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tinct, nonconstant rational functions gðtÞ and hðtÞ, the equality f ðgðtÞÞ ¼ f ðhðtÞÞ holds. This

extends former results of Tverberg, and is a contribution to the more general question of
determining the polynomials f ðX Þ over a number field K such that f ðX Þ � l has at least
two distinct K-rational roots for infinitely many l 2 K.
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1. Introduction

In this paper the following classification problem is solved.

PROBLEM 1.1. Determine all the polynomials f ðX Þ 2 C½X � such that there exist

two distinct rational functions gðtÞ; hðtÞ 2 CðtÞnC with

f ðgðtÞÞ ¼ f ðhðtÞÞ:

This is equivalent to asking for which f ðX Þ the polynomial

Ff ðX;Y Þ :¼
f ðX Þ � f ðY Þ

X� Y

has an absolutely irreducible factor whose associate curve has genus zero: such a

factor will be in this paper always called a genus zero factor.

A more general question is that of determining the polynomials f over a number

field K such that f ðX Þ � l has at least two K-rational roots for infinitely many l 2 K.

If these conditions are satisfied, then Ff ðX;Y Þ has a factor of genus at most one by

Faltings’ establishment of the Mordell Conjecture [Fa]. In this light, the present

paper may be regarded as a contribution to this problem.

Some problems akin to ours have already been solved. They deal with particular

cases of the question of determining all the pairs f, g of polynomials over a number
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field K, such that their image sets over K have infinite intersection. Again, a factor of

f ðX Þ � gðY Þ must have genus zero or one. Necessary conditions for this to happen

under the assumption ðdegð f Þ; degðgÞÞ ¼ 1 are given in [R] for the genus zero case

(see also [Z1]), and in [AZ] for the genus one case. The question regarding the inter-

section of the value sets of f and g over the ring of integers of K has been fully

answered by Bilu and Tichy [BT].

Helge Tverberg determined in [Tv, Ch. 2] the polynomials Ff ðX;Y Þ over C with a

linear or quadratic factor under the assumption that f is indecomposable (that is, f

cannot be written as a composition of two polynomials of degree larger than 1).

His result is that f is essentially a cyclic (i.e. of the form tn) or a Chebyshev polynomial

(see Section 2.2 below for a review of known facts about such polynomials). Similarly,

Yuri Bilu [B] determined all the polynomials f ðX Þ � gðY Þ with a quadratic factor.

Our Theorems 1 and 2 below represent a twofold extension of Tverberg’s result:

First, we impose a much weaker condition on the factor and, second, we remove

the assumption that f is indecomposable. Theorem 1 deals with the polynomials

Ff ðX;Y Þ. We solve first the case where f is indecomposable (Proposition 4.1),

then we turn to the general case. Now if f ¼ SðX Þ
r then Ff ðX;Y Þ has factors of the

form SðX Þ � c SðY Þ, where c 6¼ 1 is a root of unity. We must solve the two

problems of their reducibility (the case of indecomposable S suffices, and is done in

Theorem 3) and of their classification under the assumption they have a genus zero

factor. We need only the case where c is a root of unity, but it does no harm to work

under the more general assumption c2Cnf0; 1g. This is done in Theorem 2.

Moreover, we determine also the solutions X ¼ gðtÞ and Y ¼ hðtÞ to the equation

f ðX Þ ¼ c f ðY Þ (in both cases where c ¼ 1 and c 6¼ 1): It will be clear upon reading the

statements of Theorems 1 and 2 that it will both suffice and save space to write the

solutions with g 6¼ h and for the case of f indecomposable only. (They are given in

Propositions 4.7 and 5.6.)

A noteworthy application of the polynomials Ff ðX;Y Þ is found in Fried’s work

[Fr1] on the Conjecture of Schur. We use many tools developed by him, in particular

Proposition 2.4 below.

Before stating our results, let us spend a word on the notation used. The poly-

nomials P1; . . . ;P6 are given later in Definition 2.1: There are polynomials of type

P1 of degree n for any integer n5 3, whereas the degrees of P2; . . . ;P6 are fixed.

The cyclic polynomial of degree n is denoted by ZnðtÞ, and Tn denotes the Chebyshev

polynomial of degree n.

THEOREM 1. Let f ðtÞ 2 C½t�. The polynomial Ff ðX;Y Þ has a genus zero factor if

and only if there exist a polynomial A 2 C½t� and a linear polynomial M 2 C½t� such

that one of the following cases occur:

ð1Þ f ¼ A � Zm � S where m > 2, and S 2 C½t� is such that SðX Þ � zSðY Þ has a genus

zero factor for some mth root of unity z 6¼ 1.

ð2Þ f ¼ A � Tn �M with n > 2.
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ð3Þ f ¼ A � P1 �M with degðP1Þ5 4.

ð4Þ f ¼ A � P2 �M.

ð5Þ f ¼ A � P3 �M.

In the case ð1Þ if PðX;Y Þ is a genus zero factor of Ff ðX;Y Þ there is a unique mth root

of unity z 6¼ 1 such that PðX;Y Þ divides SðX Þ � zSðY Þ. Theorem 2 below characterises

such z and S.

Theorem 1 is completely explicit in the case where f is indecomposable. In this case

A and S are linear. In other words, f is linearly related to one of Zn, Tn, P1, P2 or P3

according to the following definition.

DEFINITION 1.2. Two polynomials f; g 2 C½t� are said to be linearly related

(abbreviated: l.r.) if there exist two nonconstant linear polynomials ‘1 and ‘2 such

that g ¼ ‘2 � f � ‘1.

THEOREM 2. Let f ðtÞ 2 C½t� and c 2 C n f0; 1g. The polynomial f ðX Þ � cf ðY Þ has a

genus zero factor if and only if either f is linear or we can find a decomposition

f ¼ f0 � f1, where f0 is an indecomposable polynomial of degree n > 1, such that at least

one of the following statements holds.

ð1Þ f0 ¼ aZn ðn a primeÞ and f1 is such that f1ðX Þ � z f1ðY Þ has a genus zero factor for

some nth root of unity z 2 C.

ð2Þ f0 ¼ aTn ðn a primeÞ. If c 6¼ �1, then n ¼ 2 and f1 is linear. If c ¼ �1, then either

f ¼ aTdegð f Þ �M for a linear polynomial M or n > 2 and f1ðX Þ þ f1ðY Þ has a genus

zero factor.

ð3Þ f0 ¼ trgðtd Þ which is not linearly related to a cyclic or a Chebyshev polynomial

where g is a nonconstant polynomial with gð0Þ 6¼ 0 and r; d are coprime integers

with r > 0 and d5 2; Also, c is a dth root of unity and f1ðX Þ � cr
0

f1ðY Þ has a genus

zero factor where r0 is an integer satisfying rr0 � 1 ðmod d Þ.

ð4Þ f0 ¼ aP1 with c 6¼ 1 and f1 is linear.

ð5Þ f0 ¼ aðT3 þ d Þ where d 2 Cnf0;�2g, with

c ¼
dþ 2

d� 2
or c ¼

d� 2

dþ 2
;

and f1 is linear.

ð6Þ f0 ¼ aP4 with c ¼ �1 and f1 is linear.

ð7Þ f0 ¼ aP5 with c ¼ o or o2 and f1 is linear.

ð8Þ f0 ¼ aP6 with c ¼ �1 and f1 is linear.

Suppose PðX;Y Þ is a genus zero factor of f ðX Þ � cf ðY Þ. In the case ð1Þ, PðX;Y Þ

divides f1ðX Þ � z f1ðY Þ for a unique nth root of unity z 2 C. In the case ð2Þ with

c ¼ �1 and f 6¼ aTdegð f Þ �M, n > 2 the polynomial PðX;Y Þ divides f1ðX Þ þ f1ðY Þ

but not f ðX Þ þ f ðY Þ=f1ðX Þ þ f1ðY Þ. In the case ð3Þ, PðX;Y Þ divides f1ðX Þ � cr
0

f1ðY Þ.
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Let us consider case (1) of Theorem 1 and suppose S is not linear. We may apply

Theorem 2 below with S in place of f: the result is that there is a decomposition

S ¼ f0 � f1 where f0 is an explicitly given indecomposable polynomial and f1 also

satisfies the assumptions of Theorem 2. Repeated application of Theorem 2 thus

gives a functional decomposition of S, which, by Ritt’s theory, is essentially unique

(see for example [To]).

Consider now the polynomials of Theorem 2(3). It is an easy fact that f ðtÞ ¼ trgðtdÞ

if and only if f ðtÞ satisfies an equation f ðztÞ ¼ cf ðtÞ where clearly c ¼ zdegð f Þ
¼ zr and

z is a dth root of unity. Such a polynomial is not necessarily indecomposable, but all

its composition factors are of the same type: this is easily seen by the argument of

[Z2, Lemma 6].

THEOREM 3. Let f 2 C½t� be indecomposable and such that f ðX Þ � cf ðY Þ � c0,

where c 2 C
� and c0 2 C, is reducible. If c ¼ 1, then c0 ¼ 0. If c 6¼ 1, we may

replace f ðtÞ by f ðtÞ þ c0=ð1 � cÞ to assume c0 ¼ 0. Then we fall into one of the

following cases.

ð1Þ f ðtÞ ¼ aðtþ bÞn. For some a 2 C
�, b 2 C. Now c can be any complex number.

ð2Þ f ðtÞ ¼ aTnðtþ bÞ ðwith n an odd primeÞ for some a 2 C
�, b 2 C. Now c ¼ �1.

ð3Þ f ðtÞ ¼ ðtþ bÞrgððtþ bÞdÞ for some b 2 C, for some coprime integers r > 0, d5 2

and some nonconstant g 2 C½t�. Also, c must be a dth root of 1.

It is worth observing that in all three cases of the above theorem the poly-

nomial f ðX Þ � cf ðY Þ is indeed reducible. To show this, observe that

degð f Þ > 1. Case (1) is trivial, and the factorisation in case (2) is well known

(see Proposition 2.2 below). In case (3) assume b ¼ 0 for simplicity: Since

f ðzX Þ ¼ cf ðX Þ where c ¼ zr 6¼ 1 for a suitable dth root of unity z, we see at once

that X� zY divides f ðX Þ � cf ðY Þ.

We shall deduce Theorem 3 from a property of certain automorphisms of

permutation groups for which we have found no reference: as far as we know this

is a new result. We state it separately.

THEOREM 4. Let G be a doubly transitive subgroup of Sn ðthe symmetric group on

n lettersÞ containing an n-cycle g and let f be an automorphism of G fixing g. Denote

by Gi the stabiliser of i in G. Then either fðG1Þ is transitive or f is induced by a

conjugation in Sn.

It is possible to derive this result as a consequence of the Classification of the

Finite Simple Groups (CFSG). However, we think it is worthwhile to provide

CFSG-free proofs whenever possible. The combination of techniques used in our

proof also seems to be new.

In Section 2 we shall set up some definitions, and summarize the relevant material

on Chebyshev polynomials and a genus formula. Section 3 is devoted to the study of

the reducibility of polynomials of the form f ðX Þ � cf ðY Þ � c0 (Theorems 3 and 4),
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necessary in the proofs of our first two theorems, which are presented in the last two

sections.

2. Auxiliary Definitions and Results

2.1. THE SPORADIC POLYNOMIALS

We now define the polynomials P1; . . . ;P6. As usual, o denotes a fixed primitive

cubic root of unity.

DEFINITION 2.1.

P1ðtÞ ¼ P1ðt; l;mÞ :¼ tlðtþ 1Þm with l and m coprime and lþm5 3:

P2ðtÞ ¼ P2ðt; a; bÞ :¼ tðtþ aÞ2ðtþ bÞ2; where a; b 2 C
� satisfy the equation

9a2 � 2abþ 9b2 ¼ 0:

P3ðtÞ ¼ P3ðt;a;bÞ :¼ tðtþ aÞ3ðtþ bÞ3; wherea;b 2 C
� satisfya2 � 5abþ 8b2 ¼ 0:

P4ðtÞ ¼ P4ðt; a; bÞ :¼ t4 � 4
3 ðaþ bÞt3 þ 2abt2; where a; b 2 C

� satisfy

a2 � xabþ b2 ¼ 0 with x2
� 2xþ 2 ¼ 0:

P5ðtÞ ¼ P5ðt; a; bÞ :¼ t4 � 4
3 ðaþ bÞt3 þ 2abt2 þ 1; where

ðaþ �ooÞ3 þ 2 ¼ 0 and bþ 1 ¼ ð1 � aÞo:

P6ðtÞ ¼ P6ðt; a; bÞ :¼ tðtþ aÞ2ðtþ bÞ2; where a; b 2 C
� satisfy

a2 �
22 þ 5x

9
abþ b2 ¼ 0 and x2

þ xþ 4 ¼ 0:

These polynomials define covers of the Riemann Sphere ramified over at most four

points, as it will be clear from the proofs. Some of them have been already been

found independently while investigating three points ramified covers: For example,

Birch gives in [Schn, Page 41] the polynomial t3ðt2 þ 5tþ 40Þ ¼ ðt� 3Þðt2 þ 4tþ 24Þ2

þ1728, which is l.r. to P2ðtÞ. His ðtþ 3Þ3ðt� 2Þ2 ¼ t2ðt3 þ 5t2 � 5t� 45Þþ 108 is l.r.

to P1ðt; 3; 2Þ.

2.2. CHEBYSHEV POLYNOMIALS

Following [Sch1] we define the normalised Chebyshev polynomials TdðX Þ by

T0ðX Þ ¼ 2; T1ðX Þ ¼ X; Tdþ1ðX Þ ¼ XTdðX Þ � Td�1ðX Þ:

They are precisely the polynomials such that

Tdðzþ z�1Þ ¼ zd þ z�d:

They also satisfy the relation Td � Te ¼ Tde ¼ Te � Td.
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PROPOSITION 2.2. The polynomials TnðX Þ � TnðY Þ split into factors of degree at

most two. More precisely, if we define

Un;kðX;Y Þ ¼ X2 � 2XY cosðpk=nÞ þ Y2 � 4 sin2
ðpk=nÞ;

CnðX;Y Þ ¼ ðX� Y Þ
Y

14k4n�1
2

Un;kðX;Y Þ ð1Þ

and

FnðX;Y Þ ¼
Y

14k< n
k�1 ðmod 2Þ

Un;kðX;Y Þ; ð2Þ

then

TnðX Þ � TnðY Þ ¼
ðXþ Y ÞCnðX;Y Þ if n is even,
CnðX;Y Þ if n is odd;

�
ð3Þ

and

TnðX Þ þ TnðY Þ ¼
FnðX;Y Þ if n is even,
ðXþ Y ÞFnðX;Y Þ if n is odd.

