt der Frage, in welchen Zeitriaumen ein eiszeitlicher
Eisschild entstehen bzw. verschwinden kann. Die Berechnungen beruhen auf der Naherungsannahme, dass
die Theorie der vollstindigen Plastizitit giiltig ist. Man kann dann folgern, dass der Aufbau eines eiszeitlichen
Eisschildes eine lingere Zeit beansprucht als sein Abbau. Unter der Annahme eines jahrlichen Auftrages
von 0-2-0-6 m ergibt sich fiir einen grossen Eisschild eine Bildungszeit von 15 000-30 000 Jahren. Ein
Abtrag von 1-2 m pro Jahr fithrt zu Abbauzeiten in der Gréssenordnung von 2000-4000 Jahren,
vorausgesetzt, dass iiber einem betrichtlichen Teil des Eisschildes Ablation herrscht.

INTRODUCTION

In the past, theoretical treatments (Marchi, 1895; Finsterwalder, 1907; Nye, 1958, 1960,
1961, 1963; Weertman, 1958) of nonequilibrium glaciers and ice sheets have been concerned
primarily with the effect of small perturbations from a stable equilibrium state. An interesting
problem which lies outside the scope of such theories is the determination of the time required
for a small, nonequilibrium ice cap to grow into a large, stable ice sheet. This determination
is of practical importance in the study of the chronology of the Pleistocene Epoch. A knowledge
of the growth time of an ice sheet is valuable in any theoretical consideration of the cause of
ice ages. For example, if it were found that the time required to build up an ice-age sheet is of
the order of the duration of one glacial stage or substage, this fact would lend support to any
theory in which the growth of an ice sheet triggers off the mechanism which ultimately causes
the destruction and disappearance of the ice sheet.

Perturbation-type theories have shown that the behavior of nonequilibrium glaciers and
ice sheets is complex. As an illustration we may note that the mathematical equation which
predicts the time-dependence of a perturbation contains a diffusion term, an exponential
time term, and a term which is associated with the occurrence of traveling waves. It is reason-
able to expect the same complex behavior in an ice sheet which grows from a small to a large
size (or contracts from a large to small area). Obviously, it would be difficult to develop a
theory which describes in detail this complicated response of ice sheets to nonequilibrium
conditions. Moreover unless the fine details of the growth process are of interest, it is
unnecessary to develop a complete theory in order to obtain the time required by a small ice
sheet to become large. In the following sections we present a more modest theory which gives
growth and shrinkage times but which does not attempt to investigate such problems as
kinematic waves or kindred phenomena involved in the nonequilibrium behavior of glaciers
and ice sheets.
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Basis oF THEORY

The reader may recall that the modern theory of glacier mechanics started with the
calculation by Orowan (1949) of an ice sheet profile. His calculation was based upon the
assumption of perfect plasticity, i.e. it was postulated that no plastic deformation can occur
in a solid until a certain stress, 7o, is exceeded. At this stress level there is an infinite amount
of deformation. Thus the solid cannot support a stress larger than 7,. Orowan’s work was
greatly extended by Nye (1951), who still used the theory of perfect plasticity as the basis of
his calculations. His work showed that the use of this theory is a reasonable approach to glacier
mechanics. In fact the observed and calculated profiles of the Unteraar Glacier are in
remarkable agreement (Nye, 1952).

The application of perfect plasticity to glacier mechanics was abandoned after the
experimental work of Glen (1955) on the creep of ice provided a more realistic plastic deforma-
tion law. He found the following creep law for ice

¢ = C(7]7o)" (1)

where ¢ is the creep rate, = the applied stress, and C, n, and 7, are constants. The value of n
is of the order of 3 to 4.

Profiles (Nye, 1959; Weertman, 1961) of ice sheets which were calculated with the aid of
Glen’s creep law are similar to those found using the perfect plasticity deformation law. This
result is not surprising. The perfect plasticity deformation law is a fair approximation to
equation (1). Figure 1 is a schematic plot of stress versus creep rates given by equation
(1) for various values of n. Setting the value of 7 equal to infinity produces the curve of a
perfectly plastic solid. This curve approximates the curve of n = 3, which describes the
actual behavior of ice.