�
ð4Þ

The factors in the right-hand side of ð1Þ and of ð2Þ are absolutely irreducible.

We do not know the first instances of these formulae. A proof of (3) can be found

in [Sch2]. Formula (4), which is an easy corollary of (3), is in [DLS].

PROPOSITION 2.3 ð½Sch 1;Lemma 9 on page 26�Þ: Let K be a field. The equation

ðQðtÞ � q1ÞðQðtÞ � q2Þ ¼ ðt� x1Þðt� x2ÞR
2ðtÞ

with q1, q2, x1, x2 2 K, q1 6¼ q2, x1 6¼ x2 and Q;R 2 K ½t� implies QðtÞ ¼ L�

TdegðQÞ �M
�1, where

LðtÞ ¼ �
ðq1 � q2Þ

4
tþ

ðq1 þ q2Þ

2
and MðtÞ ¼

ðx1 � x2Þ

4
tþ

ðx1 þ x2Þ

2
:

PROPOSITION 2.4 ([Fr1, Theorem 1]). Let f ðX Þ 2 C½X � be an indecomposable

polynomial. If f ðX Þ is not linearly related to a cyclic or a Chebyshev polynomial, then

ðf ðX Þ � f ðY ÞÞ=ðX� YÞ is absolutely irreducible.

2.3. THE GENUS FORMULA

A rational function f ðtÞ 2 CðtÞ is viewed as a map from P
1 :¼ P

1
ðCÞ to itself, and

expressions like f ð1Þ and f ðt0Þ ¼ 1 are allowed.

Write f ¼ f1=f2 where f1 and f2 are coprime polynomials. The degree of f is defined

as maxfdegð f1Þ; degð f2Þg. The degree so defined is multiplicative with respect to

composition.

For any f ðtÞ 2 CðtÞ let Of denote the splitting field of f ðtÞ � Z in a fixed algebraic

closure of CðZ Þ (if we write f ¼ f1=f2 as above, Of is the splitting field of f1ðtÞ � f2ðtÞZ).
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For any extension O=CðZ Þ, an infinite place of O is a place lying above the place of

CðZ Þ corresponding to Z ¼ 1 (which is the infinite place of CðZ Þ).

DEFINITION 2.5. For f ðX Þ 2 CðX Þ and l 2 P
1 let hðlÞ be the number of the

distinct roots of f ðX Þ � l, and r1ðlÞ; . . . ; rhðlÞ, with h ¼ hðlÞ, be their multiplicities.

Let mðlÞ ¼ mf ðlÞ be the number of simple roots of f ðtÞ � l?.

For gðY Þ 2 CðY Þ, consider gðY Þ � l and define kðlÞ and s1ðlÞ; . . . ; skðlÞ, k ¼ kðlÞ
in an analogous way.

PROPOSITION 2.6 ([Fr3, Proposition 2]). Let f ðtÞ; gðtÞ 2 CðtÞ and define the

numbers hðlÞ, kðlÞ riðlÞ and sjðlÞ as in 2:5 for all l 2 P
1 :¼ P

1
ðCÞ.

If f ðX Þ � gðY Þ is irreducible, then it defines a curve of genus g, where

2 ðdegð f Þ þ g� 1Þ ¼
X
l2P

1

XhðlÞ
i¼1

XkðlÞ
j¼1

riðlÞ � ðriðlÞ; sjðlÞÞ
� �

: ð5Þ

If ðf ðX Þ � f ðY ÞÞ=ðX� YÞ is irreducible then it defines a curve of genus g, where

2 ðdegð f Þ þ g� 2Þ ¼
X
l2P

1

XhðlÞ
i¼1

XhðlÞ
j¼1

riðlÞ � ðriðlÞ; rjðlÞÞ
� �

: ð6Þ

DEFINITION 2.7. Let f ðtÞ be a polynomial. We call l a special point for f if and

only if mf ðlÞ < n (i.e. if f ðtÞ � l has a multiple root). We denote by Lð f Þ the set of

the special points of f.

The special points of f are precisely the finite branch points of the cover P
1
!P

1

given by X 7!� f ðX Þ. Then formula (5) gives the genus of the fibred product of the

covers f and g.

3. Reducibility of f ðX Þ � cf ðY Þ � c0

In this Section we shall give proofs of Theorems 3 and 4.

Davenport, Lewis and Schinzel [DLS] posed the general problem of the reducibil-

ity of arbitrary polynomials f ðX Þ � gðY Þ. Fried [Fr2] solved the case where at least

one of f, g is indecomposable, assuming a conjecture in group theory which has been

later proved a consequence of the CFSG: Cassou-Noguès and Couveignes [CC]

make Fried’s results in some sense more explicit and review the required tools.

The general case when f and g are not indecomposable is still open.

As already mentioned, the case that interests us can be solved without resorting to

CFSG, the crucial step being provided by Theorem 4.

?We include notationally the case l ¼ 1, where we formally replace f ðtÞ � l by f ðtÞ�1, i.e. consider

the poles of f ðX Þ.
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Proof of Theorem 4. We may assume n5 3. Suppose that fðG1Þ is intransitive.

We have to prove that f is induced by a conjugation in Sn.

The proof is divided in two parts. In the first part, we shall consider the natural

representation r of G in GLnðCÞ: We shall show that r and r � f are isomorphic,

i.e. there exists a matrix M such that MrðgÞM�1 ¼ rðfðgÞÞ for all g in G. We also find

a matrix N closely related to M and of finite order. In the second part we shall use the

eigenvalues of N to construct relations involving roots of unity, to which we shall

apply certain arithmetical considerations to deduce that M can be replaced by a

permutation matrix (i.e. the conclusion of the theorem).

Part 1 : permutation representations and matrix action. We may assume that G acts

on O :¼ f1; 2; . . . ; ng, which we identify with Z=nZ, and that g is the cycle

ð1; 2; . . . ; nÞ. We shall use simple facts from the theory of linear representation of

finite groups, for which we refer to [Se].

We consider the representation r of G in GLnðCÞ associated to the action of G on

O: If e1; . . . ; en is the canonical basis of C
n, we define rðgÞ, for g 2 G, to be the linear

map sending ei to egðiÞ. It is well known (see, e.g. [Se, Section 2.4, Exercise 2.6]) that r
is the sum of two irreducible representations. One is the unit representation and the

corresponding space U is one dimensional generated by v1 :¼
P

ei. The other one is

a degree n� 1 representation r1: The corresponding space consists of the vectors

whose coordinates in the basis feig sum up to zero and a basis for it is given by

the vectors vj :¼ e1 � ej for 24 j4 n.

Denote by H the orbit of 1 2 O under fðG1Þ and define Hþ t :¼ fxþ t : x 2 Hg.

We can assume without loss of generality that 1 belongs to a smallest orbit of

fðG1Þ on O, so h :¼ #H4 n=2.

Let r� :¼ r � f. We proceed to show that r and r� are isomorphic representations.

Define e�t ¼
P

x2Hþðt�1Þ ex for 14 t4 n. If g 2 G and gs ¼ t, then we can write

g ¼ gt�1g1g�ðs�1Þ with g1 2 G1, which shows that fðgÞðHþ ðs� 1ÞÞ ¼ Hþ ðt� 1Þ.

Therefore the sets Hþ t form one G-orbit. Equivalently, the vectors fe�t g are conju-

gate under the action of rðGÞ. They span a rðGÞ-invariant subspace of C
n of dimen-

sion larger than 1 (since we assumed fðG1Þ intransitive, we may find t such that

1 62 Hþ ðt� 1Þ: thus e�1 and e�t are linearly independent) and containing U, therefore

they span the whole space and are linearly independent.

Moreover if rðgÞes ¼ et then r�ðgÞe�s ¼ e�t , implying that the representation r� is

obtained from r by a change of representation module. In particular

MrðgÞM�1 ¼ r�ðgÞ ¼ rðfðgÞÞ for all g 2 G; ð7Þ

where M is the basis change matrix from the basis fe�i g to the basis feig, whose

column vectors are the coordinates of the e�i with respect to the basis feig. It is a

so-called circulant matrix. (A matrix is called circulant if, for each column vector

ð y0; y1; . . . ; yn�1Þ
t the next column at its right is given by ð yn�1; y0; . . . ; yn�2Þ

t.) Each

of its entries are either 0 or 1.
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We note at once that if h ¼ 1, then M is a permutation matrix and thus f is

induced by a conjugation by a suitable power of g: it suffices to look at the position

of the unique entry 1 in each of the columns.

Therefore we shall suppose from now on that h5 2 and derive a contradiction.

Let f have order r. Then, by (7), MrrðgÞM�r ¼ rðfr
ðgÞÞ ¼ rðgÞ for g 2 G, so Mr

lies in the centraliser C of rðGÞ in GLnðCÞ.

In view of the above decomposition of r, C is conjugate to the group D of diagonal

n� n nonsingular matrices of the form diagðc; d; . . . ; d Þ. (This follows from the

irreducibility of r1, taking into account e.g. Schur’s Lemma [Se, Section 2.2, Prop.

4].) In fact D ¼ X�1CX where X is the basis change matrix whose column vectors

are the coordinates of v1; v2; . . . ; vn with respect to the canonical basis feig. It follows

that the elements of C have the form aIþ bJ where J is the matrix whose entries are

all equal to 1 (it suffices to verify that X diagðc; d; . . . ; d Þ ¼ ðdIþ ðc� dÞ=ðnÞJ ÞXÞ.

In particular Mr ¼ aIþ bJ for some a 2 C
�, b 2 C.

Consider the equation ð yMþ zJ Þr ¼ I for unknowns y 2 C
� and z 2 C. Using the

fact that JM ¼ MJ ¼ hJ and J2 ¼ nJ we see that

ð yMþ zJÞr ¼ ayrIþ byr þ
Xr
t¼1

r
t

� �
ð yhÞr�tnt�1zt

 !
J:

Fix any y0 such that yr0 ¼ 1=a and observe that the coefficient of J in the above

expansion, upon setting y ¼ y0, is a nonconstant polynomial in z, so it has a root

z0. Hence ð y0Mþ z0J Þ
r
¼ I. Put N :¼ y0Mþ z0J.

Now N is a circulant matrix such that Nr ¼ I whose entries take only two values,

namely z0 and y0 þ z0, the latter taken exactly h times in each column. It can be

proved that N acts on rðGÞ like M, i.e. that MrðgÞM�1 ¼ NrðgÞN�1 for all g 2 G.

As we shall not make use of this fact, its proof is omitted.

Part 2 : constructing relations among roots of unity. It is well known how to com-

pute the eigenvalues of a n� n circulant matrix, e.g. by noting that, for a primitive

nth root of unity y, the nonsingular matrix X :¼ ðyijÞn�1
i; j¼0 diagonalises it. The result is

that the eigenvalues of a circulant matrix whose first column is the vector

ð y0; y1; . . . ; yn�1Þ
t, say, are the numbers y0 þ yky1 þ � � � þ yðn�1Þkyn�1 for 04 k < n.

In particular those of N, which are rth roots of unity, are given by xk ¼
ð y0 þ z0Þ

P
t2H ytk þ y0

P
t 62H ytk for 04 k < n. Put

sðkÞ :¼
X
t2H

ytk and l :¼
1

z0
:

Then

sðkÞ ¼ xkl for k 6� 0 ðmod nÞ and sð0Þ ¼ h: ð8Þ

Multiplying N, and thus also y0; z0, by a suitable rth root of unity, we can assume

without loss of generality that x1 ¼ 1, so l ¼ sð1Þ 2 Z½y�.
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We have, by Parseval’s formula,

jlj2ðn� 1Þ ¼
Xn�1

k¼1

jsðkÞj2 ¼
Xn�1

k¼0

sðkÞsðkÞ � h2 ¼ nh� h2 ¼ hðn� hÞ:

Put

m :¼ jlj2 ¼
hðn� hÞ

n� 1

.The number l ¼ sð1Þ being an algebraic integer, m 2 N. As h 6¼ 1; n� 1 we have

m > 1.

If n is even, then sðn=2Þ is a rational integer, so the equation m ¼ jlj2 ¼ jsðn=2Þj2

implies that m is a square. This however holds also for odd n, as we shall now see.

If k 6� 0 ðmod nÞ we have m ¼ jlj2 ¼ jsðkÞj2 ¼ sðkÞsð�kÞ ¼ l2xkx�k. Also, l2
¼

x�2
k sðkÞ2, whence

m ¼ x�1
k x�ksðkÞ

2
2 Z½yk�:

This implies in particular that x�1
k x�k is a root of unity in QðykÞ, whence it is � a

power of yk.
Let now p be a prime dividing n (so p is odd). We consider the last displayed rela-

tion, with k ¼ n=p. In this case, one of the two numbers �x�1
k x�k is a pth root of

unity, so �m is a square in QðykÞ, for a suitable choice of the sign. Since the unique

quadratic subfield of QðykÞ is (for k ¼ n=p) one of the fields Qð
ffiffiffiffiffiffiffi
�p

p
Þ, we deduce that

either m ¼ u2 or m ¼ p u2 for some positive integer u.

If m is of the form p u2, then n must be a power of p (otherwise we apply the above

argument with two distinct prime factors of n to get a contradiction). But then the

equality m ¼
hðn�hÞ
n�1 implies that p divides m with even exponent: in fact, if p divides

m, then it must divide h (because ðn� 1Þm ¼ hðn� hÞ � �h2 ðmod pÞ). And now, if

pakh then pakn� h, so p2akm. This is a contradiction, thus in any case m ¼ u2 is a

square and

hðn� hÞ

n� 1
¼ m ¼ u2: ð9Þ

Also, l ¼ �uyq for some integer q. In fact, equations (8) imply that

l2xkx�k ¼ sðkÞsð�kÞ ¼ jsðkÞj2 ¼ m ¼ u2;

so l=u is a root of unity which lies in QðyÞ (since l does), and the conclusion follows.

Since l � 0 ðmod uÞ, we have by (8) that sðkÞ � 0 ðmod uÞ for k 6� 0 ðmod nÞ.

Pick now s 2 OnH. Applying Fourier inversion to the defining expression for sðkÞ
yields

Xn�1

k¼0

sðkÞy�sk
¼
X
t2H

Xn�1

k¼0

yðt�sÞk

 !
¼ 0:

This implies that the congruence sðkÞ � 0 ðmodÞ u holds in fact for all integers k.
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Let now p be a prime factor of u (if u ¼ 1, then h ¼ 1 or h ¼ n� 1 by (9), two cases

which we exclude) and write n ¼ PQ where P is a power of p, say P ¼ pa (possibly

P ¼ 1), and Q is a positive integer coprime to p. Also, write y ¼ pw, where p (resp. w)
is a primitive Pth (resp. Qth) root of unity. Let x and y be arbitrary integers. By the

Chinese Remainder Theorem we may find an integer k ¼ kðx; yÞ such that k �

x ðmodPÞ and k � y ðmodQÞ. Then pk ¼ px and wk ¼ wy, so ytk ¼ ptxwty. Therefore,

for all pairs of integers x; y we have

sðkÞ ¼
X
t2H

ptxwty � 0 ðmod uÞ:

By Fourier inversion with respect to y, we obtain that

Q
X
t2H

t�t0 ðmodQÞ

ptx ¼
XQ�1

y¼0

X
t2H

ptxwty
 !

w�t0y � 0 ðmod uÞ;

for all pairs of integers t0; x. Since p divides u and does not divide Q, we findX
t2H

t�t0 ðmodQÞ

ptx � 0 ðmod pÞ: ð10Þ

Put now x ¼ 1. We may pick t0 such that the l.h.s. of (10) does not vanish, for other-

wise sðkÞ would vanish for some k (actually for all k � 1 ðmodPÞ). Also, no two

terms in this sum can be equal, for they would correspond to distinct values

t; t0 2 O such that t � t0 both modulo Q and modulo P. Hence, on putting Et ¼ 1

if t is congruent modulo P to some element of H and t � t0 ðmodQÞ, and Et ¼ 0

otherwise, equation (10) becomes

0 6¼ T :¼
XP�1

t¼0

Etpt � 0 ðmod pÞ:

Now p has degree f :¼ jðPÞ ¼ ðp� 1Þpa�1 over Q, with minimal polynomial

FðX Þ :¼ ðXpa � 1Þ=ðXpa�1

� 1Þ ¼ 1 þ Xpa�1

þ � � � þ Xf. We may use the equation

FðpÞ ¼ 0 to express a power pb, for P > b5 f, as the sum �pb�f � � � � � pb�pa�1

. In

this way we obtain a (possibly) new expression for T, namely

T ¼
Xf�1

t¼0

ðEt � Et� Þp
t;

where t� is the unique integer � t ðmod pa�1Þ and such that f4 t� <P.

Further, every algebraic integer in QðyÞ lies in Z½y�, whence it may be written

uniquely as a linear combination of 1; p; . . . ; pf�1 with coefficients in Z. Upon

writing T ¼ ux, where x is an algebraic integer, we see that p divides Et � Et� (in Z)

for t ¼ 0; . . . ; f� 1. But Et � Et� 2 f0;�1g (and p5 2), so all these differences vanish

and T ¼ 0. This contradiction finally proves the Theorem. &
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LEMMA 3.1. ðiÞ Let f; g 2 CðX Þ with f indecomposable. If f ðX Þ � gðY Þ is reducible,

then Og � Of. Therefore if also g is indecomposable then Of ¼ Og.

ðiiÞ If, further, f and g are both indecomposable polynomials then they have the same

degree and the same special points.

Proof. (i) Let x1 and y1 be algebraic over CðZ Þ and satisfying f ðx1Þ ¼ gð y1Þ ¼ Z.

By assumption p :¼ ½Cðx1; y1Þ : Cðx1Þ� < n :¼ degðgÞ. As f is indecomposable, there

are no fields properly intermediate between CðZ Þ and Cðx1Þ by Lüroth’s Theorem.

Thus Og \ Cðx1Þ can only be one of these fields. If Og \ Cðx1Þ ¼ CðZ Þ then, by

simple Galois theory gðY Þ � Z remains irreducible over Cðx1Þ, i.e. p ¼ n. Hence we

must have Og � Cðx1Þ and Og � Of follows.

(ii) An infinite place of Of (resp. Og) has ramification index over CðZ Þ equal to

degð f Þ (resp. degðgÞ): the equality of degrees follows. Let x1, y1 algebraic be such

that f ðx1Þ ¼ gð y1Þ ¼ Z. Now, l is a special point for f (resp. g) if and only if it

corresponds to a place of CðZ Þ which ramifies in Cðx1Þ (resp. Cð y1Þ). Every point

of CðZ Þ ramified in Cðx1Þ must be ramified also in Of, hence must be ramified in

Cð y1Þ. Then Lð f Þ � LðgÞ. By symmetry we conclude. &

Proof of Theorem 3. Write n :¼ deg f. Let Z be an indeterminate over C. Denote

by O (resp. O�) the splitting field of f ðX Þ � Z (resp. cf ðY Þ þ c0 � Z) in a fixed

algebraic closure of CðZ Þ. By Lemma 3.1 we know that O�
¼ O and that f ðX Þ and

cf ðY Þ þ c0 have the same special points. Hence c0 ¼ 0 if c ¼ 1, proving the first

assertion. In the following assume then c 6¼ 0; 1, c0 ¼ 0. Now cL ¼ L and either

L ¼ f0g or c must be a root of unity.

If L ¼ f0g we have f ðtÞ ¼ aðtþ bÞn and we fall in the first case.

Henceforth suppose that there is some nonzero special point. This already implies

that c is a root of unity. Since c 6¼ 1, we see that #L5 2. In particular f cannot be

l.r. to a cyclic polynomial.

Assume that f is l.r. to Tn, so we may assume in fact f ðtÞ ¼ TnðtÞ þ d (here n must

be prime since f is indecomposable). Now, L ¼ fdþ 2; d� 2g. Therefore c has order

2, whence c ¼ �1. Hence dþ 2 ¼ �ðd� 2Þ, i.e. d ¼ 0 and we fall in case (2). Note

that Tn is odd for odd n, so in fact TnðX Þ þ TnðY Þ is reducible in those cases.

Therefore it remains to prove that: If f is an indecomposable polynomial not l:r.

to a cyclic or to a Chebyshev one and f ðX Þ � cf ðY Þ is reducible, then f ðX Þ ¼

cf ðLðY ÞÞ for a suitable linear polynomial L.

Let X ¼ fx1; . . . ; xng (resp. Y ¼ fy1; . . . ; yng) be the set of the roots of f ðX Þ � Z

(resp. cf ðY Þ � Z), and G (resp. G�) the Galois group GalðO=CðZ ÞÞ (resp. GalðO�=

CðZ ÞÞ). (For the moment we forget that O ¼ O�.)

We now embed O=CðZ Þ into a Laurent series field. We use [V, Ch. 2] as a reference

throughout. Choose an extension p of the place of CðZ Þ corresponding to Z ¼ 1 to

O, and denote by Gp its inertial group, which is cyclic of order n. Let Op be the p-adic

completion of O. As the base field C is algebraically closed and of zero characteristic,

an element t 2 Op can be found such that Op ¼ CððtÞÞ and tn ¼ Z�1. The Galois group

ofOp=Cðð1=Z ÞÞ isGp. The elements ofGp are representedby t 7!� xtwhere xn ¼ 1 (more
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precisely,
P

i5N bit
i 7!�

P
i5N biðxtÞ

i. Now let g1 be a generator of Gp. It is (by

restriction) an element of G and we can index the roots X so that

g1ðxjÞ ¼ xjþ1:

The place of CððtÞÞ=Cðð1ZÞÞ over Z ¼ 1 is ramified with index n. Let n be the

associated valuation: The corresponding maximal ideal of C½½t�� is generated by

the uniformising parameter t. Then nð1ZÞ ¼ n and nðx�1
j Þ ¼ 1 for all j. We can write

x�1
1 � a1t ðmod t2C½½t��Þ;

with a1 6¼ 0. Similar expressions hold for the other roots. Therefore there exists a

nonzero z 2 C such that x�1
2 � a1zt ðmod t2C½½t��Þ. Now nðzx�1

1 � x�1
2 Þ> 1, whence

nðzx�1
j � x�1

jþ1Þ ¼ n gj�1
1 ðzx�1

1 � x�1
2 Þ

� �
> 1. By simple induction this implies

x�1
j � a1z

j�1t ðmod t2C½½t��Þ:

This also proves that z is a primitive nth root of unity.

We know that O ¼ O� and that the roots of f ðY Þ � Z=c are obtained from those of

f ðX Þ � Z by extending an automorphism Z ! Z=c of Cðð1ZÞÞ (which contains CðZ Þ)

to one of CððtÞÞ. For a fixed nth root u of c such an automorphism (continuous with

respect to the t-adic topology) is given by t 7!� ut. We can index the elements of Y so

that their expansions around Z ¼ 1 are

y�1
j � a1uz

j�1t ðmod t2C½½t��Þ ð14 j4 nÞ:

Define group monomorphisms G, G� ! Sn as follows

t :G ! Sn; g 7!� tðgÞ where tðgÞðaÞ ¼ b if gðxaÞ ¼ xb;

t� :G� ! Sn; g 7!� t�ðgÞ where t�ðgÞðaÞ ¼ b if gð yaÞ ¼ yb:

As we get the roots Y from the roots X by the variable change t 7!� ut, it is clear now

that the images of G and G� in Sn are the same, in the sense that for every element g 2 G
there exists an element g� 2 G� which induces on the indices ofY the same permutation as

g on the indices of X , that is: tðgÞ ¼ t�ðg�Þ. Therefore there exists an isomorphism

c:G!G� such that cðgÞ ¼ g� ¼ ðt�Þ�1
ðtðgÞÞ. For each g 2 G, the image cðgÞ sends ya

to yb if gðxaÞ ¼ xb. The image of g1 operates thus: cðg1Þð yjÞ ¼ yjþ1. As O ¼ O�, we

also have that G ¼ G� as automorphism groups, i.e.: Each element of G permute the Y.

We are going to prove that g1 sends yi to yiþ1. By the equality of the splitting

fields, there is a relation

y1 ¼ Rðx1; x2; . . . ; xnÞ ð11Þ

where RðX1;X2; . . . ;XnÞ is a rational function over C. Now g r
1 acts formally on the

r.h.s. of (11) mapping xi to xiþr, and thus replacing t with zrt. As (11) is an identity

of power series, g r
1 acts also on the l.h.s. sending t to zrt, i.e. it maps y1 to y1þr. This

proves that g1ð yiÞ ¼ yiþ1 for all i. In otherwords,c is an automorphismof G fixing g1.
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Fried [Fr1, Lemma 9] proved that if the indecomposable polynomial f is not l.r.

to a cyclic or to a Chebyshev polynomial, then G ¼ GalðO=CðZ ÞÞ acts doubly

transitively on the roots of f ðX Þ � Z. (This is the key argument in his proof of the

absolute irreducibility of ðf ðX Þ � f ðY ÞÞ=ðX� Y).

As y1 is transcendental over C, the absolutely irreducible factors of f ðX Þ � cf ðY Þ

are in one-to-one correspondence with those of f ðX Þ � cf ð y1Þ, and thus correspond

to the orbits of Gy1
¼ GalðO=Cð y1ÞÞ on X . Now, as f ðX Þ � cf ðY Þ is reducible by

assumption, Gy1
¼ cðGx1

Þ is not transitive on X .

We now apply Theorem 4, which shows that c is induced by a conjugation in the

full symmetric group on X . In turn this means that cðGx1
Þ is the stabiliser of some

root xj. But if the stabilisers of y1 and of xj in the Galois group of O=CðZ Þ coincide,

then Cð y1Þ ¼ CðxjÞ, so xj ¼ ‘ð y1Þ for some fractional linear function ‘.

Then f ð‘ðY ÞÞ ¼ cf ðY Þ, hence ‘ is a linear polynomial and we fall in case (3). &

4. Proof of Theorem 1

We consider first the case of indecomposable f ðtÞ.

PROPOSITION 4.1. Let f 2 C½X � be indecomposable and let g; h 2 CðtÞ be non-

constant distinct rational functions satisfying f ðgðtÞÞ ¼ f ðhðtÞÞ. Then f ðX Þ is l:r. to one

of the following polynomials:

ð1Þ Xn ðn a primeÞ;

ð2Þ TnðX Þ ðn an odd primeÞ;

ð3Þ P1ðt; l;mÞ for some coprime l, m such that lþm > 3;

ð4Þ P2ðt; a; bÞ for suitable a, b;

ð5Þ P3ðt; a; bÞ for suitable a, b.

We give first some definitions, which will be often used in the following. Let

n ¼ degð f Þ. Adopt the notation of Section 2.3. Since in the proof of Theorem 2

we shall need to treat polynomials of the form f ðX Þ � gðY Þ, we consider this

situation first, and then specialise the definitions and results to the relevant cases.

Put

aðlÞ ¼
Xh
i¼1

riðlÞ � 1ð Þ ¼ degð f Þ � hðlÞ ð12Þ

and

cðlÞ :¼
XhðlÞ
i¼1

cðiÞðlÞ; cðiÞðlÞ ¼
XkðlÞ
j¼1

ðriðlÞ � ðriðlÞ; sjðlÞÞÞ: ð13Þ

Clearly

degð f Þ � 1 ¼
X
l2C

aðlÞ: ð14Þ
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We begin to derive some inequalities. We plainly have for every special l

n� mðlÞ � 15 aðlÞ5
n� mðlÞ

2
: ð15Þ

(Note that the inequality on the right-hand side holds actually for all l.)