In addition to the similarity in profiles, other results of perfect plasticity theory are close to
those found in the more realistic glacier mechanics theory. In the perfect plastic case it is
found that the shear stress acting at the bottom of a glacier and parallel to its bed is a constant.
(Its value is taken to be 1 bar.) In the more exact theory the shear stress at the bed is not
constant, but the variation in the value of the stress is relatively small. (The spread is from
about 05 to 1-5 bars.) To a first approximation the stress may be considered constant.
According to the perfect plastic theory the thickness at the center of an ice sheet of given width
is independent of the accumulation rate. In the more exact theory the thickness does depend
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Fig. 1. Schematic plot of stress versus creep rate for n = 3, n = 9, and n = 0. The last value corresponds to perfect plasticity
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on accumulation rate but the dependence is extremely weak. The thickness depends on the
accumulation rate only to a } to 4 power. To a first approximation, therefore, the thickness
given by the more exact solution likewise is independent of the accumulation rate. The
glacier mechanics theory based on the assumption of perfect plasticity gives essentially the
same results as the more exact theory based on Glen’s creep law.

The perfect plasticity theory is inadequate for the investigation of such phenomena as
kinematic waves. These can be handled only by the more exact theory. However, as was
mentioned in the introduction, we actually wish to avoid a detailed examination of this type of
complicated phenomenon. The possibility arises therefore that the shortcomings of the
abandoned perfect plasticity theory can be turned to advantage for us. It automatically masks
the glacier phenomena we do not want to see. In the analysis which follows it will be assumed
that the behavior of ice may be described by letting n of equation (1) approach infinity.

Basic EQuaTions

The equations basic to our analysis can be set up with the aid of Figure 2. This figure
H
x\

——=V(X+3Xx)
V(X) —»

X
0 X X+8X L

Fig. 2. Cross section of one half of an ice sheel which rests on a flat base. The ice sheet extends an infinite distance in a direction
perpendicular to the plane of the paper

shows the cross section of one half of an ice sheet resting on a flat base. The ice sheet extends
over an infinite distance in the direction perpendicular to the plane of the paper. At a distance
x from the center of the ice sheet the thickness of the ice is equal to k. The average velocity of
the ice passing through a vertical plane at x is V. The average accumulation at x, converted to
the equivalent amount of high density ice, is a. The accumulation has the units of volume of
ice per unit surface of the ice sheet. The accumulation rate may be a function of the distance x.
A positive value of a corresponds to accumulation and a negative value to ablation.

When the ice sheet is in a nonequilibrium state the value of 4 will not be constant. An
expression for its time variation may be obtained from a consideration of the mass budget
between the vertical planes at x and x+ 8x. Per unit time, the amount of ice passing across
the plane x is Vh and across x+8x is Vh-[0(Vh)[0x]6x. The difference in the flow of ice
across the two sections is [&( Vh)/8x]8x. The accumulation at the upper surface increases the
height by the amount adx. (Any possible loss or gain at the bottom surface will be neglected.)
If £ is not constant the volume of ice between the two vertical planes will change by an
amount (dh/ét)x. From the requirement of the conservation of the volume of ice (ice is
assumed to be incompressible throughout this paper) we obtain the equation

ehjot = a—a(Vh)[ox. (2)

The theory of glacier mechanics based on equation (1) gives the following approximate
expression for the average velocity I,

V= "Vo(r|ra)™ (3)
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where 7 is the shear stress acting at the bed of the glacier and Vy, 7o, and m are constants.
The value of m differs somewhat from the previously used n. The magnitude of the difference
depends on the relative values of the contributions to V' from sliding at the bottom and from
the creep deformation within the ice sheet. For our purposes it is necessary only to note that if
the value of n approaches infinity the value of m likewise approaches infinity. Observations on
glaciers which have a shear stress = at the bed of about 1 bar indicate that the velocity Vis
approximately 100 m./yr. Thus, if 74 is taken to be equal to 1 bar, 100 m./yr. is an appropriate
value for .

To a good approximation the shear stress acting at the bottom of a glacier is given by

T = —pgh(6h|ox) (4)

where p is the density of ice and g is the gravitational acceleration. The minus sign is used in
this equation so that 7 will be a positive quantity.
By inserting equations (3) and (4) into equation (2) we obtain

ohjet = a—V o O[h{—(pgh/7o)(8h[ex) }™]/[ox. (5)
Equations (2) and (5) may be integrated with respect to x at any given instant in time:
iy = ] BT | (2 e
Wl = Loh( e B = a— dx. (6a)
This equation can be rewritten as
eh L[ en)  Tum
o — —pgh'&'—x = To I:I’v—DhJ‘(a_CT)d{I A (Gb)

u

Consider now the perfectly plastic case in which m is allowed to approach infinity. If the
values of @ and &h/8t are nonzero, the following conclusions are obvious:

P oh
I T = 79 when f (a—,d—[)dx > o, (7a)
X ' ah
I1. J‘(aéa—f)a'x = owhen 7 << 74 (7b)

el

(Except in unusual situations, this equation reduces to a = h[ct),
III. The right-hand side of equation (6a) can never have a negative value,

IV. Any state of an ice sheet for which 7 > 74 can last only an infinitesimally small length
of time.

We need consider only the two conditions given by equations (7a) and (7b). These
equations will be of great importance to our analysis, The nonequilibrium ice sheets in which
we are interested contain both accumulation and ablation areas. In order to understand the
behavior of these ice sheets it is instructive to consider first the simpler case of ice sheets which
contain only accumulation areas or only ablation areas.

GrOWING ICE SHEETS WHICH CONTAIN ONLY AN ACCUMULATION ZONE

Let us consider the case of an ice sheet which rests on a flat base. This ice sheet extends an
infinite distance in the horizontal direction. Suppose that there is no ablation zone on the ice
sheet. Suppose further that the rate of accumulation does not depend on the distance x but that
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accumulation occurs only on the ice sheet itself and not on the exposed, ice-free, ground. We
would expect that for this ice sheet equation (7a), which predicts that the shear stress at the
bed is equal to 7o, is valid. (If the shear stress at the bed of the ice sheet were less than To OVer
an extensive area, the ice in this region would be stagnant and not flow. From equation (7b)
it can be seen that in this stagnant area the ice thickness builds up at the rate chlct = a.
Eventually the ice thickness will become large enough to make the shear stress = equal 7,.)
From equation (4) we find that

peh h[ox = —7,, (8)
which integrates to h = H(1—x[L)} (9)
where H = (2L+¢/pg)t. (10)

In these equations, which were found first by Orowan, H is the thickness of the ice sheet at its
center and L is its half-width (Fig. 2).

Because there is no ablation area on the ice sheet the total volume of the sheet must
increase. It can be seen that for one half of an ice sheet, such as shown in Figure 2, the rate of
increase of volume per unit length is simply aL. (The unit length is measured in the direction
perpendicular to the plane of the drawing.) The total volume of ice per unit length of one

half of the ice sheet is
L B

£t 270\ 3
hdx—fH(I-—)dx:QLH:2(—)L‘. 11

5}

Thus the rate of change of the volume is equal to (2L o/pg)!dL/dt. If this expression is equated
to the rate of total accumulation it is found that

dL|dt = a(pgL[27o)t, (12)
which integrates to t = (2/a) (270/pg)}t (L —Lo}) (13)

where ¢ is the time required for an ice sheet of initial half-width L, to grow to a half-width L.
Figure 3 shows plots of accumulation rate versus the time required to build an ice sheet up to
a half-width L = 1,000 km. when L, <€ L. The value L = 1,000 km. is of the order of the
half-width of ice-age ice sheets. The curves of Figure 3 are calculated assuming 7, = 1 bar and
7o = 05 bar. (The former value gives H = 4-8 km. and the latter // = 3-4 km.)

SHRINKING [CE SHEETS WHICH CONTAIN ONLY AN ABLATION ZONE

Suppose now that the supply of ice producing accumulation on the growing ice sheet of
the previous problem is turned off and instead there is ablation over the entire surface. A
volume of ice aL, where a has a negative value, is now removed from the glacier,