LEMMA 4.2. If riðlÞ ¼ 1 then cðiÞðlÞ ¼ 0. If riðlÞ5 2 and gðY Þ � l is not a perfect

power of a polynomial of smaller degree then

cðiÞðlÞ5 riðlÞ � 1; cðlÞ5 aðlÞ ð16Þ

and

cðlÞ5 aðlÞmgðlÞ: ð17Þ

Proof. The first assertion is obvious. If riðlÞ5 2 does not divide sjðlÞ, then

riðlÞ � ðriðlÞ; sjðlÞÞ5 riðlÞ=2. If this happens for two distinct indices j, then

cðiÞðlÞ5 riðlÞ. Otherwise riðlÞ divides sjðlÞ for all j except at most one and in this case

it cannot divide them all, for otherwise gðY Þ � l would be a riðlÞ-th power. So there

is exactly one index j with sjðlÞ not divisible by riðlÞ. For the same reason as above we

must have ðriðlÞ; sjðlÞÞ ¼ 1. In conclusion cðiÞðlÞ5 riðlÞ � 1 and (16) follows summing

over i. Also, observe that plainly cðiÞðlÞ5mgðlÞðriðlÞ � 1Þ, so we obtain (17). &

DEFINITION 4.3. For any polynomial f ðtÞ we define its root type at l, denoted by

Mð f� lÞ (or simply Mð f Þ if l ¼ 0) as the unordered list ½r1; r2; . . .� of the multi-

plicities of the distinct roots of f ðtÞ � l in C. A short notation for n roots of

multiplicity m is m�n.

Proof of Proposition 4:1: Put Ff ðX;Y Þ ¼ ðf ðX Þ � f ðY ÞÞ=ðX� YÞ. If f is l.r. to a

cyclic or to a Chebyshev polynomial then Ff ðX;Y Þ splits into genus zero factors and

we fall in cases (1) or (2).

In the remainder of this proof we then assume that f is not l.r. to a cyclic or to a

Chebyshev polynomial. Hence, f has degree larger than 3 and has at least two special

points. By Proposition 2.4, Ff ðX;Y Þ is absolutely irreducible.

Put L ¼ Lð f Þ ¼
�
l1; . . . ; l#L

�
, and define ai :¼ aðliÞ, ci :¼ cðliÞ, mi :¼ mðliÞ and

so on. From (6) we get a formula for the genus g of the curve associated to Ff ðX;Y Þ:

2ðdegð f Þ þ g� 2Þ ¼
X#L
i¼1

ci; ð18Þ

where in the definition for ci ¼ cðliÞ one puts sjðliÞ ¼ rjðliÞ.
Also, f� l is not a power of a smaller degree polynomial for all l 2 C and Lemma

4.2 holds with g ¼ f and mgðlÞ ¼ mðlÞ. By (14), (18) (with g ¼ 0) and (17), there exists

a special point, say l1, with m1 4 1.

We may also assume that m1 4mðlÞ for every l.
We first show that there cannot exist more than two special points.
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Suppose on the contrary #L5 3. By (18), (16) and (17) it is 2ðn� 2Þ 5
P3

i¼1 ci 5
a1 þ ðm2 þ m3Þminfa2; a3g. By (14) and (15) we have n� 1 5

P3
i¼1 ðn� miÞ=2. Then, as

a1 5 ðn� 1Þ=2 we obtain m2 þ m3 5 nþ 1. Hence minfa2; a3g ¼ 1. Say the minimum

is a2 ¼ 1. Then we have m2 ¼ n� 2 ¼ c2. In turn this implies m3 5 3. As c3 5 3a3 by

(17) and a2 ¼ 1, we have 2ðn� 2Þ ¼
P#L

i¼1 ci5 c1 þ ðn� 2Þ þ c3 þ
P

i53 ai5 ðn� 3Þþ

2a3 þ
P#L

i¼1 ai ¼ 2n� 4þ 2a3, which implies a3 ¼ 0, a contradiction. Hence #L ¼ 2

as claimed.

We cannot have m2 ¼ 0, otherwise a1; a2 5 n=2, contrary to (14). By a similar

argument, if m2 ¼ 1 then also m1 ¼ 1. Therefore m2 5 15m1. If h1 4 2 then

f ðX Þ � l1 has at most two roots, hence exactly two or we would fall in case (1). Write

Mð f ðX Þ � l1Þ ¼ ½l;m�: since degð f Þ > 3 we fall in case (3).

So suppose from now on that h1 5 3.

We are going to prove that m2 4 3. We have ðn� m2Þ=24 a2 ¼ n� 1 � a1 ¼

n� 1� ðn� h1Þ ¼ h1 � 1, so nþ 2 � 2h1 4m2 and c2 5m2a2 ¼ m2ðh1 � 1Þ, by (17).

Using (18) with g ¼ 0 and c1 5 a1 ¼ n� h1 we thus get

nþ 2 � 2h1 4m2; and ðm2 � 1Þðh1 � 1Þ � 3:

Combination of these inequalities gives ðnþ 1 � 2h1Þðh1 � 1Þ4 n� 3, that is

ðh1 � 2Þn4 ðh1 � 1Þð2h1 � 1Þ � 3 ¼ ðh1 � 2Þð2h1 þ 1Þ, whence n4 2h1 þ 1 (recall

h1 5 3). Finally,

m2 � 14
n� 3

h1 � 1
4

2h1 � 2

h1 � 1
¼ 2:

We have thus m2 4 3 as desired.

Suppose m2 ¼ 1. Then also m1 ¼ 1, and a1; a2 5 ðn� 1Þ=2, where equality must

hold because a1 þ a2 ¼ n� 1. In other words, f ðX Þ � l1 and f ðX Þ � l2 have both

exactly one simple root, all other ones being double. By Proposition 2.3 f would

be l.r. to a Chebyshev polynomial, a case which we exclude.

Let then in the following be m2 ¼ 2 or 3. We show that, in this case, m1 ¼ 1. If

m1 ¼ 0, f ðX Þ � l1 has no simple root, and not all the roots can be double, since

f ðX Þ is indecomposable. Hence, a1 5 ðnþ 1Þ=2 (holding with equality if and only

if there is exactly one triple root and the remaining ones are double), whence

a2 4 ðn� 3Þ=2. Since a2 5 ðn� m2Þ=2 we deduce that m2 ¼ 3 and all such inequalities

are in fact equalities. In particular f ðX Þ � l2 has three simple roots and all remaining

roots double. These facts give c1 ¼
3
2ðn� 3Þ ¼ c2, whence 2n� 4 ¼ 3n� 9 and n ¼ 5,

h1 ¼ 2, a contradiction. Therefore m1 ¼ 1.

Let Mð f� l1Þ ¼ ½r1; . . . ; rh1
� (recall h1 5 3) and put M :¼ maxfrig > 1. Let q be

the number of roots (of f� l1) of multiplicity M. If 0 6¼ r < M then M� ðM; rÞ5
M� maxfd : d j M; d < Mg ¼: M�, say. We then get

P
1<rj<M

�
M� ðM; rjÞ

�
5

M�ðh1 � 1 � qÞ whence, directly from (13),

c1 5
Xh1

i¼1

ðri � 1Þ þ qM�ðh1 � 1 � qÞ ¼ n� h1 þM�qðh1 � 1 � qÞ: ð19Þ
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Since m1 ¼ 1 and h1 5 3, we have n5 5, so c2 5m2ðn� m2Þ=25 minðn� 2;
3
2ðn� 3ÞÞ5 n� 2 whence c1 4 n� 2. By (19), h1 5 2 þM�qðh1 � 1 � qÞ. If q 6¼

h1 � 1 then qðh1 � 1 � qÞ5 h1 � 2, so M� ¼ 1. However M� ¼ 1 if and only if

M ¼ 2, which implies q ¼ h1 � 1. Therefore in any case we have q ¼ h1 � 1 and

a1 ¼ ðM� 1Þ=Mðn� 1Þ, a2 ¼ ðn� 1Þ=M. Since a2 5 ðn� 3Þ=2 by (15), we see that

M ¼ 2 or n4 7.

If M ¼ 2 then a2 ¼ a1 ¼ ðn� 1Þ=2 and h1 ¼ h2 ¼ ðnþ 1Þ=2. It is now easy to see

that if m2 ¼ 2 the root type at l2 must be ½1; 1; 2�
n�5
2 ; 3�, while if m2 ¼ 3 it must be

½1; 1; 1; 2�
n�9
2 ; 3; 3� or ½1; 1; 1; 2�

n�7
2 ; 4�. A quick verification shows that the only case

compatible with (18) is n ¼ 5 with root types ½1; 1; 3�, resp. ½1; 2; 2� at l2, resp. l1.

Replacing f with a l.r. polynomial we may assume that l1 ¼ 0 and f ðtÞ :¼

tðtþ aÞ2ðtþ bÞ2, where abða� bÞ 6¼ 0. Also, f ðtÞ � l2 has a triple zero, say x. This

zero x must be a double zero of f 0ðtÞ, x 6¼ �a;�b. The discriminant of

ðf 0ðtÞÞ=ððtþ aÞðtþ bÞÞ ¼ 5t2 þ 3ðaþ bÞtþ ab which is 9ðaþ bÞ2 � 20ab must then

vanish. Hence we fall in case (4).

Last, let n4 7 and M5 3. Recall h1 5 3 and q ¼ h1 � 1, so n5 1 þ 3ðh1 � 1Þ5 7,

hence in fact n ¼ 7, with root type at l1, resp. l2 equal to ½1; 3; 3�, resp. ½1; 1; 1; 2; 2�.

Replacing f with a l.r. polynomial we may assume that f ðtÞ ¼ tðtþ aÞ3ðtþ bÞ3,

abða� bÞ 6¼ 0. Now we must impose that f takes the same value at the two zeros

of f 0 distinct from �a;�b. We have f 0ðtÞ ¼ ðtþ aÞ2ðtþ bÞ2ð7t2 þ 4ðaþ bÞtþ abÞ.

Solving 7t2 þ 4ðaþ bÞtþ ab ¼ 0 and substituting into f we obtain an equation

which leads to the equations 8a2 � 5abþ b2 ¼ 0 and a2 � 5abþ 8b2 ¼ 0 (here we

used a computer), hence we fall in the last case. &

Remark 4:4: Consider now cases ð3Þ–ð5Þ of the Proposition just proved. The root

types of the special points of P1 (with degree at least 4), P2 and P3 show that they

cannot be l.r. to cyclic or Chebyshev polynomials. Also, they are indecomposable.

This is clear for P2 and P3 since they have prime degree. The following Lemma

settles the question for P1.

LEMMA 4.5. P1ðt; p; qÞ is indecomposable.

Proof. Suppose that P1ðtÞ ¼ tpðtþ 1Þq ¼ f1ð f2ðtÞÞ with degð f1Þ; degð f2Þ5 2. As p

and q are coprime, f1 is not a power of a linear polynomial and has N5 2 distinct

roots. Write f1ðtÞ ¼
QN

j¼1ðt� xjÞ
mj with xj 6¼ xk if j 6¼ k. Thus tpðtþ 1Þq ¼QN

j¼1ð f2ðtÞ � xjÞ
mj and the factors f2ðtÞ � xj being pairwise coprime, we have N4 2,

hence N ¼ 2. At least one of the polynomials f2ðtÞ � x1 and f2ðtÞ � x2 has at least two

distinct roots, which implies that P1ðtÞ must have at least three distinct roots, which

is a contradiction. &

Remark 4:6: Let us consider now the sporadic polynomials P2ðt; a; bÞ and

P3ðt; a; bÞ and the corresponding curves ðf ðX Þ � f ðY ÞÞ=ðX� YÞ. It is clear that l.r.

polynomials define isomorphic curves.

THE EQUATION f ðX Þ ¼ f ðY Þ IN RATIONAL FUNCTIONS X ¼ XðtÞ, Y ¼ YðtÞ 279

https://doi.org/10.1023/B:COMP.0000018136.23898.65 Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000018136.23898.65


We prove that the polynomials P2ðt; a; bÞ form only one l.r.-class. First observe

that P2ðt; ca; cbÞ ¼ c5P2ðt=c; a; bÞ. Let a1 and a2 be the roots of 9a2 � 2aþ 9: It is

easily seen that a5
2P2ðt; a1; 1Þ ¼ P2ða2t; a2; 1Þ, so we have only one class.

On the other hand, we have two l.r.-classes of polynomials P3ðt; a; bÞ. As above

assume b ¼ 1, let a1 and a2 be the two roots of a2 � 5aþ 8 and consider the equation�
pP3ðt; a1; 1Þ þ q

�
� P3ðctþ d; a2; 1Þ ¼ 0: This is a system of 8 equations in c; d; p and

q (corresponding to the coefficients of t j, 04 j4 7) which has, however, no solutions.

PROPOSITION 4.7. Suppose that f is one of the polynomials given in Proposition 4:1

ð1Þ–ð5Þ. Then there exist distinct nonconstant rational functions gðtÞ; hðtÞ with

f ðgðtÞÞ ¼ f ðhðtÞÞ and all pair of such functions are given by the formulae gðtÞ ¼ g1ðrðtÞÞ

and hðtÞ ¼ h1ðrðtÞÞ, where rðtÞ is a rational function, and respectively in cases ð1Þ–ð5Þ:

ð1Þ g1ðtÞ ¼ t and h1ðtÞ ¼ zt where zn ¼ 1, z 6¼ 1.

ð2Þ g1ðtÞ ¼ tþ 1
t, h1ðtÞ ¼ ztþ 1

zt, where zn ¼ 1, z 6¼ 1.

ð3Þ g1ðtÞ ¼
1�t l

tlþm�1
, h1ðtÞ ¼ tmg1ðtÞ:

ð4Þ Put s :¼ aþ b and d :¼ a� b. Also, put U ¼ UðtÞ :¼ 1
2ðt

2 þ 15
64Þ, Z ¼ ZðtÞ ¼

1
2ðt

2� 7
4t�

15
64Þ. Then

g1ðtÞ ¼
�2abt2

sðZ2 þ tZþ t2Þ þ dðZ� tÞU
and h1ðtÞ ¼ g1ðtÞ

Z2

t2
:

ð5Þ Define s, d as before. Also, define e ¼ a
4b, f ¼ 1 � e2

4 , Finally, put U ¼ UðtÞ :¼
1
2 ðt

2 þ f Þ, Z ¼ ZðtÞ :¼ 1
2 ðt

2 � et� f Þ. Then

g1ðtÞ ¼
�2abt3

s
Z4 � t4

Z� t
þ dðZ2 þ 4ð1 � eÞtZþ t2ÞU

and h1ðtÞ ¼ g1ðtÞ
Z3

t3
:

In cases ð2Þ–ð5Þ the expressions for g1 are reduced ði.e. numerator and denominator

are coprimeÞ and with square-free denominator.

Proof. The case (1) is trivial.