The rate of shrinkage of the ice sheet cannot be found simply by reversing the analysis of
the previous section. In that situation, because of accumulation, the ice sheet would maintain
a profile such that the shear stress at the bottom is —pgh dh/dx = 74. It is clear that in the
present case, if ablation should initially decrease the thickness slightly whereas the slope
0h[/0x remained almost the same, the shear stress at the bottom initially would be less than 7.
Thus, we are dealing with equation (7b) rather than (7a). The rate of change of ice thickness
is equal to the ablation rate. The following expression describes the profile of an ice sheet of
initial half-width L, at a time ¢ after the start of ablation

h = H(1—/Lo)+at = [(2Lo7o/pg) (1—3[Lo)]}+at. (14)

Negative values of £ are disregarded. The half-width L of the glacier at any time ¢ can be found
by setting £ = o in equation (14). Thus L is

L = Lo—a*pgtilat,, (15)
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and the time required to reach a half-width L is
t = —(1/a) (270/pg)* (Lo—L)% (16)

Figure 3 shows a plot of the time required for the disappearance of an ice sheet of initial
half-width Lo = 1,000 km. at various ablation rates.
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Fig. 3. Double log plot of the growth or shrinkage time of an ice sheet of half-width L = 1,000 km. as a Sfunction of accumulation
or ablation rate. Solid lines : time required for build up; dashed lines: time vequired for disappearance. Eqguations (r3) and
(16) of the text were used to obtain these lines. The hatching indicales reasonable accumulation or ablation rates for growing
or shrinking ice sheets

COMMENTS ON THE PREVIOUS SECTIONS

The simple calculations of the two previous sections contain features worthy of comment.
It will be noted that, except for a factor of two, the equation giving the time required to build
up a large ice sheet from a small one is essentially the same as the equation giving the time
required for the disappearance of a large sheet. Thus, if the absolute values of the accumulation
rate during growth and the ablation rate during shrinkage are identical, the build-up time is
twice as long as the time required to eliminate the ice sheet. The physical cause of this
difference between growth and shrinkage times stems from the fact that during shrinkage the
ice is stagnant and does not flow. Thus, the widths of two ice sheets, each containing the same
total volume of ice but one growing and the other shrinking, would differ. As a result the rate
of volume change, which is equal to aL, also would differ.

Actually, accumulation rates on glaciers and ice sheets are expected to be smaller than
ablation rates because accumulation areas usually are larger than ablation areas. (In the case
of equilibrium glaciers and ice sheets the ratio of average accumulation rate to average abla-
tion rate is equal to the ratio of ablation area to accumulation area.) From this consideration
alone it would seem likely that the growth time of an ice-age ice sheet exceeds its shrinkage
time.
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From Figure 3 we can obtain some rough estimates of the time required to build up or
destroy a large ice sheet. The hatched areas in this figure indicate typical values for the
average accumulation rate on a growing ice sheet or the average ablation rate on a shrinking
ice sheet. (For example, consider accumulation and ablation data for the Greenland Ice
Sheet. The accumulation rate (Bauer, 1961) on the south-west part of the Greenland Ice
Sheet which drains into the Jakobshavns Isbre is about o ‘4 m.[yr. The ablation rate (Bauer,
1961) of the ablation zone of the Jakobshavns Isbrz is around 1-1 m./yr.) From this figure
it is seen that growth times range from 15,000 to 30,000 yr. and destruction times are of the
order of 2,000 to 4,000 yr. The magnitude of these values for the growth time is the same as
the extent in time of an ice age or a substage of one as judged by paleotemperatures of ocean
waters (Emiliani, 1958; Broecker and others, 1960; Ericson and others, 1961). (There is a
controversy (Donn and Smiley, 1963; Emiliani, 1963) about the chronology determined
from the deep-sea cores.) Likewise the calculated disappearance times are of the right order of
magnitude. The use of radio-carbon dating techniques has shown that the edge of the
Wisconsin Ice Sheet was in the Great Lakes region 10,000 to 11,000 B.p. Radio-carbon data of
Lee (1960) indicate that sometime between 7,000 and 8,000 B.p. the Hudson Bay area of
Canada became ice-free.

The calculations leading to Figure 3 are naive in that an ice sheet was permitted to contain
only an accumulation zone or an ablation zone. In the next section we shall present a more
refined caleulation which takes into account the presence of both types of zone, In addition,
the effect of the isostatic sinking of a large ice sheet into the Earth’s crust is considered.

Ice SHEET WITH BOTH ACCUMULATION AND ABLATION ZONES

We wish now to develop an analysis similar to one used previously in a study of ice-age ice
sheets (Weertman, 1961). Our analysis is based on Figure 4. Here is shown a cross section of
an idealized ice-age ice sheet which extends from the Arctic Ocean to the lower latitudes, Tt
is assumed that the land upon which the ice sheet is resting was flat before the ice age started.
Accumulation on an upper ice surface is assumed to occur only in those areas whose elevation
is above a “snow line” elevation hs. Ablation occurs on upper ice surfaces lying helow this
elevation. We shall now let a represent only the average accumulation rate in the accumulation
zone and we shall let & represent the average ablation rate in the ablation zone. Both a and @
are defined to be positive quantities. For simplicity we shall assume that the actual accumula-
tion or ablation rate at a particular point is equal to the average accumulation or ablation
rate. Also, for simplicity it is assumed that the snow-line elevation rises linearly with decreasing
latitude and is equal to zero at the northern edge of the ice sheet.*

We let hs be given by the expression

hs = S(Ln+%) (17)

where s is the slope of the snow line and L, is the width of the northern part of the ice sheet.
In Figure 4 the snow-line elevation is equal to the elevation of the ice surface at v — R, where
x is measured {rom the ice divide.

Growing ice sheet

If the ice sheet of Figure 4 is growing in size, clearly the ice within it is not stagnant. In this
case throughout both halves of the ice sheet condition (7a) is applicable, i.e. the shear stress at
the bed is equal to .

* This assumption is slightly different from that used in the previous analysis (Weertman, 1961). Formerly
we assumed that Ay is greater than zero at the northern edge. The previous assumption permitted the investigation
of small unstable equilibrium ice caps. The present one does not. In the present paper we are not interested in the
existence of small unstable ice caps and thus there is no need to require that As does not become equal to zero,
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Fig. 4. Idealized ice-age ice sheet in the Northern Hemisphere. The land surface was flat before isostatic sinking of ice. The
origin is taken below the position of maximum elevation. Accumulation occurs on any ice surface whose elevation is higher than
the snow line hs; ablation occurs on any ice surface below this elevation. The coordinate x represents a positive horizontal
distance in the southern half of the ice sheet, and the coordinale X represents a positive horizontal distance in the northern half
of the ice sheet

The shear stress at the bottom of the ice sheet is
1o = —pg(h+d)ch|ox (18)

(it will be assumed that isostatic sinking takes place instantaneously) where d is the depth of
isostatic sinking. In this equation £, which is defined in Figure 4, is substituted for x in the
northern half of the ice sheet. The depth d can be determined from the isostatic condition that

prd = p(h+d) (19)
where py is an average rock density. We shall take p/pr & §. Thus
d = hp[(pr—p) = th. (20)
Substitution of this last equation into equation (18) followed by integration gives
h = H(1—x[L)} (21)
s —p) ]t Ltg]?
where H = [2 Tolpr p)] = |:4 TO] (22)
PpPr§ 3rg

and where # is used for x in the northern half. The symbol L represents either Ly or L. Since
at the ice divide the elevation of the ice in each half must be the same, Ly = Ls = L.

The rate of growth of the ice sheet will be determined by the rate of growth of the southern
half of the ice sheet. This circumstance arises from the fact that the accumulation area of the
southern half is smaller than that of the northern half. The accumulation on the northern half
of the ice sheet which is in excess of the amount needed to keep pace with the growth rate of
the southern half can be eliminated by flow into ice shelves in the Arctic Ocean.

The distance R separating the accumulation area from the ablation area can be found by
equating equations (17) and (21). The following expression is obtained:

R = L(1—s*(L+R)*|H?). (23)

This equation can be solved for R. The analysis which follows is considerably simplified if only
limiting values of R are considered. A lower limit on R is found by setting R = L in the
right-hand side of this equation. For a growing ice sheet an upper limit on R can be set by
noting that when the ice sheet is in equilibrium, aR = a(L—R). For a growing ice sheet R
must lie between

L(1—4*L*|H?) < R < L[1 —s*L*(a+24)*/(a+a)*H")]. (24)
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It can be seen that if the ablation rate becomes large compared with the accumulation rate,
the two limits approach each other. In order to simplify the analysis we now make what we
believe is a reasonable assumption, namely, that the ablation rate is greater than twice the
accumulation rate. The right-hand limit of the inequalities (24) thus reduces to the approxi-
mate expression L(1 —gs*L*/H?).