Consider case (2) and assume that TnðgðtÞÞ ¼ TnðhðtÞÞ. Write, in an algebraic

closure of CðtÞ, gðtÞ ¼ aþ 1
a, hðtÞ ¼ bþ 1

b. Then the defining equation for Tn gives

an þ
1

an
¼ bn þ

1

bn

which we rewrite as ðan � ð1=bnÞÞð1 � ðbn=anÞÞ ¼ 0. So a ¼ zbE for some nth root of

unity z and some E ¼ �1. Replacing b with 1=b if necessary, we may assume that

E ¼ 1. Now observe that zgðtÞ � hðtÞ ¼ ðz2
� 1Þb, that z 6¼ �1 because n is odd

and that z 6¼ 1 since g and h are assumed distinct. Then b ¼ rðtÞ, say, is a rational

function and, by the above formulae, we are done.

In the remaining casesFf ðX;Y Þ is absolutely irreducible byProposition 2.4, since, by

Remark 4.4, f is indecomposable in those cases. Let F :¼ Cðx; yÞ where Ff ðx; yÞ ¼ 0.

Suppose we find rational functions g1ðuÞ; h1ðuÞ 2 CðuÞ with Ff ðg1ðuÞ; h1ðuÞÞ ¼ 0 and
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Cðg1ðuÞ; h1ðuÞÞ ¼ CðuÞ. Then F ¼ CðuÞ. Now, if gðtÞ; hðtÞ are distinct and satisfy

Ff ðgðtÞ; hðtÞÞ ¼ 0, we have F ¼ CðgðtÞ; hðtÞÞ � CðtÞ. Also, gðtÞ ¼ g�ðuÞ, hðtÞ ¼ h�ðuÞ

for certain rational functions g�; h�. Since x ¼ g1ðuÞ ¼ gðtÞ ¼ g�ðuÞ we have g1 ¼ g�

and similarly h1 ¼ h�. Moreover u 2 CðtÞ, so u ¼ rðtÞ for a rational function r. Hence,

to complete the proof it suffices to find g1; h1 as above, in each of the cases (3)–(5).

In case (3) we verify by direct substitution that the given formulae satisfy the rele-

vant equation. Observe that tm ¼ h1=g1 2 Cðg1; h1Þ. Hence tl ¼ ð1 þ g1Þ=ðt
mg1 þ 1Þ

also lies in Cðg1; h1Þ, which thus contains t, since l;m are coprime.

In case (4), rather than verifying by brute force that the displayed formulae satisfy

the relevant conditions, we reconstruct in several steps the formulae themselves.

Put F ¼ Cðx; yÞ, where Ff ðx; yÞ ¼ 0. Put z :¼ ðxþ aÞðxþ bÞ=ðð yþ aÞð yþ bÞÞ, so

y ¼ z2x. We have Cðx; zÞ ¼ F. Substituting y ¼ z2x in the right side of the formula

defining z we get

ðz5 � 1Þx2 þ ðaþ bÞðz3 � 1Þxþ abðz� 1Þ ¼ 0: ð20Þ

Let D ¼ DðzÞ ¼ ðaþ bÞ2ðz3 � 1Þ2 � 4abðz� 1Þðz5 � 1Þ be the discriminant of this

quadratic equation in x. We have F ¼ Cðx; zÞ ¼ Cðz;
ffiffiffiffi
D

p
Þ.

If we can find nonconstant g1 and h1 with Ff ðg1ðtÞ; h1ðtÞÞ ¼ 0 then the field F
has genus zero, and the latter condition, as is well known, means that D has

at most two roots of odd multiplicity. In fact, it can be easily verified (for

example using maple) that if 9a2 � 2abþ 9b2 ¼ 0 and d ¼ a� b, then

D ¼ d2
ðz� 1Þ4ðz2 þ 7

4 z þ 1Þ. Hence

F ¼ Cðz;
ffiffiffiffi
D

p
Þ ¼ Cðz;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ

7

4
zþ 1

r
Þ:

Put u2 ¼ z2 þ 7
4 zþ 1. It is well known how to parametrise this type of equation.

On completing the square we obtain ðu� z� 7
8Þðuþ zþ 7

8Þ ¼
15
64. Now the parametri-

sation comes by setting t :¼ uþ zþ 7
8, so 15

64t ¼ u� z� 7
8 and we obtain z ¼ zðtÞ ¼

1
2ðt�

15
64t �

7
4Þ and u ¼ uðtÞ :¼ 1

2 ðtþ
15
64tÞ.

The roots of a quadratic equation aX2 þ bXþ g ¼ 0 can be also given by �2g
b�Z,

Z ¼
ffiffiffiffi
D

p
. Using these formulae to solve equation (20) for x, we can express x (and

also y) as a rational function of t and thus obtain

g1ðtÞ ¼
�2ab

sðz2 þ zþ 1Þ þ dðz� 1Þu
and h1ðtÞ ¼ g1ðtÞz

2:

Putting Z :¼ tz, U :¼ tu we obtain the formulae given in the statement. By construc-

tion F ¼ CðtÞ. The expression for g1 is a fraction with both denominator and

numerator polynomial and it is reduced, as the denominator does not vanish for

t ¼ 0. We compute (with maple) the greatest common divisor of the denominator

and its derivative with respect to t. Since the result is 1, we conclude that the denomi-

nator is square-free.
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The procedure to obtain case (5) is similar to the preceding one. Defining z by the

same formula we have y ¼ z3x and again F ¼ Cðx; zÞ. Again we obtain a quadratic

equation for x, namely ðz7 � 1Þx2 þ sðz4 � 1Þxþ abðz� 1Þ ¼ 0 with discriminant

D :¼ s2ðz4 � 1Þ2 � 4abðz� 1Þðz7 � 1Þ. By verification as before we find that DðzÞ ¼
d2
ðz2 þ 4ð1 � eÞzþ 1Þ2ðz� 1Þ2ðz2 þ ezþ 1Þ: As in the previous case we parametrise

z2 þ ezþ 1 ¼ u2, solve the quadratic equation for x, put U ¼ ut;Z ¼ Zt and get

the formulae displayed in the statement. The formula for g1 also in this case is

reduced and with square-free denominator. &

In [Fr2, p. 141] Fried stated that, for (unspecified) applications, it would have been

of interest to consider the reducibility of rational functions f ðX Þ � gðY Þ where f is

a polynomial but g is a rational function. Our next theorem is one such result, which

will be needed in the proof of Theorem 1.

THEOREM 5. Let SðX Þ; pðX Þ and qðX Þ be polynomials over C, with SðX Þ inde-

composable, degðSÞ5 2, degðqÞ5 1, degð pÞ4 degðqÞ þ 1 and ð p; qÞ ¼ 1. Put

fðX;Y Þ :¼SðX Þ � pðY Þ=qðY Þ. Then the rational function fðX;Y Þ is irreducible ðas a

rational function in 2 variablesÞ and, if q is square-free and degðqÞ5 3, it defines a

curve of positive genus.

Proof. Suppose that fðX;Y Þ is reducible. Hence SðX ÞqðY Þ � pðY Þ splits in at

least two absolutely irreducible factors (which are bivariate, q and p being coprime).

Put HðY Þ ¼ pðY Þ=qðY Þ. By Lemma 3.1 OS � OH. The infinite places of OS over P
1

are ramified with index degðSÞ > 1, contradicting the fact that those of OH are

unramified.

Assume now q square-free and degðqÞ5 3. Put m :¼ degðS Þ. The genus formula

(5) with f ¼ S and g ¼ H implies 2ðmþ g� 1Þ5 3ðm� 1Þ ( just considering the

contributions at infinity), i.e. g > 0. &

Proof of Theorem 1. If f is one of the polynomials given in cases (1)–(5), then

Ff ðX;Y Þ has a genus zero factor by Proposition 4.7.

Conversely, suppose that Ff ðX;Y Þ has a genus zero factor PðX;Y Þ. The function

field of the associate curve is Fðx; yÞ with Pðx; yÞ ¼ 0. It is of the form CðtÞ and

x ¼ bggðtÞ, y ¼ bhhðtÞ, where bgg and bhh are distinct rational functions. Also,

f ðbggðtÞÞ ¼ f ðbhhðtÞÞ.
Let f now be a composite polynomial

f ¼ R1 � R2 � � � � � Rp;

where the polynomials R1; . . . ;Rp have degrees52.

Then there exists j; 14 j4 p such that S � bgg 6¼ S � bhh where S ¼ Rjþ1 � � � � � Rp

(it is understood that S has degree 1 if j ¼ p) but Rj � S � bgg ¼ Rj � S � bhh. Let

A ¼ R1 � R2 � � � � � Rj�1. Setting R ¼ Rj and bff ¼ R � S we have that

RðS � bggÞ ¼ RðS � bhhÞ with S � bgg 6¼ S � bhh, so by Proposition 4.7 (of which we adopt

the notation in the following) we conclude that ðS � bgg;S � bhhÞ must be one of the pairs
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ðg; hÞ described there. Possibly exchanging bgg with bhh, we can assume that S � bgg
¼ g1 � r. In other words, the equation

Rjþ1ðX Þ � g1ðY Þ ¼ 0 ð21Þ

defines an algebraic set with at least one genus zero component.

If we fall in cases (3)–(5) note that the rational function g1ðtÞ has square-free

denominator coprime to the numerator, of degree at least 3 and always larger than

that of the numerator. By Theorem 5, if degðSÞ5 2 (and thus j < p and

degðRjþ1Þ5 2) then (21) defines a curve of positive genus: This contradiction proves

S linear. Moreover A ¼ R1 � R2 � � � � � Rj�1 and M ¼ S.

If we fall in case (2) then we can assume (composing R to the right and S to the left

with suitable linear polynomials) that R is a Chebyshev polynomial.

It easy to see that SðX Þ � g1ðY Þ ¼ 0 is irreducible: indeed Y2 � YSðX Þ þ 1 splits

into factors (which, by Gauss’ Lemma, must be polynomials in Y and X, linear in

Y) only if SðX Þ is a constant. Now we want to determine all the polynomials

SðX Þ such that the genus is 0. If Z ¼ Y�
SðX Þ

2 , we get Z2 ¼ 1
4ðSðX Þ

2
� 4Þ which has

genus zero if and only if S ¼ ETdegðS Þ �M where E ¼ �1 and M is a linear polynomial

by Proposition 2.3. Hence R � S ¼ TdegðRÞ�degðSÞ �M, and, if degðRÞ is odd and

E ¼ �1, we replace AðX Þ with Að�X Þ.

Last, consider case (1). If RðX Þ ¼ Xm then

SðX Þ
m
� SðY Þ

m
¼
Ym�1

k¼0

SðX Þ � zkmSðY Þ
� �

;

where zm is a mth primitive root of unity. It follows that PðX;Y Þ divides one of the

factors SðX Þ � zkmSðY Þ. Plainly, PðX;Y Þ can divide only one polynomial of the form

SðX Þ � zSðY Þ, z 2 C, for otherwise it would divide SðX Þ and SðY Þ, and it would

be a constant. As S � bgg 6¼ S � bhh, it must be k 6¼ 0. Hence SðX Þ � zkmSðY Þ is given

by Theorem 2. &

5. Proof of Theorem 2

As in the proof of Theorem 1, we adopt the notation of Section 2.3. Also, (12)–(15) and

Lemma 4.2 hold. From (5) we deduce a formula for the genus g of the curve associated

to an absolutely irreducible polynomial f ðX Þ � gðY Þ where degð f Þ j degðgÞ, namely:

2ðdegð f Þ þ g� 1Þ ¼
X

l2Lð f Þ

cðlÞ: ð22Þ

We shall mainly deal with polynomials of the form f ðX Þ � cf ðY Þ, in which case

gðtÞ ¼ cf ðtÞ; mgðlÞ ¼ mðl=cÞ;

kðlÞ ¼ hðl=cÞ and siðlÞ ¼ riðl=cÞ:
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Beside the definition of linear relation, in this section we shall need a stronger

equivalence relation:

DEFINITION 5.1. We say that two polynomials P and Q are similar if there exist a

linear polynomial ‘ and a nonzero constant a with P ¼ aQ � ‘.

PROPOSITION 5.2. An indecomposable polynomial f ðtÞ 2 C½t� of degree n is such

that an absolutely irreducible factor of f ðX Þ � cf ðY Þ with c 6¼ 1 defines a curve of

genus zero if and only if either n ¼ 1 or it is similar to one of the following polynomials:

ð1Þ Zn, with n prime.

ð2Þ Tn, with n prime. If c 6¼ �1 then n ¼ 2.

ð3Þ A polynomial of the form trgðtdÞ which is not l:r: to a cyclic or a Chebyshev

polynomial, where g 2 C½t�, r and d are coprime integers with r > 0 and d5 2.

In this case c is a dth root of unity.

ð4Þ P1. Then c 6¼ 1.

ð5Þ T3 þ d where d 6¼ 0;�2, with c ¼ ðdþ 2Þ=ðd� 2Þ or c ¼ ðd� 2Þ=ðdþ 2Þ.

ð6Þ P4. Then c ¼ �1.

ð7Þ P5. Then c ¼ o or o2.

ð8Þ P6. Then c ¼ �1.

Observe that in cases (1), (3) and in case (2) with n odd (so c ¼ �1) the polynomial

f ðX Þ � cf ðY Þ is reducible, whereas in the remaining cases it is absolutely irreducible.

Proof. If f ðX Þ � cf ðY Þ is reducible then by Theorem 3 we obtain cases (1)–(3). In

the first case it splits in linear factors. In the second case one sees that by Proposition

2.2 the absolutely irreducible factors of TnðX Þ þ TnðY Þ define curves of genus zero.

In the third case it is clear that a linear factor exists.

From now on let f ðX Þ � cf ðY Þ be irreducible. Put L :¼ Lð f Þ, n :¼ degð f Þ. Either

#L ¼ 1, that is f is l:r. to a cyclic polynomial, or #L > 1, in which case f ðX Þ � l is

not a perfect power of a polynomial of smaller degree for any l and n > 2. In the first

case we can assume up to similarity that f ðtÞ ¼ tn þ l with n > 1. Then Xn � cYn � c0

is irreducible and defines a curve of genus zero (where c0 ¼ ðc� 1Þl). Clearly it must

be c0 6¼ 0, which implies l 6¼ 0 (so we can even assume l ¼ �2) and n ¼ 2. We have

thus f ðtÞ ¼ T2, and fall in case (2).

Henceforth we work under the assumption #L > 1.