Limits on the average accumulation rate a* over the whole area of the southern half of the
ice sheet can be found from the inequalities (24). The average accumulation rate is

a* = [aR—a(L—R)]/L = a—(a+a)Bs*L*|H* = a—(a+d) [SPgﬁsz]

T (25)

where 3 << B < 4. This equation would have a much more complicated form if the exact value
of R of equation (24) had been used. The simpler form of equation (25) is the justification for
the use of inequality (24). The equilibrium width of the ice sheet is determined by setting a*
equal to zero. The half-width L. of a stable equilibrium ice sheet is

o a To a
o |

pefs* (ata) ~ ¥ pgs (a+a)

Lges

ol

(26)

when 4 is at least twice as great as a.

If we set 7o equal to 1 bar and if; as in Weertman (1961), we assign to s the value 105, we
find that the equilibrium half-width Le is equal to 1,000 km. when d is approximately three
times as great as a.

The rate of growth of the ice sheet can be calculated by the method of a previous section.
The rate of volume addition to the southern half of the ice sheet is a*L. The total volume of
the southern half is 2p,LH|3(pr—p) ~ LH. The rate of volume change of this expression is
¢(LH)[ét = 3L7o/pg)*éL[dt. Equating the two volume changes results in

dL _ [a—(at2)(3peBeLlaro) 1L

= - (2
z 3L7olpg)’ 7)
When integrated this equation gives
Lb = LA[{—1-+exp (o) {1 +exp (tfto)}] = Let tanh(tjato) (28)

where L, is given by equation (26) and

to = (270/pgs)/[Bala+a)]t = (7o/pgs)/[ala+a)]t = (1/a)(37oLe/pg)t.  (29)

The quantity ¢, is a measure of the time required by an ice sheet to reach half its equili-
brium size. In a time 2t = (2/a)(370Le/pg)t the ice sheet will attain close to its equilibrium
value. If this last expression is compared with equation (13) it will be seen that this time is
almost the same as that previously calculated by the simple method. * Thus Figure 5 still gives
a good estimate of the time required to form a large ice sheet. The reader should note that in
the last expression on the right-hand side of equation (29) both the ablation rate and the rate
of rise of the snow line very conveniently have dropped out. Therelore these quantities do not
complicate the estimate of the build-up time. The physical reason behind the observation that
the build-up time of equation (29) is almost the same as that found from the simple calculation
is the fact that when the ice sheet is small its ablation area is negligible compared to its
accumulation area. Only when the ice sheet nears equilibrium size is the effect of ablation
sufficient to slow down the growth rate,

* The agreement between the two times is even closer if isostatic sinking also oceurs in the simple method .
The factor (270/pg)! of equation (13) is replaced by (374/pg)? for the isostatic situation.
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Since the time interval required for growth is relatively long, the assumption that during
growth the ice sheet is always in isostatic balance is reasonable.

RATE OF SHRINKAGE

Suppose that the ice sheet of the last section has reached its equilibrium width. Suppose
further that for some reason either the accumulation or the ablation rate, or the rate of rise
of the snow line, or any combination of these quantities changes in such a direction that the
equilibrium width given by equation (26) must decrease. The calculation of the rate of
shrinkage of the ice sheet is now much more complicated than in the simpler case already
considered. In the previous situation the whole ice sheet was stagnant during shrinkage,
whereas now only a part of the ice sheet will be stagnant.

Figure 5 shows schematically a shrinking ice sheet. In this figure the half-width Ls of the

Ln
ARCTIC S
OCEAN -;
ACTIVE ICE | STAGNANT _|
| ICE

Fig. 5. Idealized ice-age ice sheel which is shrinking. The position S separates stagnant from active ice

southern half of the ice sheet is not equal to the half-width L, of the northern half. The
snow-line elevation curve is shown to intersect the upper surface in the southern half of the ice
sheet. Tt is of course possible for it to intersect the upper surface in the northern half. We shall
not consider this latter situation since it is similar to that previously studied.