Putting ~mmðlÞ :¼ mcfðlÞ ¼ mðc�1lÞ, inequalities (16) and (17) give

cðlÞ5 aðlÞmaxð1; ~mmðlÞÞ: ð23Þ

We show now that #L 2 f2; 3g. From (14) and the r.h.s. of (15) both applied to cf

in place of f we obtain

n� 15
X
l2C

n� ~mmðlÞ
2

5
X
l2L

n� ~mmðlÞ
2

:

(Note that the second sum is over L, not over cL.) On the other hand by equations

(22) with g ¼ 0 and (17) it is 2ðn� 1Þ5
P

l2L ~mmðlÞ. Adding twice the first of these
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inequalities to the second one gives 4ðn� 1Þ5 n#L, whence #L4 3. (In other words,

f defines a Riemann Sphere cover ramified over the point at infinity and at most three

finite points.)

We consider two cases: (i) ~mmðlÞ > 1 for all l 2 L and (ii) there exists l 2 L with

~mmðlÞ4 1. These will be further divided into two subcases according to #L.

We warn the reader that, due to the nature of our result, the remainder of the proof

consistsmainly of several verifications,which lead to the various sporadic polynomials.

. Case ðiÞ: ~mmðlÞ > 1 for all l 2 L.

As 2ðn� 1Þ ¼
P

l2L cðlÞ5
P

l2L aðlÞ ~mmðlÞ5 2
P

l2L aðlÞ ¼ 2ðn� 1Þ, we infer that

equality must hold throughout, so ~mmðlÞ ¼ 2 and cðlÞ ¼ 2aðlÞ for all l 2 L. But

n5 3 and this implies that, in fact, n5 4 and l 2 Lðcf Þ for l 2 L, whence

L ¼ cL. This implies that c is a root of unity. Furthermore, mðlÞ ¼ 2 for all l 2 L.

Let then be riðlÞ ¼ siðlÞ ¼ 1 for i4 2.

Fix now l 2 L. Should one of the riðlÞ not divide sjðlÞ where i; j5 3, it would be

2ðn� hðlÞÞ ¼ 2aðlÞ ¼ cðlÞ >
PhðlÞ

i¼3 2ðriðlÞ � 1Þ ¼ 2ðn� hðlÞÞ (the inequality holds

strictly because there is at least one more non-vanishing summand in the sum for

cðlÞ). Hence riðlÞ jsjðlÞ for all i; j5 3. By symmetry also sjðlÞ jriðlÞ, whence

riðlÞ ¼ sjðlÞ. Therefore there exists an integer rðlÞ such that riðlÞ ¼ sjðlÞ ¼ rðlÞ for

i; j5 3. In other words, for all l 2 L, both f ðX Þ � l and cf ðY Þ � l have two simple

roots, all the other ones having multiplicity rðlÞ. Hence aðlÞ ¼ ðn� 2ÞðrðlÞ � 1Þ=rðlÞ
and, by (14),

n� 1 ¼ ðn� 2Þ
X
l2L

rðlÞ � 1

rðlÞ
: ð24Þ

. Subcase ði; aÞ : #L ¼ 3.

Clearly n5 4. Equation (24) implies n� 15 3
2ðn� 2Þ, i.e. n4 4, which forces

n ¼ 4. It follows that Mð f ðX Þ � lÞ ¼ ½2; 1; 1� for all l 2 L. Now c is an mth root

of unity with m4 3 and c 6¼ 1.

If c ¼ �1 then L ¼ f0;�bg with b 6¼ 0: Replacing f with a suitable similar poly-

nomial we can assume that f is monic and f ð0Þ ¼ 0. Write f ðtÞ ¼ t4 � 4
3ðaþ bÞt3þ

2abt2, with abða� bÞ 6¼ 0, so that f 0ðtÞ ¼ 4tðt� aÞðt� bÞ. The condition

f ðaÞ þ f ðbÞ ¼ 0 gives a4 � 2a3b� 2ab3 þ b4
¼ 0, the left-hand side of which splits into

factors as
Q2

j¼1ða
2� xjabþ b2Þ where x1 and x2 are the roots of x2

� 2xþ 2 ¼ 0. We

then fall case (6). We have to prove that P4ðX Þ þ P4ðY Þ is irreducible and defines a

curve of genus zero. First of all note that P4 is indecomposable?. The verification that

P4ðX Þ þ P4ðY Þ is irreducible is done by the method described in the next remark:

Remark 5:3. Let f ðX Þ be an indecomposable polynomial which is not l:r: to a

cyclic or a Chebyshev polynomial. Assume f ðX Þ � cf ðY Þ reducible. Theorem 3(3)

?If it were decomposable, it would be the composition of two degree 2 polynomials, and P4ðtÞ þ Z
would be a square for some Z 2 C, which it is not.
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implies that cf ðY Þ ¼ f ðMðY ÞÞ where M is linear, so ðx�MðY ÞÞ j ð f ðX Þ � cf ðY ÞÞ.

To verify the irreducibility of f ðX Þ � cf ðY Þ we may thus consider cf ðY Þ�

f ðAYþ BÞ ¼ 0 as a system of degð f Þ þ 1 equations in the letters A and B, and

check whether it admits solutions: in the cases we shall encounter this is straight-

forward. &

Since the root types of P4 are known, it is easily verified that the genus of the curve

associated to P4ðX Þ þ P4ðY Þ is zero. In fact, as an example, by using (22) with

f ðX Þ ¼ P4ðX Þ and gðY Þ ¼ �P4ðY Þ, we see that cðlÞ ¼ 2 for all special l’s and thus

g ¼ 0.

Consider now the case c3 ¼ 1. Let rj, for 04 j4 2, be the three roots of f 0. Then

we can assume f ðr0Þ ¼ of ðr1Þ ¼ �oof ðr2Þ. Up to similarity we can take f monic, with

r0 ¼ 0, f ð0Þ ¼ 1. Write f ðtÞ ¼ f ðt; a; bÞ ¼ t4 � 4
3ðaþ bÞt3 þ 2abt2 þ 1 with a; b 2 C.

Then f 0ðtÞ ¼ 4tðt� aÞðt� bÞ with abða� bÞ 6¼ 0. Solving f ðaÞ ¼ o for b we obtain

b ¼ ða4 � 3ð1 � oÞÞ=2a3. The condition f ðbÞ ¼ �oo implies b4 � 2ab3 � 3ð1 � �ooÞ ¼ 0:

In it we substitute the above relation for b and obtain a16 � 24 �ooa12 � 54oa8�

243 �oo ¼ 0, whose l.h.s. is equal to ða4 þ 3 �ooÞ
Q3

t¼0ða
3 þ 3i3t �ooa2 þ 3i2toaþ 3itÞ.

Multiplying a by i has the effect of multiplying also b by i, so we get f ðit; a; bÞ ¼

f ðt; ia; ibÞ. Therefore we need only to consider (up to similarity of f Þ a ¼ oð�3Þ1=4

and a3 þ 3 �ooa2þ 3oaþ 3 ¼ ðaþ �ooÞ3 þ 2 ¼ 0. In the latter case b ¼ ð1 � aÞo� 1

holds?. This shows we are in case (7).

The indecomposability of f, the reducibility of both f ðX Þ � of ðY Þ and

f ðX Þ � �oof ðY Þ precisely when a ¼ �ooð�3Þ1=4 and their irreducibility otherwise, and

that in that case they define genus zero curves, are proved exactly as for c ¼ �1

(f, of and �oof by construction have the same three special points and all have root

type ½2; 1; 1� as above).

. Subcase ði; bÞ : #L ¼ 2.

As c 6¼ 1 it is c ¼ �1 and r :¼ rðlÞ ¼ rð�lÞ. Plainly n5 rþ 2. If r ¼ 2 then (24)

yields at once the contradiction n� 1 ¼ n� 2, whereas if r > 3 then n > 5, but

(24) implies n4 4, a contradiction. Thus r ¼ 3, n ¼ 5 and Mð f� lÞ ¼ ½3; 1; 1�

whence f 0 has two double roots. Replacing f with a similar polynomial we assume

that f 0ðtÞ ¼ 5ðt� 1Þ2ðtþ 1Þ2. Integrating and using the condition f ð1Þ ¼ �f ð�1Þ we

obtain f ðtÞ ¼ t5 � 10
3 t

3 þ 5t. Now Xþ Y divides f ðX Þ þ f ðY Þ, so we do not find

new polynomials.

. Case ðiiÞ : there exists l 2 L with ~mmðlÞ4 1.

Note that L \ cL 6¼ ;, because ~mmðlÞ4 1 implies l 2 cL. (Recall that n > 2.)

As in the proof of Proposition 4.1 it will be convenient to define L ¼ l1; . . . ; l#L
� �

and ai :¼ aðliÞ, ci :¼ cðliÞ, mi :¼ mðliÞ, ~mmi :¼ ~mmðliÞ and so on.

?Use the equation for a to verify that ða4 � 3ð1 � oÞÞ=2a3 ¼ ð1 � aÞo� 1.
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. Subcase ðii; aÞ : #L ¼ 3.

Let ~mm1 4 1, so l1 2 cL. We can also assume that ~mm1 4 ~mmi for all i.

Being ~mm1 4 1, from n� 15
P3

i¼1 ðn� ~mmiÞ=2 (obtained applying (14) and (15) to

cf Þ we get ~mm2 þ ~mm3 5 nþ 1 and also ~mm2, ~mm3 5 3.

Put m ¼ min fa2; a3g. Clearly m5 1 and

2ðn� 1Þ ¼ c1 þ c2 þ c3 5 a1 þ ð ~mm2 þ ~mm3Þm > ðnþ 1Þm;

so m ¼ 1.

We can thus assume without loss of generality that a3 ¼ 1, i.e. f ðX Þ � l3 has root

type ½2; 1; . . . ; 1�. Using (14) again we infer that a1 þ a2 ¼ n� 2.

As m3 ¼ n� 2 it cannot be l1 ¼ cl3. Suppose that l1 ¼ cl2, which implies

m2 ¼ ~mm1 4 1. Recall that ~mm2 5 3. Since a1 þ a2 ¼ n� 2 and a2 5 ðn� 1Þ=2, by (22)

and (23) we obtain 2ðn� 1Þ5 a1 þ 3a2 þ 3 ¼ ðn� 2Þ þ 2a2 þ 35 2n, which is a

contradiction. Therefore l1 ¼ cl1. This implies l1 ¼ 0 and m1 ¼ ~mm1.

We are going to prove that L ¼ cL. Suppose first that l3 =2 cL, that is

Mðcf� l3Þ ¼ ½1; . . . ; 1� and c3 ¼ n. Thus, using (22) and (23) we obtain the contra-

diction 2ðn� 1Þ ¼
P3

i¼1 ci 5 a1 þ 3a2 þ n5 ðn� 2Þ þ 2a2 þ n5 2n: Hence l3 2 cL,

and it must be l3 ¼ cl2 (because c 6¼ 1). Suppose now that l2 =2 cL. Then

Mðcf� l2Þ ¼ ½1; . . . ; 1� and c2 ¼ n. Note that a2 ¼ 1 otherwise it would be

2ðn� 1Þ5 a2 ~mm2 5 2n. Hence Mð f� l2Þ ¼ ½2; 1; . . . ; 1�. Being a3 ¼ 1, (14) implies

a1 ¼ n� 3. Now 2ðn� 1Þ5 a1 þ c2 þ ~mm3 5 ðn� 3Þ þ nþ 3 ¼ 2n which is absurd.

Therefore also l2 2 cL.

Summarising, l1 ¼ 0, c ¼ �1 and l2 ¼ �l3 so n� 2 ¼ m3 ¼ ~mm2 5 3, i.e. n5 5. If

it were a2 5 2 then 2ðn� 1Þ5 1 þ 2ðn� 2Þ þ 3 ¼ 2n. Hence a2 ¼ 1, which implies

that m2 ¼ n� 2 ¼ ~mm3 and c2 ¼ c3 ¼ n� 2. By (22) it is now c1 ¼ 2. By (14) we get

a1 ¼ n� 3. Thus 2 ¼ c1 5 a1 ¼ n� 3, so n ¼ 5. We conclude that Mð f Þ ¼ ½1; 2; 2�.

Up to similarity we can assume f ðtÞ ¼ tðtþ aÞ2ðtþ bÞ2. Then

f 0ðtÞ ¼ ðt� aÞðt� bÞ 5t2 � 3ðaþ bÞtþ ab
� �

:

Let w1 and w2 be the roots of 5t2 � 3ðaþ bÞtþ ab. The condition f ðw1Þ þ f ðw2Þ ¼ 0

implies ðaþ bÞð27a4 � 117a3bþ 212a2b2 � 117ab3 þ 27b4Þ ¼ 0, that is ðaþ bÞ �Q2
j¼1ða

2 �
22þ5xj

9 abþ b2Þ ¼ 0 where x1 and x2 are the roots of x2
þ xþ 4 ¼ 0. If

a ¼ �b then f ðX Þ þ f ðY Þ is reducible. In the other cases, by the method of Remark

5.3, it is easily verified that f ðX Þ þ f ðY Þ is irreducible. We then fall in case (8).

To verify that the curve associated to P6ðX Þ þ P6ðY Þ has genus zero, we first recall

that the special points of P6 are 0 and �l2. The root type of P6 at 0 is ½1; 2; 2� and the

root types at �l2 are both ½1; 1; 1; 2�. We use (22) with f ðX Þ ¼ P6ðX Þ and gðY Þ ¼

�P6ðY Þ: we already know that c1 ¼ cð0Þ ¼ 2 and c2 ¼ c3 ¼ cð�l2Þ ¼ 3, so that g ¼ 0.

. Subcase ðii; bÞ : #L ¼ 2.

Suppose first that # L \ cLð Þ ¼ 1. We can assume without loss of generality that

l1 2 cL and l2 =2 cL. Then c2 5 ~mm2 ¼ n. Now, a2 ¼ 1 (in fact, if a2 5 2 then
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c2 5 2n, contradicting (22)), so a1 ¼ n� 2. It follows that Mð f� l1Þ ¼ ½p; q�, with p

and q coprime. Now there are two possibilities: l1 ¼ cl1 or l1 ¼ cl2.

If l1 ¼ cl1 then l1 ¼ 0 and f is similar to P1ðt; p; qÞ. As P1ðX Þ and cP1ðY Þ are

indecomposable (seeLemma4.5)andhavedifferent setsof specialpoints,byLemma3.1

the polynomial P1ðX Þ � cP1ðY Þ must be irreducible: A simple application of formula

(5) proves that it has genus zero. We fall thus in case (4).

If l1 ¼ cl2, then ~mm1 ¼ m2 ¼ n� 2, whence, by (22) and (23), it is n ¼ 3. Also,

f ðX Þ � cf ðY Þ is irreducible and defines a genus zero curve as in case (4). In this case

it is notationally convenient to express f in term of a Chebyshev polynomial (which is

also l.r. to P1ðt; 1; 2Þ) and we fall in case (5).

Let now be L ¼ cL. Plainly c ¼ �1 i.e. l1 ¼ �l2. Set t :¼ m1 þ m2. By (14)

and (15), 24 t4 n� 1. If t ¼ 2 then f is l.r. to a Chebyshev polynomial by Proposi-

tion 2.3. The special points being symmetric, f is similar to Tdegð f Þ and f ðX Þ þ f ðY Þ is

reducible (see Proposition 2.2). Therefore we can assume t5 3, so that n5 4.

One of m1; m2 is 4 1, so m1m2 4 t� 1. It is

2ðn� 1Þ ¼ c1 þ c2 5
n� m1

2
m2 þ

n� m2

2
m1 ¼

tn

2
� m1m2 ð25Þ

which implies that 2ðn� 1Þ5 nðt=2Þ � ðt� 1Þ and thus t4 4 þ 2=ðn� 2Þ. If n5 5

then t4 4, whereas if n ¼ 4 it is t ¼ 3.

For any x 2 C, denote by multf ðxÞ the multiplicity of the root x of f ðX Þ � f ðxÞ.

LEMMA 5.4. Let #L ¼ 2. Put s :¼
P

x :multf ðxÞ>2ðmultf ðxÞ � 2Þ. Then s ¼ t� 2.

Proof. Let R be the number of distinct roots of f 0. Note that 2n ¼ deg ð f� l1Þð

ð f� l2ÞÞ ¼ tþ 2Rþ s and n� 1 ¼ degð f 0Þ ¼ Rþ s, then eliminate n and R from

the last two equalities. &

Suppose t ¼ 3. By Lemma 5.4, ð f� l1Þð f� l2Þ has exactly one triple root, all the

other roots being simple or double. We can thus assume that Mð f� l1Þ ¼ ½3; 2�a;

1�m1 � and Mð f� l2Þ ¼ ½2�b; 1�m2 �, where

a ¼
n� 3 � m1

2
and b ¼

n� m2

2
:

By (22) we then obtain

2ðn� 1Þ ¼ c1 þ c2 ¼ bð3 þ m1Þ þ ðaþ 2Þm2

¼ ð3 þ m1Þ
n� m2

2
þ m2

n� ð3 þ m1Þ

2
þ 2m2 ¼ 3n� ð1 þ m1Þm2 5 3n� 4;

which, under our assumptions, is impossible.

Last, let t ¼ 4. Here n5 5. Inequality (25) implies m1m2 6¼ 0 and thus one of m1, m2

must be equal to 1 (recall that we are in case (ii) and L ¼ cL), so m1m2 ¼ 3.

288 ROBERTO M. AVANZI AND UMBERTO M. ZANNIER

https://doi.org/10.1023/B:COMP.0000018136.23898.65 Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000018136.23898.65


Lemma 5.4 shows that ð f� l1Þð f� l2Þ has either one root of multiplicity four or

two roots of multiplicity three, all other roots being either simple or double. There

are now three possibilities:

(a) Mð f� l1Þ ¼ ½4; 2�
n�4�m1

2 ; 1�m1 � and Mð f� l2Þ ¼ ½2�
n�m2

2 ; 1�m2 �;

(b) Mð f� l1Þ ¼ ½3; 3; 2�
n�6�m1

2 ; 1�m1 � and Mð f� l2Þ ¼ ½2�
n�m2

2 ; 1�m2 �; and

(c) Mð f� l1Þ ¼ ½3; 2�
n�3�m1

2 ; 1�m1 � and Mð f� l2Þ ¼ ½3; 2�
n�3�m2

2 ; 1�m2 �.

By the same method used in the case t ¼ 3 (that is, by a direct application of

formula (22) with g ¼ 0) we easily arrive at contradictions in all three cases, thus

completing the proof of Proposition 5.2. &

Remark 5:5. Consider now the polynomials given up to similarity in cases (6)–(8)

of Proposition 5.2: We ask how many similarity classes they form.

By the method of Remark 4.6 it can be seen that there are two similarity classes of

polynomials P4 and P6. It suffices to prove that the two given representants for each

of P4 and P6 are not similar: The equation to solve is analogous to that for P3 in the

mentioned Remark, but with q ¼ 0.

We are going to prove that the polynomials P5 form only one similarity class. Let

aj ¼ �21=3oj�1 � �oo, 14 j4 3 be the roots of ðaþ �ooÞ3 þ 2 and bj ¼ ð1 � ajÞo� 1. It

is

�ooP5ðt; a1; b1Þ ¼ P5ð �ooðt� a1Þ; a2; b2Þ:

Letting the Galois group of Qðo; 21=3Þ=QðoÞ act on the displayed equation, the

indices of the aj; bj are permuted cyclically, thus proving our claim. Note also that,

for fixed a, b, the equation P5ðX Þ � �ooP5ðY Þ is obtained from P5ðX Þ � oP5ðY Þ

exchanging X and Y and multiplying by �oo, so that in case (7) there is up to

isomorphism only one curve. &

PROPOSITION 5.6. Suppose that f, is one of the polynomials given in Proposition

5:2 ð1Þ–ð8Þ, with n ¼ degð f Þ. Let gðtÞ; hðtÞ be distinct nonconstant rational functions

with f ðgðtÞÞ ¼ cf ðhðtÞÞ.

Then there exists a rational function rðtÞ with gðtÞ ¼ g1ðrðtÞÞ, hðtÞ ¼ h1ðrðtÞÞ and

respectively in cases ð1Þ–ð8Þ:

ð1Þ g1ðtÞ ¼ t, h1ðtÞ ¼ gt where gn ¼ c.

ð2Þ If c ¼ �1 then either g1ðtÞ ¼ t, h1ðtÞ ¼ �t and n > 2, or g1ðtÞ ¼ tþ 1
t,

h1ðtÞ ¼ ztþ 1
zt, where z is a primitive 2nth root of unity ðn a primeÞ.

If c 6¼ �1 ðwith n ¼ 2Þ, then g1ðtÞ ¼
1
2 ðtþ

2ð1�cÞ
t Þ and h1ðtÞ ¼

1
2
ffiffi
c

p ðt� 2ð1�cÞ
t Þ.

ð3Þ g1ðtÞ ¼ t, h1ðtÞ ¼ gt where gr ¼ c.

ð4Þ g1ðtÞ ¼
1�gtl

gtlþm�1
and h1ðtÞ ¼ tmg1ðtÞ where g satisfies c ¼ gm.

ð5Þ If c ¼ dþ2
d�2, then g1ðtÞ ¼ 3 ct2þ1

ct3þ1
� 1 and h1ðtÞ ¼ 1 � tg1ðtÞ � t. If c ¼ d�2

dþ2, exchange

g1 with h1.
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ð6Þ Replace f with a similar polynomial to assume that b ¼ 1 in order to simplify the

expressions. Put d :¼ �6a, k :¼ 2ð2a2 � 5aþ 2Þ, U :¼ UðtÞ ¼ 1
6 ðtþ

d
t Þ and

Z :¼ ZðtÞ ¼ �1
2
ffiffi
k

p ðt� d
tÞ � ðaþ 1

aÞ: Then

g1ðtÞ ¼
ðZ� aÞðZ� 1

aÞUþ 2
3 ðaþ 1ÞðZ3 þ 1Þ

Z4 þ 1
and h1ðtÞ ¼ g1ðtÞZ:

ð7Þ Define d :¼ �oða2 � i
ffiffiffi
3

p
aþ 3oÞ and e :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3ða� 1Þ=2

p
. Also define p0 :¼

iffiffi
3

p a2 � oða� 1Þ, p1 :¼ � ioffiffi
3

p a2 � oða� 1Þ and PðsÞ :¼ s2 þ p1sþ p0. Put

U :¼ UðtÞ ¼ ðtþ d
tÞ=ð2eÞ and Z :¼ ZðtÞ ¼ ðt� d

tÞ=2 þ p1. Finally

g1ðtÞ ¼
PðZ ÞU� 2

3 ðo� �ooÞðða� 1ÞZ3 � oða� oÞÞ
Z4 � 1

þ a and

h1ðtÞ ¼ �ooðg1ðtÞ � aÞZ:

ð8Þ Put s :¼ aþ b, d :¼ a� b and e :¼ 251 þ 7x ðx2
þ xþ 4 ¼ 0 as in Definition 2:1Þ.

Define also U :¼ UðtÞ ¼ 1
2 ðtþ e=tÞ and Z :¼ ZðtÞ ¼ 1

32 ðt�
e
t þ 6 � 2xÞ. Then

g1ðtÞ ¼
sðZ3 þ 1Þ þ dðZ2 � xZþ 1ÞU

2ðZ5 � 1Þ
and h1ðtÞ ¼ �g1ðtÞZ

2:

Proof. The case (1) is trivial.

(2) If c 6¼ �1, then n ¼ 2, so we use the usual parametrisations of quadrics.

If TnðgðtÞÞ þ TnðhðtÞÞ ¼ 0 then T2nðgðtÞÞ � T2nðhðtÞÞ ¼ 0 because

TnðX Þ þ TnðY Þ ¼
T2nðX Þ � T2nðY Þ

TnðX Þ � TnðY Þ
:

In an algebraic closure of CðtÞ, we write gðtÞ ¼ aþ 1
a, hðtÞ ¼ bþ 1

b, and by the

defining equation for T2n we obtain, replacing b with 1=b if necessary, a ¼ zb for

some 2nth root of unity z. If it were zn ¼ 1 we would have TnðgðtÞÞ � TnðhðtÞÞ ¼ 0

and thus TnðgðtÞÞ ¼ 0, which is absurd, gðtÞ being assumed nonconstant. If

gðtÞ 6¼ �hðtÞ then also z 6¼ �1 and we continue as in the proof of Proposition 4.7

(2) getting the result of the statement. If gðtÞ ¼ �hðtÞ clearly n > 2.

(3) The proof of Theorem 2 (3) shows that X� gY is the only genus zero factor of

f ðX Þ � cf ðY Þ.

In cases (4)–(8), note that f ðX Þ � cf ðY Þ is irreducible and therefore it suffices to

find g1; h1 as in the statement, as remarked in the proof of Proposition 4.7.

Case (4) is verified by substitution as in Proposition 4.7(3).

(5) Let c ¼ ðdþ 2Þ=ðd� 2Þ. The equation can be rewritten as

ðX� 2ÞðXþ 1Þ2 ¼ cðYþ 2ÞðY� 1Þ2:

Upon putting X ¼ �3X1 � 1 and Y ¼ 3Y1 þ 1 we get the equation X2
1ðX1 þ 1Þ ¼

�cY2
1ðY1 þ 1Þ: We thus fall in case (4) with l ¼ 2, m ¼ 1 and �c in place of c.

If c ¼ ðd� 2Þ=ðdþ 2Þ then we exchange X with Y and divide by c the equation in

order to fall in the previous case.
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(6) Put PðX;Y Þ :¼ P4ðX Þ þ P4ðY Þ. The singular points on the curve PðX;Y Þ ¼ 0

are ðX;Y Þ ¼ ð0; 0Þ; ð1; aÞ and ða; 1Þ?. A singular point is the origin, which is easily

blown up via the birational morphism defined by Y ¼ ZX. So we obtain an equation

ðZ4 þ 1ÞX2 � 4
3 ðaþ 1ÞðZ3 þ 1ÞXþ 2aðZ2 þ 1Þ ¼ 0: ð26Þ

Consider the discriminant of the above equation with respect to X:

D :¼ DðZ Þ ¼ 16
9 ðaþ 1Þ2ðZ3 þ 1Þ2 � 8aðZ4 þ 1ÞðZ2 þ 1Þ:

It can be verified that D ¼ kð23 ðZ� aÞðZ� 1
aÞÞ

2
ðZþ a2ÞðZþ 1

a2Þ where k is as in the

statement. We parametrise U2 ¼ kðZ2 þ ða2 þ 1
a2ÞZþ 1Þ in the usual way. We are

then able to extract a square root of D, so we can solve (26) for X ¼ XðtÞ ¼ g1ðtÞ

in rational functions, and thus express also Y ¼ h1ðtÞ:

Case (7) is obtained in a similar way, but the details are more intricate. We begin

with P5ðX Þ � oP5ðY Þ ¼ 0 where P5ðtÞ ¼ P5ðt; a; bÞ and a; b satisfy the conditions

a3 þ 3 �ooa2 þ 3oaþ 3 ¼ 0 and b ¼ ð1 � aÞo� 1 given in Definition 2.1. Upon putting

Y ¼ �ooY1 consider the equation P5ðX Þ � oP5ð �ooY1Þ ¼ 0; and as in Case (6) we see

that the singular points on the associated curve are ðX;Y1Þ ¼ ða; 0Þ; ð0;obÞ and

ðb;oaÞ. We translate the first of these points to the origin: Putting X ¼ X1 þ a in

we see that X2
1 divides the constant term with respect to Y1 of the resulting equation,

and that the coefficient of Y1 is 0. We then put Y1 ¼ ZX1 and get

ðZ4 � 1ÞX2
1 �

4
3 ðo� �ooÞðða� 1ÞZ3 � oða� oÞÞX1

� 2aðða� 1 þ �ooÞZ2 � �ooða� oþ �ooÞÞ ¼ 0:

Let D ¼ DðZ Þ be the discriminant of this quadratic equation in X1. It can be verified

that, defining QðsÞ :¼ s2 � 2p1sþ p0 where p0, p1 and PðsÞ are as in the statement:

D ¼
�8

3ða� 1Þ
PðZ Þ

2QðZ Þ:

Therefore, as in case (6), we parametrise U2 ¼ �2=ð3ða� 1ÞÞQðZ Þ, we express X1

using U and PðZ Þ, and finally obtain the formulae displayed.