The location s in Figure 5 represents the point of separation of the stagnant ice from the
active ice a horizontal distance S from the ice divide. Between x = 0 and x = § the profile of
the upper surface of the southern half of the ice sheet is the mirror image of the profile of the
northern half. This similarity in profiles follows from the requirement that the ice thickness at
x = ¥ = o must be the same in both halves. The dashed curve shows what would be the
profile of the remainder of the southern half if no stagnant ice were present.

In the stagnant region the rate of change of the ice surface is

a(h+d) ot = —a. (30)

This equation will hold for all values of x equal to or greater than §. The ice thickness (k+d)
at x = § obtained from equations (20), (21) and (22) is

h+d =~ (370/pg)! (Ln—S)L (31)
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If this equation is substituted into equation (30) and S'is held constant, the following expression
is obtained for the rate of change of Ly:

eLnfot = —2a(pg/37o)t (La—S)". (32)

As expected, this rate of change approaches zero as Ly, S, and Lg approach the same value.
In the region in which ice is active, 0 << x <C S, the fulfillment of the condition of conserva-
tion of mass requires that the following equation be valid:

a(h+d
f % dx = aR—a(S—R). (33)

0

If equations (20), (21) and (22) are substituted into the left-hand side of this equation, and .§
again is held constant, we find that

(370/pg)* [Ln*—(Ln—58)*](6Ln/dt) = aR—a(S—R). (34)
With the use of equation (32) this last equation reduces to
2a[(Ln—$) —La(La—S)!] = aR—a(S—R), (359)
which can be reduced further to
(Ln—39)* = Lpt—(a+a)iRY at, (35b)
Placing equation (35b) into equation (32) gives
OLnfot = —2d(pg/37o)* [Ln}—(a+a)iRY/at]. (36)

If now equation (23) is solved for R in terms of Ly and this solution is placed into equation (36),
a differential equation in Ly is obtained whose solution gives the time dependence of Ly, in
other words the solution of our problem.

The exact solution of equations (36) and (23) obviously will be a rather complicated
expression relating L, with time. However, without developing the exact solution, it is
possible to obtain from these equations recasonable estimates of the time required to reach a
new equilibrium profile. We now consider two cases of shrinking ice sheets. In one case the
sirinkage of the ice sheet is due primarily to a rise in the elevation of the snow line, that is, to
an increase in 5. In the other case, the shrinkage results from an increase in the ablation rate
and a decrease in the accumulation rate.

INcREASED ELEVATION OF THE SNow LINE

If for some reason the snow-line elevation is raised while the accumulation and ablation
rate remain constant, the effect is to reduce the distance R shown in Figures 4 and 5. Suppose
that the increase in snow-line elevation is large enough that the new equilibrium size of the ice
sheet is appreciably smaller than the original. Under these conditions the term (a-+a)!R!/a
of equation (36) will be considerably smaller than L,! immediately after the change in the
snow-line elevation and, moreover, it will remain considerably smaller until the new profile is
approached. Over most of the time interval when the ice sheet is shrinking, equation (36)
approximates the equation

OLnjot = —2ad(pg370) Lo, (37)

whose solution is

t = (1/a)(370/pg)*(Let —Ln?) (38)
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where L. is the original half-width of the ice sheet. This equation is almost the same as
equation (16), which gives the shrinkage time of an ice sheet containing no accumulation.
(The chief difference between the two expressions for the time is that one contains the factor
3} and the other the factor 2!, This difference, as pointed out earlier, arises from the fact that
one calculation considered isostatic sinking and the other did not.) Thus Figure g still presents
a good estimate of the shrinkage time of a large ice sheet. This time is relatively short compared
with the growth time. The shrinkage time of equation (38) is essentially the same as that
previously calculated because of the assumption that the snow-line elevation was raised
sufficiently high to reduce substantially the value of R on an ice sheet previously in equili-
brium. * This assumption is equivalent to the assumption that the ratio of ablation area to
accumulation area has been substantially increased.

INCREASED ABLATION AND DECREASED ACCUMULATION RATES
Suppose that the shrinkage of an ice sheet is induced, not by an increase in the snow-line
elevation, but rather through a decrease in the accumulation rate and an increase in the
ablation rate. If again we assume that the ablation rate is at least twice the accumulation rate,
both before and after the change in rates, we can make use of the fact that R is approximately
equal to L. A better approximation for R, found by letting R = L in the right-hand side of
equation (23), is
R =~ Ly(1 —45*Lp*[H?) = Ln(1—35°pgln/70) (39a)
and
Rt = Lpi(1—3s*pgln/27o). 39b)
The substitution of equation (39b) into equation (36) gives
GLof6t = —2d(pg/37o) Lt (1+al@) (35 pg[270) Ln—(1+a/ @)} +1], (40)

which can be rewritten as

OLypjot = —a(1+ald)t 33(pg/7 o)t L} (Ln—Le) (g41)
where L, is the new equilibrium half-width and is given by
Le = [(1+ala)t—1](1+afa)~}(270/35°p8)- (42)

The solution of equation (41) is

~ [+ Adexp (—tjto)
L¥— ol [1-—A i (—f/fo)] (43)
where
4= (I~ei*£eé)/(1‘e’}*‘rﬁe'—")
and

1/to = da(1+ala)tst(pg/ 7o) lels’
We are interested in the situation in which the old equilibrium width Le is much greater

than the new width Ls. When Le » Le equation (43) reduces to

Eob = L 14exp (—t/to) ]
m =R | T exp (—tjto) +2(Lo*/Let) exp (—tlto) ]

(442)

* If the isostatic rise does not keep pace with a shrinking ice sheet the shrinkage rate will be increased since a
lag is equivalent to raising the snow-line elevation.
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For t <2 t, this equation becomes
Lyt = Lot/ (1+4tLe}{toLet). (44b)

From equation (44b) we find that the time required to reduce the old equilibrium half-width
Le by a factor f (Ly = L¢/f = L) is equal to

t = to(ft—1)Led|Leh. (45a)
Through the use of equations (26) and (43) this equation reduces to

(f*—l)(IJrff*fd*)(SToLe )é
a(1+ala)t pg

i = (45b)

where a* and @* are the original values of the accumulation and ablation rates.

The shrinkage time given by equation (45b) is considerably longer than that given by
equation (16). For example, if f = 4, a*/a* = 2, and the ablation rates are the same, the new
shrinkage time is approximately three times longer. The reason for this increase in shrinkage
time is obvious. In the previous examples of shrinkage the ablation area was large compared
to the accumulation area. In the present example this is not the case. Thus, even with a large
ablation rate the net ablation over the whole surface of the ice sheet can be relatively small, a
situation which results in slower shrinkage rates. However, a change in the ablation rate
obviously would affect the elevation of the snow line. An increase in ablation rate goes hand in
hand with an increase in the snow-line elevation.

SUMMARY

The results of the analysis presented in this paper can be summarized as follows. The time
required to build up an ice-age ice sheet is of the order of 15,000 to 30,000 yr. if the accumula-
tion rate over the ice sheet is in the range of 0+ 2 to 0-6 m./yr. Although there is no way known
of obtaining paleo-accumulation rates, it can be argued that these rates are reasonable, in
light of what is known about accumulation on the Greenland Ice Sheet. A period of time of
the range of 15,000 to 30,000 yr. is of the order of the duration of an ice age or a substage of an
ice age. The possibility arises, therefore, that the build-up of an ice sheet indeed may trigger
off the mechanism which causes the ultimate destruction or temporary recession of the ice
sheet. If such is the case, this result would favor an ice-age theory, such as that proposed by
Ewing and Donn, which depends on a triggering action.

It has been shown in this paper that the time required for the disappearance of an ice-age
ice sheet is smaller than the build-up time provided that the average ablation rate is at least
twice the average accumulation rate and that ablation occurs over an appreciable area during
shrinkage. The rapid disappearance of the last ice-age ice sheets can be understood on the
basis of these results.

All the calculations were carried out on the basis of the theory of perfect plasticity, Clearly
it would be desirable to repeat these calculations using Glen’s creep law. Such a calculation
probably would yield valuable information on possible pulsations in the dimensions of an ice
sheet, both during its growth and its retreat. We doubt that the refined calculation would lead
to an appreciable alteration in the build-up and shrinkage times found in this paper. Since
paleo-accumulation and ablation rates are not known, any small differences between the
results of a refined calculation and the rough analysis of the present paper would be of little
significance.

MS. received 10 September 1963
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