(8) We use (essentially) the method of Proposition 4.7 (4) and (5). Put F ¼ Cðx; yÞ,

where P6ðx; a; bÞ þ P6ð y; a; bÞ ¼ 0. Put Z :¼ ðxþ aÞðxþ bÞ=ðð yþ aÞð yþ bÞÞ, so

y ¼ �Z2x: Upon substituting this in the right side of the formula defining Z, we

get a quadratic equation for x, namely ðZ5 � 1Þx2 � ðZ3 þ 1Þðaþ bÞxþ abðZ� 1Þ:

By direct verification we see that the discriminant of this equation in x is

D¼ða� bÞ2ðZ2 � xZþ 1Þ2ðZ2 � 3�x
8 Zþ 1Þ: Upon parametrising U2¼Z2 � 3�x

8 Zþ 1,

we express first U and Z, then x and y, as rational functions of t. &

?They are obtained upon solving the system @P=@X ¼ @P=@Y ¼ PðX;Y Þ ¼ 0. Alternatively we could

observe that the curve D defined by PðX;Y Þ ¼ 0 is the fibred product of the two covers of the Riemann

sphere by itself given by X 7!� Z ¼ P4ðX Þ and by Y 7!� Z ¼ �P4ðY Þ. By Abhyankhar’s Lemma, over a

point ðx0; y0Þ 2 D there are ðr; sÞ distinct places where r ¼ multP4
ðx0Þ and s ¼ mult�P4

ð y0Þ. Now it is

straightforward to detemine the singular points on D, as the special points of P4 are known.
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Proof of Theorem 2. If f is one of the polynomials given in cases (1)–(8), then

f ðX Þ � cf ðY Þ has a genus zero factor by Propositions 5.2 and 2.2.

Conversely, suppose from now on that f ðX Þ � cf ðY Þ has a genus zero factor

PðX;Y Þ.

Write f ¼ f0 � f1 with f0 indecomposable of degree n greater than 1. The map

ðX;Y Þ 7!� ð f1ðX Þ; f1ðY ÞÞ defines a nontrivial morphism of the curve associated to

PðX;Y Þ onto the curve associated to some factor of f0ðX Þ � cf0ðY Þ, which must then

have genus zero.

Hence we can apply Proposition 5.2 to f0ðX Þ � cf0ðY Þ: We get at once the state-

ments of the theorem regarding the types of f0. Replace f0 and f1 with f0 � ‘
�1 and

‘ � f1 for a suitable linear ‘ to assume, without loss of generality, that f0 is one of

the polynomials displayed in cases (1)–(8); we can further assume f0 monic. We

consider now these cases one by one.

(1) If f0 ¼ Zn then there is nothing to prove.

(2) Let first c ¼ �1. Let bggðtÞ, bhhðtÞ be nonconstant rational functions such that

PðbggðtÞ; bhhðtÞÞ ¼ 0. Then f1 � bgg and f1 � bhh parametrise a genus zero factor of

TnðX Þ þ TnðY Þ. We apply Proposition 5.6(2) and infer that either f1 � bgg ¼ �f1 � bhh
and n > 2 or, possibly exchanging bgg with bhh, that f1ðbggðtÞÞ ¼ g1ðrðtÞÞ with g1ðtÞ ¼ tþ 1

t.

In the first case PðX;Y Þ must divide f1ðX Þ þ f1ðY Þ. In fact, under the notation of

Proposition 2.2, if PðX;Y Þ divided Un;kð f1ðX Þ; f1ðY ÞÞ for some k with 14 k < n,

k � 1ðmod 2Þ, then Un;kð f1ðbggðtÞÞ; f1ðbhhðtÞÞÞ ¼ 0. Since f1 � bgg ¼ �f1 � bhh, the poly-

nomial Un;kðX;�X Þ would vanish for infinitely many values taken by the variable

X, so it would be zero. On the other hand Un;kðX;�X Þ ¼ 2ð1 þ cosðpk=nÞÞ
X2 � 4 sin2

ðpk=nÞ 6¼ 0 the coefficient of X2 being nonzero.

In the second case we have that the curve f1ðX Þ � g1ðY Þ is irreducible and has

genus zero, implying f1 ¼ ETdegð f1Þ �M where E ¼ �1 and M is a linear polynomial:

the argument is the same as in the proof of Theorem 1(2), with R replaced here by f1.

Hence Tn � f1 ¼ Tn degð f1Þ �M.

Consider next the case c 6¼ �1. Now f0 ¼ T2. For c 6¼ 0;�1 the polynomial

T2ðX Þ � cT2ðY Þ ¼ X2 � 2 � cðY2 � 2Þ is irreducible. If the curve W2 ¼ cf ðY Þ � 2

were reducible, then f ðY Þ � 2
c would be a square of a polynomial, but as f ðY Þ þ 2

is a square, this cannot happen. Thus W2 ¼ cf ðY Þ � 2 defines an irreducible curve

C. For the same reason also the curve C0 : f ðX Þ þ 2c ¼ Z2 is irreducible. All the

components of the algebraic set f ðX Þ � cf ðY Þ ¼ 0 map onto C, resp. C0, via

X 7!� W ¼ f ðX Þ, resp. Y 7!� Z ¼ f ðY Þ. Therefore C and C0 have genus zero. This

means that there exist polynomials R;S with f ðY Þ þ 2
c ¼ ðY� Z1ÞðY� Z2ÞRðY Þ

2

and f ðX Þ þ 2c ¼ ðX� x1Þ ðX� x2ÞSðX Þ
2: Moreover f ðX Þ þ 2 ¼ f1ðX Þ

2: As R, S

and f1 are pairwise coprime factors of f 0, the sum of their degrees is

4 degð f 0Þ ¼ degð f Þ � 1. This implies degð f Þ4 2, hence f1 is linear.

(3) It suffices to prove that the only genus zero factor of FðX;Y Þ :¼ f0ðX Þ � cf0ðY Þ

is X� zY where z is a dth root of unity with zr ¼ c (in which case z ¼ cr
0

where

rr0 � 1 ðmod dÞ). By Proposition 2.4, Ff0 ðX; zY Þ ¼
f0ðX Þ�cf0ðY Þ

X�zY is absolutely
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irreducible. Our claim shall follow from Proposition 4.1 and obvious trans-

formations after we have proved that f0ðtÞ is not l.r. to either P1, P2 or P3.

Observe that f0ðz
jtÞ ¼ zjrf0ðtÞ for all j, so

the root types of f0ðtÞ at l and l=zjr are the same for all j: ð27Þ

In particular aðlÞ ¼ aðl=zjrÞ and mðlÞ ¼ mðl=zjrÞ.

. Assume first f0 l.r. to P1. Write f0ðtÞ ¼ ðtþ aÞlðtþ bÞm þ l with a 6¼ b. If l ¼ 0

then, possibly exchanging a and b, it is a ¼ 0, and l ¼ r, gðtdÞ ¼ ðtþ bÞm, which is

not possible. Then l 6¼ 0 and, by (27), aðlÞ ¼ aðl=zrÞ ¼ ðl� 1Þþ ðm� 1Þ ¼ n� 2 with

zr 6¼ 1. Formula (14) yields n� 15 aðlÞ þ aðl=zrÞ ¼ 2ðn� 2Þ i.e. n4 3, contradicting

the assumption that n ¼ lþm5 4.

. Suppose now f0 l.r. to P2. Plainly we can write f0ðtÞ ¼ ðtþ uÞðtþ uþ aÞ2

ðtþ uþ bÞ2 þ l for some u 2 C and with a; b 2 C
� satisfying

9a2 � 2abþ 9b2
¼ 0: ð28Þ

There are three possibilities for d and r: d ¼ 2 with r ¼ 1, i.e. f0 ¼ tgðt2Þ where

degðgÞ ¼ 2; d ¼ 3 with r ¼ 2, i.e. f0 ¼ t2ðt3 � vÞ; and d ¼ 4 with r ¼ 1, i.e.

f0 ¼ tðt4 � vÞ.

Assume l ¼ 0. Only in the first of the three listed possibilities it can be

Mð f0Þ ¼ ½1; 2; 2� and since f0ð�tÞ ¼ �f0ðtÞ (because z ¼ �1), we also have u ¼ 0

and gðtÞ ¼ ðt� vÞ2 (with v 6¼ 0). Thus f0ðtÞ ¼ tðt2 � vÞ2, and a ¼ �b, contrary to (28).

Hence l 6¼ 0. Now (27) holds, and aðlÞ ¼ aðl=zrÞ ¼ aðl=z2r
Þ ¼ � � � ¼ 2. This

and formula (14) (where n ¼ 5) imply that d ¼ 2 and thus z ¼ �1. Also, the

root types at l and �l are equal, therefore Mð f0 � lÞ ¼ Mð f0 þ lÞ ¼ ½1; 2; 2�. By

Proposition 2.3 we infer that f0 is l.r. to T5, which is a contradiction.

. Last, suppose f0 l.r. to P3. Write f0ðtÞ ¼ ðtþ uÞðtþ uþ aÞ3ðtþ uþ bÞ3 þ l
where 8a2 � 5abþ b2

¼ 0. If l ¼ 0 then, by an argument similar to that for the case

f0 l.r. P2, we see that it has to be a ¼ �b, contradicting the relation defining a and b.

If l 6¼ 0 we arrive at Mð f0 � lÞ ¼ Mð f0 � l=zrÞ ¼ ½1; 3; 3� with zr 6¼ 1, i.e.

aðlÞ ¼ aðl=zrÞ ¼ 4, and (14) (recall that n ¼ 7) yields again a contradiction.

For the next cases we need some auxiliary results. The following Lemma can be

derived using Ritt’s Theory [R, To]. For a simple proof follow [Z2, Lemma 6].

LEMMA 5.7. Let A;B;C;D be nonconstant polynomials over a field K of zero

characteristic with degA ¼ degC and A � B ¼ C �D. Then there is a nonconstant

K-linear polynomial ‘ such that A � ‘ ¼ C and B ¼ ‘ �D.

PROPOSITION 5.8. Let f; g be polynomials of the same degree over the complex

field, with f indecomposable and f ðX Þ � gðY Þ irreducible.
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Then f ðX Þ � gðhðY ÞÞ is irreducible for all hðY Þ 2 C½Y�.

Proof. Suppose f ðX Þ � gðhðY ÞÞ is reducible. Now [Fr2, Prop. 2] (or [BT, Prop.

8.1]) implies that there exist polynomials ~gg and ~hh with g � h ¼ ~gg � ~hh, such that

f ðX Þ � ~ggðY Þ is reducible and O ~gg ¼ Of. Thus, degð ~ggÞ ¼ degð f Þ ¼ degðgÞ. Now

g ¼ ~gg � ‘ with ‘ linear by Lemma 5.7. This clearly implies that f ðX Þ � gðY Þ is

reducible. &

We handle cases (4) and (5) together. We are in the following situation: f0 is an

indecomposable polynomial with Lð f0Þ ¼ fl1; l2g and l1 2 Lðcf0Þ (in case (4) it is

l1 ¼ cl1, so l1 ¼ 0, whereas in case (5) it is l1 ¼ cl2) but l2 =2Lðcf0Þ. From the proof

of Proposition 5.2 we know that f0ðX Þ � cf0ðY Þ is irreducible and that its associated

curve has genus zero. Also Mð f0 � l1Þ ¼ Mðcf0 � l1Þ ¼ ½p; q� with p; q coprime,

p > 1.

Let now f1 be a polynomial of degree m. We know by Proposition 5.8 that

D : f0ðX Þ � cf0ð f1ðY ÞÞ ¼ 0 is an irreducible curve.

Write cf0ðY Þ � l1 ¼ c0ðY� Z1Þ
p
ðY� Z2Þ

q and cf0ðY Þ � l2 ¼ c0

Qn
j¼1ðY� xjÞ with

the Zi; xj pairwise distinct. Let n1 (resp. n2; j for 14 j4 n), be the number of simple

roots of f1ðY Þ � Z2 (resp. f1ðY Þ � xj). Therefore the number of simple roots of

cf0ð f1ðY ÞÞ � l1 (resp. cf0ð f1ðY ÞÞ � l2) is at least n1 (resp.
Pn

j¼1 n2; j). By (14) and

(15) with f1 in place of f we have

m� 15
m� n1

2
þ
Xn
j¼1

m� n2; j

2
;

whence n1 þ
Pn

j¼1 n2; j 5mðn� 1Þ þ 2. By the genus formula (22) with f0 and cf0 � f1
in place of f and g we have 2ðnþ g� 1Þ ¼ cðl1Þ þ cðl2Þ5n1 þ

Pn
j¼1 n2; jðn� 1Þ þ 2,

whence g > 0 if m > 1.

Each of the absolutely irreducible factors of f ðX Þ � cf ðY Þ define coverings of D in

an obvious way, so they all define curves of genus 5g. Thus f1 must be linear.

Cases (6)–(8) are dealt with an argument similar to that for cases (4)–(5), by virtue

of the following Lemma (recall that f0ðtÞ ¼ PjðtÞ with 44 j4 6 is indecomposable

and that f0ðX Þ � cf0ðY Þ is irreducible).

LEMMA 5.9. Suppose f ðtÞ 2 C½t� is an indecomposable polynomial with at least 3

special points (and thus of degree at least 4) and c 2 Cnf0g is such that f ðX Þ � cf ðY Þ

is irreducible ðthus c 6¼ 1Þ and defines a curve of genus zero. Let hðtÞ 2 C½t� be of degree

greater than 1.

Then f ðX Þ � cf ðhðY ÞÞ is irreducible and defines a curve of positive genus. In

particular, and thus of degree at least 4 this holds if f is one of P4ðt; a; bÞ, P5ðt; a; bÞ

and P6ðt; a; bÞ.

Proof. The irreducibility of f ðX Þ � cf ðhðY ÞÞ follows from Proposition 5.8. Set

n ¼ degð f Þ and p ¼ degðhÞ. Let l1; l2; l3 be distinct special points of f, and Zi be the

number of simple roots of cf ðhðY ÞÞ � li for 14 i4 3. By formula (22) with g ¼ 0
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and g ¼ cf � h we have 2ðn� 1Þ ¼
P3

i¼1 cðliÞ5
P3

i¼1 Zi whereas by (14) and (15)

applied to g in place of f we obtain np� 15
P3

i¼1
np�Zi

2 5 3
2 np�

P3
i¼1

Zi
2 , so

npþ 24
P3

i¼1 Zi 4 2ðn� 1Þ, which implies p4 1, a contradiction.

This concludes the proof of Theorem 2. &
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